Drug side-effect prediction based on the integration of chemical and biological spaces

Drug side-effects, or adverse drug reactions, have become a major public health concern and remain one of the main causes of drug failure and of drug withdrawal once they have reached the market. Therefore, the identification of potential severe side-effects is a challenging issue. In this paper, we...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical information and modeling Vol. 52; no. 12; p. 3284
Main Authors: Yamanishi, Yoshihiro, Pauwels, Edouard, Kotera, Masaaki
Format: Journal Article
Language:English
Published: United States 21.12.2012
Subjects:
ISSN:1549-960X, 1549-960X
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Drug side-effects, or adverse drug reactions, have become a major public health concern and remain one of the main causes of drug failure and of drug withdrawal once they have reached the market. Therefore, the identification of potential severe side-effects is a challenging issue. In this paper, we develop a new method to predict potential side-effect profiles of drug candidate molecules based on their chemical structures and target protein information on a large scale. We propose several extensions of kernel regression model for multiple responses to deal with heterogeneous data sources. The originality lies in the integration of the chemical space of drug chemical structures and the biological space of drug target proteins in a unified framework. As a result, we demonstrate the usefulness of the proposed method on the simultaneous prediction of 969 side-effects for approved drugs from their chemical substructure and target protein profiles and show that the prediction accuracy consistently improves owing to the proposed regression model and integration of chemical and biological information. We also conduct a comprehensive side-effect prediction for uncharacterized drug molecules stored in DrugBank and confirm interesting predictions using independent information sources. The proposed method is expected to be useful at many stages of the drug development process.
AbstractList Drug side-effects, or adverse drug reactions, have become a major public health concern and remain one of the main causes of drug failure and of drug withdrawal once they have reached the market. Therefore, the identification of potential severe side-effects is a challenging issue. In this paper, we develop a new method to predict potential side-effect profiles of drug candidate molecules based on their chemical structures and target protein information on a large scale. We propose several extensions of kernel regression model for multiple responses to deal with heterogeneous data sources. The originality lies in the integration of the chemical space of drug chemical structures and the biological space of drug target proteins in a unified framework. As a result, we demonstrate the usefulness of the proposed method on the simultaneous prediction of 969 side-effects for approved drugs from their chemical substructure and target protein profiles and show that the prediction accuracy consistently improves owing to the proposed regression model and integration of chemical and biological information. We also conduct a comprehensive side-effect prediction for uncharacterized drug molecules stored in DrugBank and confirm interesting predictions using independent information sources. The proposed method is expected to be useful at many stages of the drug development process.
Drug side-effects, or adverse drug reactions, have become a major public health concern and remain one of the main causes of drug failure and of drug withdrawal once they have reached the market. Therefore, the identification of potential severe side-effects is a challenging issue. In this paper, we develop a new method to predict potential side-effect profiles of drug candidate molecules based on their chemical structures and target protein information on a large scale. We propose several extensions of kernel regression model for multiple responses to deal with heterogeneous data sources. The originality lies in the integration of the chemical space of drug chemical structures and the biological space of drug target proteins in a unified framework. As a result, we demonstrate the usefulness of the proposed method on the simultaneous prediction of 969 side-effects for approved drugs from their chemical substructure and target protein profiles and show that the prediction accuracy consistently improves owing to the proposed regression model and integration of chemical and biological information. We also conduct a comprehensive side-effect prediction for uncharacterized drug molecules stored in DrugBank and confirm interesting predictions using independent information sources. The proposed method is expected to be useful at many stages of the drug development process.Drug side-effects, or adverse drug reactions, have become a major public health concern and remain one of the main causes of drug failure and of drug withdrawal once they have reached the market. Therefore, the identification of potential severe side-effects is a challenging issue. In this paper, we develop a new method to predict potential side-effect profiles of drug candidate molecules based on their chemical structures and target protein information on a large scale. We propose several extensions of kernel regression model for multiple responses to deal with heterogeneous data sources. The originality lies in the integration of the chemical space of drug chemical structures and the biological space of drug target proteins in a unified framework. As a result, we demonstrate the usefulness of the proposed method on the simultaneous prediction of 969 side-effects for approved drugs from their chemical substructure and target protein profiles and show that the prediction accuracy consistently improves owing to the proposed regression model and integration of chemical and biological information. We also conduct a comprehensive side-effect prediction for uncharacterized drug molecules stored in DrugBank and confirm interesting predictions using independent information sources. The proposed method is expected to be useful at many stages of the drug development process.
