3D Printing for Electrochemical Energy Applications

Additive manufacturing (also known as three-dimensional (3D) printing) is being extensively utilized in many areas of electrochemistry to produce electrodes and devices, as this technique allows for fast prototyping and is relatively low cost. Furthermore, there is a variety of 3D-printing technolog...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Chemical reviews Ročník 120; číslo 5; s. 2783
Hlavní autori: Browne, Michelle P, Redondo, Edurne, Pumera, Martin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 11.03.2020
ISSN:1520-6890, 1520-6890
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Additive manufacturing (also known as three-dimensional (3D) printing) is being extensively utilized in many areas of electrochemistry to produce electrodes and devices, as this technique allows for fast prototyping and is relatively low cost. Furthermore, there is a variety of 3D-printing technologies available, which include fused deposition modeling (FDM), inkjet printing, select laser melting (SLM), and stereolithography (SLA), making additive manufacturing a highly desirable technique for electrochemical purposes. In particular, over the last number of years, a significant amount of research into using 3D printing to create electrodes/devices for electrochemical energy conversion and storage has emerged. Strides have been made in this area; however, there are still a number of challenges and drawbacks that need to be overcome in order to 3D print active and stable electrodes/devices for electrochemical energy conversion and storage to rival that of the state-of-the-art. In this Review, we will give an overview of the reasoning behind using 3D printing for these electrochemical applications. We will then discuss how the electrochemical performance of the electrodes/devices are affected by the various 3D-printing technologies and by manipulating the 3D-printed electrodes by post modification techniques. Finally, we will give our insights into the future perspectives of this exciting field based on our discussion through this Review.
AbstractList Additive manufacturing (also known as three-dimensional (3D) printing) is being extensively utilized in many areas of electrochemistry to produce electrodes and devices, as this technique allows for fast prototyping and is relatively low cost. Furthermore, there is a variety of 3D-printing technologies available, which include fused deposition modeling (FDM), inkjet printing, select laser melting (SLM), and stereolithography (SLA), making additive manufacturing a highly desirable technique for electrochemical purposes. In particular, over the last number of years, a significant amount of research into using 3D printing to create electrodes/devices for electrochemical energy conversion and storage has emerged. Strides have been made in this area; however, there are still a number of challenges and drawbacks that need to be overcome in order to 3D print active and stable electrodes/devices for electrochemical energy conversion and storage to rival that of the state-of-the-art. In this Review, we will give an overview of the reasoning behind using 3D printing for these electrochemical applications. We will then discuss how the electrochemical performance of the electrodes/devices are affected by the various 3D-printing technologies and by manipulating the 3D-printed electrodes by post modification techniques. Finally, we will give our insights into the future perspectives of this exciting field based on our discussion through this Review.Additive manufacturing (also known as three-dimensional (3D) printing) is being extensively utilized in many areas of electrochemistry to produce electrodes and devices, as this technique allows for fast prototyping and is relatively low cost. Furthermore, there is a variety of 3D-printing technologies available, which include fused deposition modeling (FDM), inkjet printing, select laser melting (SLM), and stereolithography (SLA), making additive manufacturing a highly desirable technique for electrochemical purposes. In particular, over the last number of years, a significant amount of research into using 3D printing to create electrodes/devices for electrochemical energy conversion and storage has emerged. Strides have been made in this area; however, there are still a number of challenges and drawbacks that need to be overcome in order to 3D print active and stable electrodes/devices for electrochemical energy conversion and storage to rival that of the state-of-the-art. In this Review, we will give an overview of the reasoning behind using 3D printing for these electrochemical applications. We will then discuss how the electrochemical performance of the electrodes/devices are affected by the various 3D-printing technologies and by manipulating the 3D-printed electrodes by post modification techniques. Finally, we will give our insights into the future perspectives of this exciting field based on our discussion through this Review.
