Particle Swarm Optimisation Classical and Quantum Perspectives

Helping readers numerically solve optimization problems, this book focuses on the fundamental principles and applications of PSO and QPSO algorithms. The authors develop their novel QPSO algorithm, a PSO variant motivated from quantum mechanics, and show how to implement it in real-world application...

Full description

Saved in:
Bibliographic Details
Main Authors: Sun, Jun, Lai, Choi-Hong, Wu, Xiao-Jun
Format: eBook Book
Language:English
Published: Boca Raton CRC Press 2012
Taylor & Francis Group
Edition:1
Series:Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series
Subjects:
ISBN:9781439835760, 1439835764
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Helping readers numerically solve optimization problems, this book focuses on the fundamental principles and applications of PSO and QPSO algorithms. The authors develop their novel QPSO algorithm, a PSO variant motivated from quantum mechanics, and show how to implement it in real-world applications, including inverse problems, digital filter d.
AbstractList Although the particle swarm optimisation (PSO) algorithm requires relatively few parameters and is computationally simple and easy to implement, it is not a globally convergent algorithm. In Particle Swarm Optimisation: Classical and Quantum Perspectives, the authors introduce their concept of quantum-behaved particles inspired by quantum mechanics, which leads to the quantum-behaved particle swarm optimisation (QPSO) algorithm. This globally convergent algorithm has fewer parameters, a faster convergence rate, and stronger searchability for complex problems. The book presents the concepts of optimisation problems as well as random search methods for optimisation before discussing the principles of the PSO algorithm. Examples illustrate how the PSO algorithm solves optimisation problems. The authors also analyse the reasons behind the shortcomings of the PSO algorithm. Moving on to the QPSO algorithm, the authors give a thorough overview of the literature on QPSO, describe the fundamental model for the QPSO algorithm, and explore applications of the algorithm to solve typical optimisation problems. They also discuss some advanced theoretical topics, including the behaviour of individual particles, global convergence, computational complexity, convergence rate, and parameter selection. The text closes with coverage of several real-world applications, including inverse problems, optimal design of digital filters, economic dispatch problems, biological multiple sequence alignment, and image processing. MATLAB®, Fortran, and C++ source codes for the main algorithms are provided on an accompanying CD-ROM. Helping you numerically solve optimisation problems, this book focuses on the fundamental principles and applications of PSO and QPSO algorithms. It not only explains how to use the algorithms, but also covers advanced topics that establish the groundwork for understanding state-of-the-art research in the field.
Helping readers numerically solve optimization problems, this book focuses on the fundamental principles and applications of PSO and QPSO algorithms. The authors develop their novel QPSO algorithm, a PSO variant motivated from quantum mechanics, and show how to implement it in real-world applications, including inverse problems, digital filter d.
Although the particle swarm optimisation (PSO) algorithm requires relatively few parameters and is computationally simple and easy to implement, it is not a globally convergent algorithm. In Particle Swarm Optimisation: Classical and Quantum Perspectives, the authors introduce their concept of quantum-behaved particles inspired by quantum mechanics, which leads to the quantum-behaved particle swarm optimisation (QPSO) algorithm. This globally convergent algorithm has fewer parameters, a faster convergence rate, and stronger searchability for complex problems.The book presents the concepts of optimisation problems as well as random search methods for optimisation before discussing the principles of the PSO algorithm. Examples illustrate how the PSO algorithm solves optimisation problems. The authors also analyse the reasons behind the shortcomings of the PSO algorithm.Moving on to the QPSO algorithm, the authors give a thorough overview of the literature on QPSO, describe the fundamental model for the QPSO algorithm, and explore applications of the algorithm to solve typical optimisation problems. They also discuss some advanced theoretical topics, including the behaviour of individual particles, global convergence, computational complexity, convergence rate, and parameter selection. The text closes with coverage of several real-world applications, including inverse problems, optimal design of digital filters, economic dispatch problems, biological multiple sequence alignment, and image processing. MATLAB¬, Fortran, and C++ source codes for the main algorithms are provided on an accompanying downloadable resources.Helping you numerically solve optimisation problems, this book focuses on the fundamental principles and applications of PSO and QPSO algorithms. It not only explains how to use the algorithms, but also covers advanced topics that establish the groundwork for understanding.
