Stochastic methods for boundary value problems : numerics for high-dimensional PDEs and applications

This monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and chemistry.It includes Monte Carlo methods where the random walks live not only on the boundary, but also inside the domain.

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Sabelfeld, Karl K, Simonov, Nikolai A
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Berlin De Gruyter 2016
Walter de Gruyter GmbH
Vydání:1
Témata:
ISBN:3110479060, 9783110479065
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and chemistry.It includes Monte Carlo methods where the random walks live not only on the boundary, but also inside the domain.
AbstractList This monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and chemistry. It includes Monte Carlo methods where the random walks live not only on the boundary, but also inside the domain. A variety of examples from capacitance calculations to electron dynamics in semiconductors are discussed to illustrate the viability of the approach.The book is written for mathematicians who work in the field of partial differential and integral equations, physicists and engineers dealing with computational methods and applied probability, for students and postgraduates studying mathematical physics and numerical mathematics. Contents:IntroductionRandom walk algorithms for solving integral equationsRandom walk-on-boundary algorithms for the Laplace equationWalk-on-boundary algorithms for the heat equationSpatial problems of elasticityVariants of the random walk on boundary for solving stationary potential problemsSplitting and survival probabilities in random walk methods and applicationsA random WOS-based KMC method for electron-hole recombinationsMonte Carlo methods for computing macromolecules properties and solving related problemsBibliography
This monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and chemistry. It includes Monte Carlo methods where the random walks live not only on the boundary, but also inside the domain. A variety of examples from capacitance calculations to electron dynamics in semiconductors are discussed to illustrate the viability of the approach.
This monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and chemistry.It includes Monte Carlo methods where the random walks live not only on the boundary, but also inside the domain.
Author Simonov, Nikolai A
Sabelfeld, Karl K
Author_xml – sequence: 1
  fullname: Sabelfeld, Karl K
– sequence: 2
  fullname: Simonov, Nikolai A
BackLink https://cir.nii.ac.jp/crid/1130000796196093824$$DView record in CiNii
BookMark eNqNkc2P0zAQxY34ENuyR-4-ICEOhXHsxAm3pZQPqRJIIK7RxJk0po7djZOu-t-v2aIViAuXmXkzP73DmwV75IMnxp4LeC1ykb-pdCmFAKUrlasHbHEvxMN7AQU8YRdVAaBAZtlTdhnjTwAQOiuUkhes_TYF02OcrOEDTX1oI-_CyJsw-xbHEz-im4kfxtA4GiJ_y_080GjNGevtrl-1diAfbfDo-Nf3m8jRtxwPB2cNTmkdn7HHHbpIl7_7kv34sPm-_rTafvn4eX21XaHSOZQr0YI0maISOlSVAWxKo4QURdk1adsYEsZ0SVU5aMwEAWrsZJfJPENCKZfs1dkY455uYh_cFOujoyaEfaz_Cuy_WVH8wd6gm2hsaTfOpzTUA47mH9-XZzZldj1TnOo7S0N-GtHVm3drpUFXUifyxZn01tbG_qpCyPSddC5Eeloly0zJWz9qkWo
ContentType eBook
Book
DBID RYH
DOI 10.1515/9783110479454
DatabaseName CiNii Complete
DatabaseTitleList



DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 3110479451
9783110479454
9783110479164
3110479168
Edition 1
1st edition.
ExternalDocumentID 9783110479454
9783110479164
EBC4707937
BB22451004
GroupedDBID -VX
20A
38.