Author Kotera, Masaaki
Pauwels, Edouard
Yamanishi, Yoshihiro
Author_xml – sequence: 1
  givenname: Yoshihiro
  surname: Yamanishi
  fullname: Yamanishi, Yoshihiro
  email: yamanishi@bioreg.kyushu-u.ac.jp
  organization: Division of System Cohort, Multi-scale Research Center for Medical Science, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan. yamanishi@bioreg.kyushu-u.ac.jp
– sequence: 2
  givenname: Edouard
  surname: Pauwels
  fullname: Pauwels, Edouard
– sequence: 3
  givenname: Masaaki
  surname: Kotera
  fullname: Kotera, Masaaki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23157436$$D View this record in MEDLINE/PubMed
BookMark eNpNkDlPxDAUhC0EYg8o-APIJU3g-Ygdl2g5pZVoANFFPl52jXIRJwX_ntWySFTzjWY0xSzIcdu1SMgFg2sGnN34yAHyXBZHZM5yaTKj4OP4H8_IIqVPACGM4qdkxgXLtRRqTt7vhmlDUwyYYVWhH2k_YIh-jF1LnU0Y6A7GLdLYjrgZ7D7oKuq32ERva2rbQF3s6m6zt6m3HtMZOalsnfD8oEvy9nD_unrK1i-Pz6vbdWalFmNmCg5OKg8BhXSgOXLIg2deVxacQOm0YOgLVN6iAA5oDAaltbNamcLwJbn63e2H7mvCNJZNTB7r2rbYTalkXAu5u0brXfXyUJ1cg6Hsh9jY4bv8-4L_AIz9Yb8
CitedBy_id crossref_primary_10_1093_bioadv_vbae009
crossref_primary_10_1109_ACCESS_2017_2755045
crossref_primary_10_1371_journal_pone_0266435
crossref_primary_10_1016_j_heliyon_2023_e19441
crossref_primary_10_1007_s40484_015_0051_0
crossref_primary_10_3389_fphar_2023_1113007
crossref_primary_10_1007_s44163_024_00188_3
crossref_primary_10_1093_bib_bbz140
crossref_primary_10_1093_bib_bbab449
crossref_primary_10_3389_fmolb_2024_1430794
crossref_primary_10_1186_1752_0509_7_S6_S18
crossref_primary_10_3390_molecules23123193
crossref_primary_10_2174_1574893618666230707123817
crossref_primary_10_2174_1574893614666190220114644
crossref_primary_10_1016_j_comtox_2021_100165
crossref_primary_10_1016_j_compbiomed_2015_11_005
crossref_primary_10_1109_JBHI_2018_2883834
crossref_primary_10_1109_TCBB_2022_3141103
crossref_primary_10_1371_journal_pone_0106298
crossref_primary_10_1038_s41467_019_11875_6
crossref_primary_10_1186_s13321_017_0215_1
crossref_primary_10_3390_molecules24203668
crossref_primary_10_1007_s11704_024_31063_0
crossref_primary_10_1016_j_crmeth_2022_100358
crossref_primary_10_1109_ACCESS_2020_3026479
crossref_primary_10_1016_j_compbiomed_2023_107812
crossref_primary_10_1016_j_namjnl_2025_100012
crossref_primary_10_1016_j_drudis_2019_03_003
crossref_primary_10_1186_s12859_015_0730_x
crossref_primary_10_1111_cbdd_13516
crossref_primary_10_1038_s41598_021_03348_y
crossref_primary_10_1109_JBHI_2024_3350083
crossref_primary_10_1186_1471_2105_14_207
crossref_primary_10_1186_s13321_019_0402_3
crossref_primary_10_1002_minf_201400064
crossref_primary_10_1007_s40264_018_0688_5
crossref_primary_10_1016_j_neucom_2018_01_085
crossref_primary_10_1186_s12859_015_0774_y
crossref_primary_10_1155_2020_4675395
crossref_primary_10_1016_j_drudis_2022_103364
crossref_primary_10_1007_s10844_020_00633_6
crossref_primary_10_1016_j_jbi_2014_03_014
crossref_primary_10_1016_j_neucom_2018_10_028
crossref_primary_10_1002_ddr_21669
crossref_primary_10_1016_j_jbi_2022_104098
crossref_primary_10_1016_j_jbi_2022_104131
crossref_primary_10_1016_j_cels_2016_03_001
crossref_primary_10_1038_s41598_017_16674_x
crossref_primary_10_1089_cmb_2015_0129
crossref_primary_10_1186_s40537_015_0024_1
crossref_primary_10_1186_s12859_018_2563_x
crossref_primary_10_2174_1574893615999200707141420
crossref_primary_10_1186_s12859_018_2520_8
crossref_primary_10_1186_s13321_016_0147_1
crossref_primary_10_1016_j_ymeth_2023_09_008
crossref_primary_10_1038_s41598_019_46939_6
crossref_primary_10_1016_j_jconrel_2018_04_042
crossref_primary_10_1038_srep26125
crossref_primary_10_1371_journal_pone_0193959
crossref_primary_10_1038_s41467_020_18305_y
crossref_primary_10_1016_j_drudis_2015_07_018
crossref_primary_10_1016_j_lfs_2021_119400
crossref_primary_10_1016_j_neucom_2015_08_054
crossref_primary_10_1038_srep11090
crossref_primary_10_1186_s12918_017_0477_2