Additive manufacturing (also known as three-dimensional (3D) printing) is being extensively utilized in many areas of electrochemistry to produce electrodes and devices, as this technique allows for fast prototyping and is relatively low cost. Furthermore, there is a variety of 3D-printing technologies available, which include fused deposition modeling (FDM), inkjet printing, select laser melting (SLM), and stereolithography (SLA), making additive manufacturing a highly desirable technique for electrochemical purposes. In particular, over the last number of years, a significant amount of research into using 3D printing to create electrodes/devices for electrochemical energy conversion and storage has emerged. Strides have been made in this area; however, there are still a number of challenges and drawbacks that need to be overcome in order to 3D print active and stable electrodes/devices for electrochemical energy conversion and storage to rival that of the state-of-the-art. In this Review, we will give an overview of the reasoning behind using 3D printing for these electrochemical applications. We will then discuss how the electrochemical performance of the electrodes/devices are affected by the various 3D-printing technologies and by manipulating the 3D-printed electrodes by post modification techniques. Finally, we will give our insights into the future perspectives of this exciting field based on our discussion through this Review.
Author Pumera, Martin
Redondo, Edurne
Browne, Michelle P
Author_xml – sequence: 1
  givenname: Michelle P
  orcidid: 0000-0002-3574-9113
  surname: Browne
  fullname: Browne, Michelle P
  organization: Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
– sequence: 2
  givenname: Edurne
  surname: Redondo
  fullname: Redondo, Edurne
  organization: Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno CZ-616 00, Czech Republic
– sequence: 3
  givenname: Martin
  orcidid: 0000-0001-5846-2951
  surname: Pumera
  fullname: Pumera, Martin
  organization: Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno CZ-616 00, Czech Republic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32049499$$D View this record in MEDLINE/PubMed
BookMark eNpNj8tKxDAARYOMOA_9AkG6dNOaZ5Msh7E-YEAXui5pHmOlTWrSCvP34-AIru69cDhwl2Dmg7cAXCNYIIjRndKp0B-2j_a7kA2EXJAzsEAMw7wUEs7-9TlYpvQJIWQM8wswJxhSSaVcAELus9fY-rH1u8yFmFWd1WMMR3GrVZdV3sbdPlsPQ_ezxzb4dAnOneqSvTrlCrw_VG-bp3z78vi8WW9zRTkec0cJbhhyXEqqqGiUlEwIqZwVWmGkS8c1N8gw67RxVDDJkGRGC6iFNgriFbj99Q4xfE02jXXfJm27TnkbplRjwignoiRH9OaETk1vTT3EtldxX_8dxQdYyljT
CitedBy_id crossref_primary_10_1016_j_aca_2023_341379
crossref_primary_10_1002_adfm_202208034
crossref_primary_10_1002_admi_202201734
crossref_primary_10_1016_j_joule_2020_11_010
crossref_primary_10_1016_j_jechem_2023_01_037
crossref_primary_10_1002_cctc_202400899
crossref_primary_10_1016_j_est_2024_114737
crossref_primary_10_1016_j_elecom_2024_107754
crossref_primary_10_1039_D3MH00234A
crossref_primary_10_1002_cey2_114
crossref_primary_10_1016_j_nanoen_2021_106539
crossref_primary_10_1002_cben_202300054
crossref_primary_10_1016_j_ijhydene_2025_04_077
crossref_primary_10_1002_smll_202505089
crossref_primary_10_1007_s11837_024_06961_0
crossref_primary_10_1016_j_cis_2025_103595
crossref_primary_10_1007_s40820_023_01177_4
crossref_primary_10_1016_j_apmt_2024_102491
crossref_primary_10_1016_j_bios_2025_117866
crossref_primary_10_1002_admt_202100672
crossref_primary_10_1016_j_jhazmat_2020_123411
crossref_primary_10_3390_ma14010081
crossref_primary_10_1002_aenm_202202303
crossref_primary_10_1002_batt_202100258