Author Sun, Jun
Wu, Xiao-Jun
Lai, Choi-Hong
Author_xml – sequence: 1
  fullname: Sun, Jun
– sequence: 2
  fullname: Lai, Choi-Hong
– sequence: 3
  fullname: Wu, Xiao-Jun
BackLink https://cir.nii.ac.jp/crid/1130000794615210368$$DView record in CiNii
BookMark eNqN0c1OAyEQAGCM1tjW-gJePBgTD1UGWGAvJtrUn6RJTTReCcuykXS7VFhbfXup66U3CYEQvgzDzAAdNL6xCJ0AvgKC4boAyES-h0a5kMBoLmkmhNjfOXPcQ4OEAVMqKRyifrojHASXR2gUoyswYxmWQpA-On3WoXWmtmcvGx2WZ_NV65Yu6tb55hj1Kl1HO_rbh-jtfvo6eRzP5g9Pk9vZWDPB6Ne4gLzAIr2FQVphSllikwnLCVRGM0tEZRg1jEjLbVllXFNZaqYJz8syTUuH6LILrOPCbuK7r9uo1rUtvF9EtfPVf1jMME4Us2QvOrsK_uPTxlb9MmObNuhaTe8mMiVBt_C8g41zyrjtCkBxGiJnHDKSasllYjcdc03lw1JvfKhL1erv2ocq6Ma42KUBWG3bpbp2qbUNMdWT0B8tbIGy
ContentType eBook
Book
Copyright 2012 by Taylor & Francis Group, LLC
Copyright_xml – notice: 2012 by Taylor & Francis Group, LLC
DBID RYH
DEWEY 531/.16
DOI 10.1201/b11579
DatabaseName CiNii Complete
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISBN 9781439835777
0429105991
9780429105999
1439835772
1040057705
9781040057704
Edition 1
1st edition.
ExternalDocumentID 9781439835777
9781040057704
EBC826934
BB08283500
10_1201_b11579_version2
GroupedDBID 089
20A
38.
5~G
A4J
AABBV
ABARN
ABEQL
ABQPQ
ACLGV
ADVEM
ADYHE
AERYV
AEUHU
AFIZQ
AFOJC
AFXGA
AHWGJ
AIENH
AIXXW
AJFER
AKPKN
AKSCQ
AKV
ALMA_UNASSIGNED_HOLDINGS
ATPON
AZZ
BBABE
CZZ
EBATF
GEOUK
I4C
INALI
JG1
JTX
MYL
NEQ
NEV
OHILO
OODEK
PQQKQ
ABBFG
ACGYG
ACNUM
AKQZE
RYH
ACBYE
AXTGW
ID FETCH-LOGICAL-a4743x-b19b07383018e7cd8d0c57e621fca4e27fc43c428e6edf56a38da4a269dd9dde3
ISBN 9781439835760
1439835764
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000362229700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Sun Nov 09 05:47:18 EST 2025
Fri Nov 15 02:02:10 EST 2024
Wed Dec 10 08:49:03 EST 2025
Thu Jun 26 23:10:21 EDT 2025
Fri Aug 29 09:56:13 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords Rosenbrock Function
Time Complexity
Log Odds Scores
SVM Model
Dielectric Resonator Antennas
QPSO
ED Problem
Schwefel’s Problem
Gbest Position
MSA Problem
Original PSO
Hybrid PSO
Adaptive Inertia Weight
Position Update Equation
PSO Method
Rastrigin Function
Solve ED Problem
Schwefel Function
QPSO Algorithm
Benchmark Functions
PSO Algorithm
Random Search Method
Chen System
HMM Training
Inertia Weight
LCCN 2011033831
LCCallNum_Ident QC20.7.M27
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a4743x-b19b07383018e7cd8d0c57e621fca4e27fc43c428e6edf56a38da4a269dd9dde3
Notes Includes bibliographical references and index
OCLC 781261768
PQID EBC826934
PageCount 419
ParticipantIDs askewsholts_vlebooks_9781439835777
askewsholts_vlebooks_9781040057704
proquest_ebookcentral_EBC826934
nii_cinii_1130000794615210368
informaworld_taylorfrancisbooks_10_1201_b11579_version2
PublicationCentury 2000
PublicationDate 2012
c2012
2011
2016-04-19
2011-12-19
PublicationDateYYYYMMDD 2012-01-01
2011-01-01
2016-04-19
2011-12-19
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationPlace Boca Raton
PublicationPlace_xml – name: Boca Raton
PublicationSeriesTitle Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series
PublicationYear 2012
2011
2016
Publisher CRC Press
Taylor & Francis Group
Publisher_xml – name: CRC Press
– name: Taylor & Francis Group
SSID ssib044508772
ssj0000564984
Score 2.2922387
Snippet Helping readers numerically solve optimization problems, this book focuses on the fundamental principles and applications of PSO and QPSO algorithms. The...