crossref_primary_10_3390_info14120663
crossref_primary_10_1007_s10618_018_00610_2
crossref_primary_10_1007_s10462_023_10413_7
crossref_primary_10_1093_bib_bbab580
crossref_primary_10_1093_nar_gku477
crossref_primary_10_1016_j_compbiomed_2021_104361
crossref_primary_10_1155_2020_1573543
crossref_primary_10_1517_17460441_2015_1082543
crossref_primary_10_1039_C7MB00059F
crossref_primary_10_1002_cmdc_201500123
crossref_primary_10_1016_j_ipm_2020_102357
crossref_primary_10_1109_TNNLS_2023_3250324
crossref_primary_10_1155_2022_9132477
crossref_primary_10_1093_bib_bbx099
crossref_primary_10_1109_ACCESS_2024_3382936
crossref_primary_10_3390_molecules29081784
crossref_primary_10_1007_s12539_017_0236_5
crossref_primary_10_1093_bib_bbz153
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/ci2005548
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-960X
ExternalDocumentID 23157436
Genre Journal Article
GroupedDBID ---
-~X
4.4
55A
5GY
5VS
7~N
AABXI
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CGR
CUPRZ
CUY
CVF
D0L
DU5
EBS
ECM
ED~
EIF
EJD
F5P
GGK
GNL
IH9
JG~
LG6
NPM
P2P
PQQKQ
RNS
ROL
UI2
VF5
VG9
W1F
7X8
ID FETCH-LOGICAL-a473t-9820b46c0de34b072e205dc1c7fa0b3e4b731ec8e6cae3020e99ed677ba769892
IEDL.DBID 7X8
ISICitedReferencesCount 114
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000312563800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-960X
IngestDate Fri Jul 11 07:45:03 EDT 2025
Mon Jul 21 06:05:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a473t-9820b46c0de34b072e205dc1c7fa0b3e4b731ec8e6cae3020e99ed677ba769892
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23157436
PQID 1273405577
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1273405577
pubmed_primary_23157436
PublicationCentury 2000
PublicationDate 2012-12-21
PublicationDateYYYYMMDD 2012-12-21
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of chemical information and modeling
PublicationTitleAlternate J Chem Inf Model
PublicationYear 2012
SSID ssj0033962
Score 2.413741
Snippet Drug side-effects, or adverse drug reactions, have become a major public health concern and remain one of the main causes of drug failure and of drug...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 3284
SubjectTerms Computational Biology - methods
Drug-Related Side Effects and Adverse Reactions
Models, Molecular
Protein Conformation
Proteins - chemistry
Proteins - metabolism
Title Drug side-effect prediction based on the integration of chemical and biological spaces
URI https://www.ncbi.nlm.nih.gov/pubmed/23157436
https://www.proquest.com/docview/1273405577
Volume 52
WOSCitedRecordID wos000312563800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qCnrx_VhfRPAatm2apj2JrC5eXPag0ltJJlnx0q778Pc704eeBMFLSSml7WQy83UmfB9jN5GRoGVoBEin8AdFKWFU4IQCb0liO5Opq8Um9Hic5nk2aQtui3ZbZRcT60DtKqAa-SAkHhYijNK3sw9BqlHUXW0lNNZZTyKUIa_W-XcXQcqsFhQlFjKBSD3vmIWicADvVE5Rcfo7sqwzzGj3v--2x3ZabMnvGmfYZ2u-PGBbw07S7ZC93s9Xb5wEOkWzj4PP5tSoocnhlM8cxwFCQt6xSNCFasqhpRXgpnS84W2qTzEcYZw5Yi-jh-fho2iFFYSJtVyKDNO-jRMInJexDXTko0A5CEFPTWCljy1On4fUJ2C8REDps8y7RGtrNAlORsdso6xKf8q4ipMQQSI4jTjBSZeaiGT-lLWpz8BDn113JivwY6kbYUpfrRbFj9H67KSxezFrGDYKBJ0KoU1y9oe7z9k2PrJWaInCC9ab4rL1l2wTPpfvi_lV7RF4HE-evgCa6MDh
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drug+side-effect+prediction+based+on+the+integration+of+chemical+and+biological+spaces&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Yamanishi%2C+Yoshihiro&rft.au=Pauwels%2C+Edouard&rft.au=Kotera%2C+Masaaki&rft.date=2012-12-21&rft.eissn=1549-960X&rft.volume=52&rft.issue=12&rft.spage=3284&rft_id=info:doi/10.1021%2Fci2005548&rft_id=info%3Apmid%2F23157436&rft_id=info%3Apmid%2F23157436&rft.externalDocID=23157436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-960X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-960X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-960X&client=summon