AABBV
AAHDW
AAUSU
AAZEP
ABARN
ABHWV
ABIAV
ABMRC
ABONK
ABQPQ
ABRUZ
ACEOQ
ACEOT
ACISH
ACLGV
ADDXO
ADVEM
ADVQQ
AEAED
AEDVL
AEQJM
AERYV
AETUO
AEYCP
AFHFQ
AFOJC
AFRFP
AGLJD
AHWGJ
AIOLA
AIUUY
AIXPE
AJFER
AJWNA
AKHYG
ALMA_UNASSIGNED_HOLDINGS
ARPAB
ARSQP
AZZ
BBABE
BETOA
BFRBX
BHFIF
CZZ
DLQEV
DUGUG
EBSCA
ECOWB
GEOUK
JJU
MYL
PQQKQ
QD8
RYH
XI1
ACBYE
AGIZT
AMYDA
AVGCG
I4C
YSPEL
ID FETCH-LOGICAL-a47508-1d03c24e80fa49c0ab8c413168fb4e8bce1ccf68f9507a21e0a7af3f2352aea33
ISBN 3110479060
9783110479065
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000285593&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu May 29 07:48:53 EDT 2025
Fri Nov 08 05:10:53 EST 2024
Fri Nov 21 20:12:06 EST 2025
Wed Nov 26 05:48:11 EST 2025
Thu Jun 26 22:28:57 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords Randwertproblem
Monte-Carlo-Simulation
Mathematische Physik
Partielle Differentialgleichung
LCCallNum_Ident QA379.S234 2016
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a47508-1d03c24e80fa49c0ab8c413168fb4e8bce1ccf68f9507a21e0a7af3f2352aea33
Notes Includes bibliographical references (p. [193]-198)
OCLC 960040322
PQID EBC4707937
PageCount 208
ParticipantIDs askewsholts_vlebooks_9783110479454
askewsholts_vlebooks_9783110479164
walterdegruyter_marc_9783110479454
proquest_ebookcentral_EBC4707937
nii_cinii_1130000796196093824
PublicationCentury 2000
PublicationDate c2016
2016
[2016]
2016-09-26
PublicationDateYYYYMMDD 2016-01-01
2016-09-26
PublicationDate_xml – year: 2016
  text: c2016
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
– name: Berlin/Boston
– name: Boston
PublicationYear 2016
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
RestrictionsOnAccess restricted access
SSID ssj0001726443
ssj0003401446
ssib026521254
ssib036187068
ssib054498303
Score 2.155272
Snippet This monograph is devoted to random walk based stochastic algorithms for solving high-dimensional boundary value problems of mathematical physics and...
SourceID askewsholts
walterdegruyter
proquest
nii
SourceType Aggregation Database
Publisher
SubjectTerms Boundary value problems
Boundary value problems -- Numerical solutions
MATHEMATICS / Numerical Analysis
MATHEMATICS / Probability & Statistics / General
MATHEMATICS / Differential Equations / General
Mathematische Physik
Monte-Carlo-Simulation
Numerical solutions
Partielle Differentialgleichung
Random walks (Mathematics)
Randwertproblem
SCIENCE / Chemistry / Computational & Molecular Modeling
SCIENCE / Chemistry / Physical & Theoretical
SCIENCE / Physics / General
SCIENCE / Physics / Mathematical & Computational
Stochastic analysis
TableOfContents 6.1.2 Computing charge density -- 6.2 Stationary diffusion equation with absorption -- 6.3 Multiply connected domains -- 6.4 Stabilization method -- 6.5 Nonlinear Poisson equation -- 7 Splitting and survival probabilities in random walk methods and applications -- 7.1 Introduction -- 7.2 Survival probability for a sphere and an interval -- 7.3 The reciprocity theorem for particle collection in the general case of Robin boundary conditions -- 7.4 Splitting and survival probabilities -- 7.4.1 Splitting probabilities for a finite interval and nanowire growth simulation -- 7.4.2 Survival probability for a disc and the exterior of circular cylinder -- 7.4.3 Splitting probabilities for concentric spheres and annulus -- 7.5 Cathodoluminescence -- 7.5.1 The random WOS and hemispheres algorithm -- 7.6 Conclusion and discussion -- 8 A random WOS-based KMC method for electron-hole recombinations -- 8.1 Introduction -- 8.2 The mean field equations -- 8.3 Monte Carlo Algorithms -- 8.3.1 Random WOS for the diffusion simulation -- 8.3.2 Radiative and nonradiative recombination in the absence of diffusion -- 8.3.3 General case of radiative and nonradiative recombination in the presence of diffusion -- 8.4 Simulation results and comparison -- 8.5 Summary and conclusion -- 9 Monte Carlo methods for computing macromolecules properties and solving related problems -- 9.1 Diffusion-limited reaction rate and other integral parameters -- 9.1.1 Formulation of the problem -- 9.1.2 Capacitance calculations -- 9.2 Walk in subdomains and efficient simulation of Brownian motion exit points -- 9.3 Monte Carlo algorithms for boundary-value conditions containing the normal derivative -- 9.3.1 WOS algorithm for mixed boundary-value conditions -- 9.3.2 Mean-value relation at a point on the boundary -- 9.3.3 Construction of the algorithm and its convergence -- 9.4 Continuity BVP
