Critical Assessment of Methods for Predicting the 3D Structure of Proteins and Protein Complexes
Advances in a scientific discipline are often measured by small, incremental steps. In this review, we report on two intertwined disciplines in the protein structure prediction field, modeling of single chains and modeling of complexes, that have over decades emulated this pattern, as monitored by t...
Gespeichert in:
| Veröffentlicht in: | Annual review of biophysics Jg. 52; S. 183 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
09.05.2023
|
| Schlagworte: | |
| ISSN: | 1936-1238, 1936-1238 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Advances in a scientific discipline are often measured by small, incremental steps. In this review, we report on two intertwined disciplines in the protein structure prediction field, modeling of single chains and modeling of complexes, that have over decades emulated this pattern, as monitored by the community-wide blind prediction experiments CASP and CAPRI. However, over the past few years, dramatic advances were observed for the accurate prediction of single protein chains, driven by a surge of deep learning methodologies entering the prediction field. We review the mainscientific developments that enabled these recent breakthroughs and feature the important role of blind prediction experiments in building up and nurturing the structure prediction field. We discuss how the new wave of artificial intelligence-based methods is impacting the fields of computational and experimental structural biology and highlight areas in which deep learning methods are likely to lead to future developments, provided that major challenges are overcome. |
|---|---|
| AbstractList | Advances in a scientific discipline are often measured by small, incremental steps. In this review, we report on two intertwined disciplines in the protein structure prediction field, modeling of single chains and modeling of complexes, that have over decades emulated this pattern, as monitored by the community-wide blind prediction experiments CASP and CAPRI. However, over the past few years, dramatic advances were observed for the accurate prediction of single protein chains, driven by a surge of deep learning methodologies entering the prediction field. We review the mainscientific developments that enabled these recent breakthroughs and feature the important role of blind prediction experiments in building up and nurturing the structure prediction field. We discuss how the new wave of artificial intelligence-based methods is impacting the fields of computational and experimental structural biology and highlight areas in which deep learning methods are likely to lead to future developments, provided that major challenges are overcome.Advances in a scientific discipline are often measured by small, incremental steps. In this review, we report on two intertwined disciplines in the protein structure prediction field, modeling of single chains and modeling of complexes, that have over decades emulated this pattern, as monitored by the community-wide blind prediction experiments CASP and CAPRI. However, over the past few years, dramatic advances were observed for the accurate prediction of single protein chains, driven by a surge of deep learning methodologies entering the prediction field. We review the mainscientific developments that enabled these recent breakthroughs and feature the important role of blind prediction experiments in building up and nurturing the structure prediction field. We discuss how the new wave of artificial intelligence-based methods is impacting the fields of computational and experimental structural biology and highlight areas in which deep learning methods are likely to lead to future developments, provided that major challenges are overcome. Advances in a scientific discipline are often measured by small, incremental steps. In this review, we report on two intertwined disciplines in the protein structure prediction field, modeling of single chains and modeling of complexes, that