Critical Assessment of Methods for Predicting the 3D Structure of Proteins and Protein Complexes

Advances in a scientific discipline are often measured by small, incremental steps. In this review, we report on two intertwined disciplines in the protein structure prediction field, modeling of single chains and modeling of complexes, that have over decades emulated this pattern, as monitored by t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of biophysics Jg. 52; S. 183
Hauptverfasser: Wodak, Shoshana J, Vajda, Sandor, Lensink, Marc F, Kozakov, Dima, Bates, Paul A
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 09.05.2023
Schlagworte:
ISSN:1936-1238, 1936-1238
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Advances in a scientific discipline are often measured by small, incremental steps. In this review, we report on two intertwined disciplines in the protein structure prediction field, modeling of single chains and modeling of complexes, that have over decades emulated this pattern, as monitored by the community-wide blind prediction experiments CASP and CAPRI. However, over the past few years, dramatic advances were observed for the accurate prediction of single protein chains, driven by a surge of deep learning methodologies entering the prediction field. We review the mainscientific developments that enabled these recent breakthroughs and feature the important role of blind prediction experiments in building up and nurturing the structure prediction field. We discuss how the new wave of artificial intelligence-based methods is impacting the fields of computational and experimental structural biology and highlight areas in which deep learning methods are likely to lead to future developments, provided that major challenges are overcome.
AbstractList Advances in a scientific discipline are often measured by small, incremental steps. In this review, we report on two intertwined disciplines in the protein structure prediction field, modeling of single chains and modeling of complexes, that have over decades emulated this pattern, as monitored by the community-wide blind prediction experiments CASP and CAPRI. However, over the past few years, dramatic advances were observed for the accurate prediction of single protein chains, driven by a surge of deep learning methodologies entering the prediction field. We review the mainscientific developments that enabled these recent breakthroughs and feature the important role of blind prediction experiments in building up and nurturing the structure prediction field. We discuss how the new wave of artificial intelligence-based methods is impacting the fields of computational and experimental structural biology and highlight areas in which deep learning methods are likely to lead to future developments, provided that major challenges are overcome.Advances in a scientific discipline are often measured by small, incremental steps. In this review, we report on two intertwined disciplines in the protein structure prediction field, modeling of single chains and modeling of complexes, that have over decades emulated this pattern, as monitored by the community-wide blind prediction experiments CASP and CAPRI. However, over the past few years, dramatic advances were observed for the accurate prediction of single protein chains, driven by a surge of deep learning methodologies entering the prediction field. We review the mainscientific developments that enabled these recent breakthroughs and feature the important role of blind prediction experiments in building up and nurturing the structure prediction field. We discuss how the new wave of artificial intelligence-based methods is impacting the fields of computational and experimental structural biology and highlight areas in which deep learning methods are likely to lead to future developments, provided that major challenges are overcome.
Advances in a scientific discipline are often measured by small, incremental steps. In this review, we report on two intertwined disciplines in the protein structure prediction field, modeling of single chains and modeling of complexes, that have over decades emulated this pattern, as monitored by the community-wide blind prediction experiments CASP and CAPRI. However, over the past few years, dramatic advances were observed for the accurate prediction of single protein chains, driven by a surge of deep learning methodologies entering the prediction field. We review the mainscientific developments that enabled these recent breakthroughs and feature the important role of blind prediction experiments in building up and nurturing the structure prediction field. We discuss how the new wave of artificial intelligence-based methods is impacting the fields of computational and experimental structural biology and highlight areas in which deep learning methods are likely to lead to future developments, provided that major challenges are overcome.