Intro -- Contents -- 1 Introduction -- 2 Random walk algorithms for solving integral equations -- 2.1 Conventional Monte Carlo scheme -- 2.2 Biased estimators -- 2.3 Linear-fractional transformations and their relations to iterative processes -- 2.4 Asymptotically unbiased estimators based on singular approximations -- 2.5 Integral equation of the first kind -- 3 Random walk-on-boundary algorithms for the Laplace equation -- 3.1 Newton potentials and boundary integral equations of the electrostatics -- 3.2 The interior Dirichlet problem and isotropic random walk-on-boundary process -- 3.3 Solution of the Neumann problem -- 3.4 Random estimators for the exterior Dirichlet problem -- 3.5 Third BVP and alternative methods of solving the Dirichlet problem -- 3.6 Inhomogeneous problems -- 3.7 Continuity BVP -- 3.7.1 Walk on boundary for the continuity problem -- 3.8 Calculation of the solution derivatives near the boundary -- 3.9 Normal derivative of a double-layer potential -- 4 Walk-on-boundary algorithms for the heat equation -- 4.1 Heat potentials and Volterra boundary integral equations -- 4.2 Nonstationary walk-on-boundary process -- 4.3 The Dirichlet problem -- 4.4 The Neumann problem -- 4.5 Third BVP -- 4.6 Unbiasedness and variance of the walk-on-boundary algorithms -- 4.7 The cost of the walk-on-boundary algorithms -- 4.8 Inhomogeneous heat equation -- 4.9 Calculation of derivatives on the boundary -- 5 Spatial problems of elasticity -- 5.1 Elastopotentials and systems of boundary integral equations of the elasticity theory -- 5.2 First BVP and estimators for singular integrals -- 5.3 Other BVPs for the Lamé equations and regular integral equations -- 6 Variants of the random walk on boundary for solving stationary potential problems -- 6.1 The Robin problem and the ergodic theorem -- 6.1.1 Monte Carlo estimator for computing capacitance
9.4.1 Monte Carlo method -- 9.4.2 Integral representation at a boundary point -- 9.4.3 Estimate for the boundary value -- 9.4.4 Construction of the algorithm and its convergence -- 9.5 Computing macromolecule energy -- 9.5.1 Mathematical model and computational results -- Bibliography
Contents --
3. Random walk-on-boundary algorithms for the Laplace equation --
7. Splitting and survival probabilities in random walk methods and applications --
Preface --
2. Random walk algorithms for solving integral equations --
1. Introduction --
9. Monte Carlo methods for computing macromolecules properties and solving related problems --
5. Spatial problems of elasticity --
8. A random WOS-based KMC method for electron–hole recombinations --
4. Walk-on-boundary algorithms for the heat equation --
Frontmatter --
6. Variants of the random walk on boundary for solving stationary potential problems --
Bibliography
Title Stochastic methods for boundary value problems : numerics for high-dimensional PDEs and applications
URI https://cir.nii.ac.jp/crid/1130000796196093824
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=4707937
https://www.degruyterbrill.com/isbn/9783110479454
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783110479164
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783110479454&uid=none
WOSCitedRecordID wos0000285593&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLZGtwM9IMZADBiyELcqI07cJuZGt8Kkim2HDe0WOY49olUpStqy_Xtef-Sj4TBx4GI1jptX9WM1z-uP50Hooy-1_WvAPE6i0KMxE15KqfAkFRLohmA09Y3ZRHR-Ht_csEvn5FkZO4GoKOL7e_brv0INdQC2Pjr7D3A3D4UK-AygQwmwQ9ljxM2lO9SxWoqfXOsuO1_oyu7FNMZJ5cNI63rrY1HGQaYycwHF2izY2IZaudjLtNq_VeoYXZ7OrIJzd5W7mZLhqVwo52895-ViND9u7sEAKJYbO9LuIHnOR1-Ou_MLpD-_cAqDtVw_1HuF68wzJFrjgfnW6OGv_-Gxkaxo21GrFN2Ttp5OgUCMidFzfQJ5zwDtfptdXM_bSbJI8zXtxdHEczpdbXwnnAoRP23FG6Ihr-7gTQFvkVUF1KHI86004tlvsyEhk7f293V4xdVzNNBnTfbRjixeoOH3RkK3OkBZCyd2cGJACddwYgMnruHEn3ENpmnWBxNrMDGAibtgvkQ_vs6uTs48Z4nhcQrcDhL-zA9FQGXsK06Z8HkaC-AhZBKrFGpTIYkQCq4YEH0eEOnziKtQBUC0ueRh-AoNimUhXyOsCB8DmYxUzKHLOOF6RTdLIya0RI-aHKIPnQ5MNguzfF8lbS9Dqv14I4DiEB1B5yci1yXRC6jATBmk7hOfhXEA93ENS2K-7zYmJ7PpCbUSjhCnB1eitV6247x5JM5b9LQd4e_QYFWu5RHaE5tVXpXv3eD7A89-ccA
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Stochastic+methods+for+boundary+value+problems+%3A+numerics+for+high-dimensional+PDEs+and+applications&rft.au=Sabelfeld%2C+Karl+K.&rft.au=Simonov%2C+Nikolai+A.&rft.date=2016-01-01&rft.pub=De+Gruyter&rft.isbn=9783110479065&rft_id=info:doi/10.1515%2F9783110479454&rft.externalDocID=BB22451004
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.degruyterbrill.com%2Fdocument%2Fcover%2Fisbn%2F9783110479454%2Foriginal
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97831104%2F9783110479164.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97831104%2F9783110479454.jpg