have over decades emulated this pattern, as monitored by the community-wide blind prediction experiments CASP and CAPRI. However, over the past few years, dramatic advances were observed for the accurate prediction of single protein chains, driven by a surge of deep learning methodologies entering the prediction field. We review the mainscientific developments that enabled these recent breakthroughs and feature the important role of blind prediction experiments in building up and nurturing the structure prediction field. We discuss how the new wave of artificial intelligence-based methods is impacting the fields of computational and experimental structural biology and highlight areas in which deep learning methods are likely to lead to future developments, provided that major challenges are overcome. |
| Author | Wodak, Shoshana J Kozakov, Dima Vajda, Sandor Bates, Paul A Lensink, Marc F |
| Author_xml | – sequence: 1 givenname: Shoshana J surname: Wodak fullname: Wodak, Shoshana J email: Shoshana.wodak@gmail.com organization: VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium; email: Shoshana.wodak@gmail.com – sequence: 2 givenname: Sandor surname: Vajda fullname: Vajda, Sandor email: vajda@bu.edu organization: Department of Chemistry, Boston University, Boston, Massachusetts, USA – sequence: 3 givenname: Marc F surname: Lensink fullname: Lensink, Marc F email: marc.lensink@univ-lille.fr organization: Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; email: marc.lensink@univ-lille.fr – sequence: 4 givenname: Dima surname: Kozakov fullname: Kozakov, Dima email: midas@laufercenter.org organization: Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA – sequence: 5 givenname: Paul A surname: Bates fullname: Bates, Paul A email: paul.bates@crick.ac.uk organization: Biomolecular Modelling Laboratory, The Francis Crick Institute, London, United Kingdom; email: paul.bates@crick.ac.uk |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36626764$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkF1LwzAYhYNMnJv-BcmN4E01H23SXo76CRMH6nVN0reu0iY1ScX9eydu4NU5Bx4OhzNDE-ssIHROySWlqbhS1o4evhLdumG9CQklTDCWkDwVRB6gY1pwkVDG88k_P0WzED4IyYRMxRGaciGYkCI9Rm-lb2NrVIcXIUAIPdiIXYMfIa5dHXDjPF55qFsTW_uO4xowv8bP0Y8mbnf8oivvIrQ2YGXrfcCl64cOviGcoMNGdQFOdzpHr7c3L-V9sny6eygXy0SlkseEGUm1MSZrBFG1UEVNKdNKZZpyzVhNlMiNyDPICq6h0FxzKU3RSF4wlheKzdHFX-_g3ecIIVZ9Gwx0nbLgxlAxKdOsEDInW_Rsh466h7oafNsrv6n2r7AfOBxsAg |
| CitedBy_id | crossref_primary_10_3390_ijms241713543 crossref_primary_10_1021_acs_jcim_5c01029 crossref_primary_10_1007_s12033_024_01119_4 crossref_primary_10_1002_fsn3_70523 crossref_primary_10_1093_protein_gzad023 crossref_primary_10_3389_fmolb_2025_1542267 crossref_primary_10_1002_pro_5026 crossref_primary_10_1021_acs_jctc_4c01386 crossref_primary_10_55071_ticaretfbd_1323165 crossref_primary_10_1016_j_jmb_2024_168540 crossref_primary_10_1021_acs_jcim_4c02412 crossref_primary_10_3389_fmolb_2024_1360267 crossref_primary_10_1002_cbic_202300192 crossref_primary_10_3390_molecules29194626 crossref_primary_10_1038_s41467_024_52020_2 crossref_primary_10_1016_j_biotechadv_2025_108601 crossref_primary_10_1016_j_jmb_2025_169014 crossref_primary_10_1002_prot_26609 crossref_primary_10_1002_prot_70042 crossref_primary_10_1038_s41392_024_02036_3 crossref_primary_10_1093_bib_bbaf186 crossref_primary_10_1371_journal_pone_0320177 crossref_primary_10_1039_D4SC08649J crossref_primary_10_1080_08927022_2024_2378833 crossref_primary_10_1002_pmic_202300219 crossref_primary_10_1007_s13258_025_01656_5 crossref_primary_10_1016_j_jmb_2025_169085 crossref_primary_10_1161_SVIN_124_001052 crossref_primary_10_1002_pmic_202200084 crossref_primary_10_3390_ijms26020462 crossref_primary_10_1016_j_bbagrm_2023_195003 crossref_primary_10_3390_microorganisms13092043 crossref_primary_10_1093_nar_gkae420 crossref_primary_10_1615_CritRevTherDrugCarrierSyst_2025054214 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1146/annurev-biophys-102622-084607 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1936-1238 |