Although the particle swarm optimisation (PSO) algorithm requires relatively few parameters and is computationally simple and easy to implement, it is not a...
SourceID askewsholts
proquest
nii
informaworld
SourceType Aggregation Database
Publisher
SubjectTerms COMPUTERS / Programming / Algorithms. bisacsh
Mathematical optimization
MATHEMATICS / General. bisacsh
MATHEMATICS / Number Systems. bisacsh
Particles (Nuclear physics)
Swarm intelligence
Subtitle Classical and Quantum Perspectives
TableOfContents Front Cover -- Contents -- Preface -- Authors -- Chapter 1: Introduction -- Chapter 2: Particle Swarm Optimisation -- Chapter 3: Some Variants of Particle Swarm Optimisation -- Chapter 4: Quantum-Behaved Particle Swarm Optimisation -- Chapter 5: Advanced Topics -- Chapter 6: Industrial Applications -- Back Cover
Title Particle Swarm Optimisation
URI https://www.taylorfrancis.com/books/9780429105999
https://cir.nii.ac.jp/crid/1130000794615210368
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=826934
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781040057704
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781439835777&uid=none
WOSCitedRecordID wos000362229700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-hlgf2wrcoY1Ah3iaLJnZi-5WoMAm0TTBQ3yLHdkQ0lqKm6_rn7_zRtGwCCSSqymqtk6P659797nz2AbypBa90RjVhyqaEZSInIjcTwtGcScWE0rk_KPyJHx-L2UyexqKlnS8nwNtWrNfy53-FGvsQbHd09i_g7gfFDvyMoGOLsGN7gxH3XwPip3EVHH65UouLwxNUBhcxWWe79ROPYmwTcUI56uL7vCFH82jGnJK-dN2zRs3JRjrGBnySxW5soPhc_JLJEZxGZEgSeRcP5VNuqdDUX91fuUt45NZI9Kl7zmlAkTIIlKsQ1UMjOExZRtkAhh-mJ18_bv7TjGXuysG0j3sh4WJSsFjmCUd6G0bagz3VnaNiR6W_7G5cHIuGv22aW-bSc4CzBzC07mDIQ7hj20dwP9L3cVSO3WPY3wAw9gCMdwF4At_eT8-KIxJrTxDFkFStSZXICtWfQAUoLNdGmInOuM3TpNaK2ZTXmlGNzpvNramzXFFhFFNpLo3Bt6VPYdDOW_sMxlRXSLITbfDFRGYkcl6cBZrU6HvTuh7B652fXq5--H3yrnRYOR2LUE3Yn4R6QEfAd6etXPqoTx1KtAT53-A3ggOc4VI3rk3cHieSR8lyR--Q5IgRvNrMfemfHHOHy-m7Aj1USdnzf372PtzbLt4XMFguLu0B3NWrZdMtXsYFdQ0kxVO_
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Particle+Swarm+Optimisation&rft.au=Sun%2C+Jun&rft.au=Lai%2C+Choi-Hong&rft.au=Wu%2C+Xiao-Jun&rft.date=2012-01-01&rft.pub=CRC+Press&rft.isbn=9781439835777&rft_id=info:doi/10.1201%2Fb11579&rft.externalDocID=10_1201_b11579_version2
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97810400%2F9781040057704.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814398%2F9781439835777.jpg