Author Wodak, Shoshana J
Kozakov, Dima
Vajda, Sandor
Bates, Paul A
Lensink, Marc F
Author_xml – sequence: 1
  givenname: Shoshana J
  surname: Wodak
  fullname: Wodak, Shoshana J
  email: Shoshana.wodak@gmail.com
  organization: VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium; email: Shoshana.wodak@gmail.com
– sequence: 2
  givenname: Sandor
  surname: Vajda
  fullname: Vajda, Sandor
  email: vajda@bu.edu
  organization: Department of Chemistry, Boston University, Boston, Massachusetts, USA
– sequence: 3
  givenname: Marc F
  surname: Lensink
  fullname: Lensink, Marc F
  email: marc.lensink@univ-lille.fr
  organization: Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; email: marc.lensink@univ-lille.fr
– sequence: 4
  givenname: Dima
  surname: Kozakov
  fullname: Kozakov, Dima
  email: midas@laufercenter.org
  organization: Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
– sequence: 5
  givenname: Paul A
  surname: Bates
  fullname: Bates, Paul A
  email: paul.bates@crick.ac.uk
  organization: Biomolecular Modelling Laboratory, The Francis Crick Institute, London, United Kingdom; email: paul.bates@crick.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36626764$$D View this record in MEDLINE/PubMed
BookMark eNpNkF1LwzAYhYNMnJv-BcmN4E01H23SXo76CRMH6nVN0reu0iY1ScX9eydu4NU5Bx4OhzNDE-ssIHROySWlqbhS1o4evhLdumG9CQklTDCWkDwVRB6gY1pwkVDG88k_P0WzED4IyYRMxRGaciGYkCI9Rm-lb2NrVIcXIUAIPdiIXYMfIa5dHXDjPF55qFsTW_uO4xowv8bP0Y8mbnf8oivvIrQ2YGXrfcCl64cOviGcoMNGdQFOdzpHr7c3L-V9sny6eygXy0SlkseEGUm1MSZrBFG1UEVNKdNKZZpyzVhNlMiNyDPICq6h0FxzKU3RSF4wlheKzdHFX-_g3ecIIVZ9Gwx0nbLgxlAxKdOsEDInW_Rsh466h7oafNsrv6n2r7AfOBxsAg
CitedBy_id crossref_primary_10_3390_ijms241713543
crossref_primary_10_1021_acs_jcim_5c01029
crossref_primary_10_1007_s12033_024_01119_4
crossref_primary_10_1002_fsn3_70523
crossref_primary_10_1093_protein_gzad023
crossref_primary_10_3389_fmolb_2025_1542267
crossref_primary_10_1002_pro_5026
crossref_primary_10_1021_acs_jctc_4c01386
crossref_primary_10_55071_ticaretfbd_1323165
crossref_primary_10_1016_j_jmb_2024_168540
crossref_primary_10_1021_acs_jcim_4c02412
crossref_primary_10_3389_fmolb_2024_1360267
crossref_primary_10_1002_cbic_202300192
crossref_primary_10_3390_molecules29194626
crossref_primary_10_1038_s41467_024_52020_2
crossref_primary_10_1016_j_biotechadv_2025_108601
crossref_primary_10_1016_j_jmb_2025_169014
crossref_primary_10_1002_prot_26609
crossref_primary_10_1002_prot_70042
crossref_primary_10_1038_s41392_024_02036_3
crossref_primary_10_1093_bib_bbaf186
crossref_primary_10_1371_journal_pone_0320177
crossref_primary_10_1039_D4SC08649J
crossref_primary_10_1080_08927022_2024_2378833
crossref_primary_10_1002_pmic_202300219
crossref_primary_10_1007_s13258_025_01656_5
crossref_primary_10_1016_j_jmb_2025_169085
crossref_primary_10_1161_SVIN_124_001052
crossref_primary_10_1002_pmic_202200084
crossref_primary_10_3390_ijms26020462
crossref_primary_10_1016_j_bbagrm_2023_195003
crossref_primary_10_3390_microorganisms13092043
crossref_primary_10_1093_nar_gkae420
crossref_primary_10_1615_CritRevTherDrugCarrierSyst_2025054214
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1146/annurev-biophys-102622-084607
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1936-1238
ExternalDocumentID 36626764
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM118078
– fundername: Medical Research Council
  grantid: FC001003
– fundername: Wellcome Trust
  grantid: FC001003
– fundername: NIGMS NIH HHS
  grantid: R01 GM140098
– fundername: Cancer Research UK
  grantid: FC001003
GroupedDBID ---
-QD
-QH
0R~
1KX
23M
39C
4.4
51A
5FA
5FB
5FC
5FD
5FE
5GY
6J9
7A.
AABJL
AAGWO
AALHT
AALUV
AAOHI
AAQMF
AARJV
AAWJP
AAXSQ
AAYIS
ABDOG
ABGRM
ABIPL
ABJNI
ABJZP
ABKGM
ABVYV
ABZNY
ACAHA
ACDVT
ACGFO
ACGFS
ACGJV
ACJYF
ACKHT
ACMXS
ACPHO
ACQCJ
ACQLW
ACRLM
ACSOE
ADCZP
ADHAB
ADHEY
ADLON
ADNJN
ADSVE
AEAIQ
AEKBM
AENEX
AEPIK
AFCZG
AFERR
AFKDQ
AFKEJ
AFONB
AHIXL
AHKZM
AHVNO
AICBU
AIDEK
AIJFW
AJAAW
AKYKI
ALAFQ
ALMA_UNASSIGNED_HOLDINGS
AMTJG
AOUBY
AQQLW
ATAUN
B9D
B9E
B9F
B9G
B9H
B9K
B9L
B9N
BCFVH
BFVWR
BHKIP
BJPMW
BMYRD
CGR
CS3
CUY
CVF
EBS
ECM
EIF
F-Q
F-S
F-T
F-U
F-V
F-X
F-Y
F-Z
F5P
FIWKU
FIXEU
FMZAJ
FQMFW
FT0
FU.