| ExternalDocumentID | 36626764 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM118078 – fundername: Medical Research Council grantid: FC001003 – fundername: Wellcome Trust grantid: FC001003 – fundername: NIGMS NIH HHS grantid: R01 GM140098 – fundername: Cancer Research UK grantid: FC001003 |
| GroupedDBID | --- -QD -QH 0R~ 1KX 23M 39C 4.4 51A 5FA 5FB 5FC 5FD 5FE 5GY 6J9 7A. AABJL AAGWO AALHT AALUV AAOHI AAQMF AARJV AAWJP AAXSQ AAYIS ABDOG ABGRM ABIPL ABJNI ABJZP ABKGM ABVYV ABZNY ACAHA ACDVT ACGFO ACGFS ACGJV ACJYF ACKHT ACMXS ACPHO ACQCJ ACQLW ACRLM ACSOE ADCZP ADHAB ADHEY ADLON ADNJN ADSVE AEAIQ AEKBM AENEX AEPIK AFCZG AFERR AFKDQ AFKEJ AFONB AHIXL AHKZM AHVNO AICBU AIDEK AIJFW AJAAW AKYKI ALAFQ ALMA_UNASSIGNED_HOLDINGS AMTJG AOUBY AQQLW ATAUN B9D B9E B9F B9G B9H B9K B9L B9N BCFVH BFVWR BHKIP BJPMW BMYRD CGR CS3 CUY CVF EBS ECM EIF F-Q F-S F-T F-U F-V F-X F-Y F-Z F5P FIWKU FIXEU FMZAJ FQMFW FT0 FU. FUEKT FV. FXG GCSFC GFGFW GJQJI GLOEX GNDDA GOAVI GQXMV HZ~ J1V M22 NPM O9- P2P RAR RAV ZYWBE 7X8 RIG |
| ID | FETCH-LOGICAL-a473t-2c71bccc5f60ad6a9d112baa5b13b22d0a68c685e593be9b3b377c9f7392289a2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000982017100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1936-1238 |
| IngestDate | Sun Sep 28 08:20:04 EDT 2025 Sat May 31 02:11:13 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | protein interactions CASP CAPRI critical assessment of structure predictions critical assessment of predicted interactions protein structure prediction artificial intelligence |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a473t-2c71bccc5f60ad6a9d112baa5b13b22d0a68c685e593be9b3b377c9f7392289a2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.annualreviews.org/doi/pdf/10.1146/annurev-biophys-102622-084607 |
| PMID | 36626764 |
| PQID | 2774596780 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2774596780 pubmed_primary_36626764 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-09 |
| PublicationDateYYYYMMDD | 2023-05-09 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Annual review of biophysics |
| PublicationTitleAlternate | Annu Rev Biophys |
| PublicationYear | 2023 |
| SSID | ssj0056746 |
| Score | 2.5659096 |
| SecondaryResourceType | review_article |
| Snippet | Advances in a scientific discipline are often measured by small, incremental steps. In this review, we report on two intertwined disciplines in the protein... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 183 |
| SubjectTerms | Artificial Intelligence Protein Conformation |
| Title | Critical Assessment of Methods for Predicting the 3D Structure of Proteins and Protein Complexes |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36626764 https://www.proquest.com/docview/2774596780 |
| Volume | 52 |
| WOSCitedRecordID | wos000982017100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7Uqnjx_agvVtBjMMkmu9mTFLV4sCXgg97i7mYDBUlqU0X_vbN51JMgeAkEEkiGycw3j3wfwDlTvpcK7TkiZVigMMkd6Wba0VxEASYYaqpW9vM9Hw6j0UjETcOtbNYq25hYBeq00LZHfukjTgkFhlb3avLmWNUoO11tJDQWoUMRytiVLj6aTxFCxuu_iwS1WjM0WoWLhh23FXnB8rOwLQSMRj7DsszFdOzy39FmlXX6G_993k1Yb_Am6dUOsgULJt-GlVqB8msHXlqpA9KbU3SSIiODSli6JAhpSTy1wxy7Hk0QLRJ6Qx4q0ll8M3tpbJkexnlJZJ62J8SGmVfzacpdeOrfPl7fOY3ogiMDTmeOr7mntNZhxlyZMilSRGRKylB5VPl-6koWaRaFJhRUGaGoopxrkXEEWli8SX8PlvIiNwdAQo02p4Zb8YnAM1yxjCE-4MzQTGdCduGsNV2CTm0nFTI3xXuZ_BivC_u1_ZNJzb6RUIY1GGfB4R_uPoI1Kw9fLSiKY-hk-EmbE1jWH7NxOT2tvAWPw3jwDdVGykI |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+Assessment+of+Methods+for+Predicting+the+3D+Structure+of+Proteins+and+Protein+Complexes&rft.jtitle=Annual+review+of+biophysics&rft.au=Wodak%2C+Shoshana+J&rft.au=Vajda%2C+Sandor&rft.au=Lensink%2C+Marc+F&rft.au=Kozakov%2C+Dima&rft.date=2023-05-09&rft.eissn=1936-1238&rft.volume=52&rft.spage=183&rft_id=info:doi/10.1146%2Fannurev-biophys-102622-084607&rft_id=info%3Apmid%2F36626764&rft_id=info%3Apmid%2F36626764&rft.externalDocID=36626764 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-1238&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-1238&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-1238&client=summon |