FUEKT
FV.
FXG
GCSFC
GFGFW
GJQJI
GLOEX
GNDDA
GOAVI
GQXMV
HZ~
J1V
M22
NPM
O9-
P2P
RAR
RAV
ZYWBE
7X8
RIG
ID FETCH-LOGICAL-a473t-2c71bccc5f60ad6a9d112baa5b13b22d0a68c685e593be9b3b377c9f7392289a2
IEDL.DBID 7X8
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000982017100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1936-1238
IngestDate Sun Sep 28 08:20:04 EDT 2025
Sat May 31 02:11:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords protein interactions
CASP
CAPRI
critical assessment of structure predictions
critical assessment of predicted interactions
protein structure prediction
artificial intelligence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a473t-2c71bccc5f60ad6a9d112baa5b13b22d0a68c685e593be9b3b377c9f7392289a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.annualreviews.org/doi/pdf/10.1146/annurev-biophys-102622-084607
PMID 36626764
PQID 2774596780
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2774596780
pubmed_primary_36626764
PublicationCentury 2000
PublicationDate 2023-05-09
PublicationDateYYYYMMDD 2023-05-09
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Annual review of biophysics
PublicationTitleAlternate Annu Rev Biophys
PublicationYear 2023
SSID ssj0056746
Score 2.5659096
SecondaryResourceType review_article
Snippet Advances in a scientific discipline are often measured by small, incremental steps. In this review, we report on two intertwined disciplines in the protein...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 183
SubjectTerms Artificial Intelligence
Protein Conformation
Title Critical Assessment of Methods for Predicting the 3D Structure of Proteins and Protein Complexes
URI https://www.ncbi.nlm.nih.gov/pubmed/36626764
https://www.proquest.com/docview/2774596780
Volume 52
WOSCitedRecordID wos000982017100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7Uqnjx_agvVtBjMMkmu9mTFLV4sCXgg97i7mYDBUlqU0X_vbN51JMgeAkEEkiGycw3j3wfwDlTvpcK7TkiZVigMMkd6Wba0VxEASYYaqpW9vM9Hw6j0UjETcOtbNYq25hYBeq00LZHfukjTgkFhlb3avLmWNUoO11tJDQWoUMRytiVLj6aTxFCxuu_iwS1WjM0WoWLhh23FXnB8rOwLQSMRj7DsszFdOzy39FmlXX6G_993k1Yb_Am6dUOsgULJt-GlVqB8msHXlqpA9KbU3SSIiODSli6JAhpSTy1wxy7Hk0QLRJ6Qx4q0ll8M3tpbJkexnlJZJ62J8SGmVfzacpdeOrfPl7fOY3ogiMDTmeOr7mntNZhxlyZMilSRGRKylB5VPl-6koWaRaFJhRUGaGoopxrkXEEWli8SX8PlvIiNwdAQo02p4Zb8YnAM1yxjCE-4MzQTGdCduGsNV2CTm0nFTI3xXuZ_BivC_u1_ZNJzb6RUIY1GGfB4R_uPoI1Kw9fLSiKY-hk-EmbE1jWH7NxOT2tvAWPw3jwDdVGykI
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+Assessment+of+Methods+for+Predicting+the+3D+Structure+of+Proteins+and+Protein+Complexes&rft.jtitle=Annual+review+of+biophysics&rft.au=Wodak%2C+Shoshana+J&rft.au=Vajda%2C+Sandor&rft.au=Lensink%2C+Marc+F&rft.au=Kozakov%2C+Dima&rft.date=2023-05-09&rft.eissn=1936-1238&rft.volume=52&rft.spage=183&rft_id=info:doi/10.1146%2Fannurev-biophys-102622-084607&rft_id=info%3Apmid%2F36626764&rft_id=info%3Apmid%2F36626764&rft.externalDocID=36626764
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-1238&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-1238&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-1238&client=summon