crossref_primary_10_1016_j_matdes_2020_108797
crossref_primary_10_1016_j_checat_2024_101120
crossref_primary_10_1016_j_polymer_2025_128301
crossref_primary_10_1002_adfm_202407071
crossref_primary_10_1002_cssc_202301434
crossref_primary_10_1002_adem_202201191
crossref_primary_10_1016_j_mattod_2023_09_006
crossref_primary_10_1002_adfm_202410356
crossref_primary_10_1002_adom_202300782
crossref_primary_10_1002_smll_202408869
crossref_primary_10_1007_s42864_022_00181_2
crossref_primary_10_1002_app_54348
crossref_primary_10_1016_j_jelechem_2022_116698
crossref_primary_10_1038_s41598_022_22444_1
crossref_primary_10_1126_science_adv7126
crossref_primary_10_1039_D2RE00395C
crossref_primary_10_1002_smll_202101233
crossref_primary_10_3390_su14052751
crossref_primary_10_1016_j_jmrt_2025_08_098
crossref_primary_10_1016_j_carbon_2023_118737
crossref_primary_10_1039_D3QM00588G
crossref_primary_10_1016_j_polymer_2020_123154
crossref_primary_10_1002_adfm_202300381
crossref_primary_10_1007_s41918_024_00217_w
crossref_primary_10_1016_j_ijhydene_2024_01_364
crossref_primary_10_1016_j_ijhydene_2025_151457
crossref_primary_10_1039_D0NR06679F
crossref_primary_10_1016_j_addma_2023_103567
crossref_primary_10_1016_j_nimb_2023_165210
crossref_primary_10_1039_D0NR04864J
crossref_primary_10_1016_j_jmst_2023_07_073
crossref_primary_10_1002_adfm_202509897
crossref_primary_10_1039_D0EE02714F
crossref_primary_10_1016_j_amf_2024_200151
crossref_primary_10_1016_j_addma_2024_104318
crossref_primary_10_1088_2053_1583_ad6910
crossref_primary_10_1002_adfm_202007285
crossref_primary_10_1016_j_elecom_2020_106890
crossref_primary_10_1080_00202967_2023_2185977
crossref_primary_10_1007_s12274_020_3230_x
crossref_primary_10_1080_17452759_2025_2457580
crossref_primary_10_1016_j_ijhydene_2025_04_047
crossref_primary_10_1007_s40684_025_00753_w
crossref_primary_10_1021_acs_cgd_4c00880
crossref_primary_10_1088_1757_899X_1224_1_012006
crossref_primary_10_1002_pc_28236
crossref_primary_10_1016_j_ensm_2024_103934
crossref_primary_10_1016_j_mattod_2022_07_016
crossref_primary_10_1080_17452759_2023_2264281
crossref_primary_10_1016_j_cjmeam_2022_100053
crossref_primary_10_1002_adfm_202110535
crossref_primary_10_1016_j_addma_2022_103154
crossref_primary_10_3390_polym17182499
crossref_primary_10_1016_j_bios_2023_115113
crossref_primary_10_1016_j_apmt_2024_102285
crossref_primary_10_1051_mfreview_2022033
crossref_primary_10_1070_RCR4980
crossref_primary_10_3390_polym15112564
crossref_primary_10_1080_15583724_2025_2470689
crossref_primary_10_1007_s12008_024_02065_w
crossref_primary_10_1080_17452759_2023_2276260
crossref_primary_10_1016_j_elecom_2020_106735
crossref_primary_10_3390_asi5040072
crossref_primary_10_1016_j_jcis_2024_07_018
crossref_primary_10_1016_j_mattod_2025_01_011
crossref_primary_10_1016_j_chphma_2021_09_002
crossref_primary_10_1016_j_aca_2024_342429
crossref_primary_10_1016_j_electacta_2020_136984
crossref_primary_10_1016_j_trac_2025_118420
crossref_primary_10_20517_energymater_2025_92
crossref_primary_10_1088_2515_7655_ad2497
crossref_primary_10_1002_batt_202300045
crossref_primary_10_1016_j_bioelechem_2024_108830
crossref_primary_10_1007_s12274_023_6037_8
crossref_primary_10_1088_2752_5724_ad8898
crossref_primary_10_1002_smll_202103189
crossref_primary_10_3390_polym15051138
crossref_primary_10_1016_j_heliyon_2024_e25873
crossref_primary_10_3390_ma17122833
crossref_primary_10_1007_s12274_021_3693_4
crossref_primary_10_1016_j_jpowsour_2022_232263
crossref_primary_10_1002_adem_202300953
crossref_primary_10_1002_smll_202302718
crossref_primary_10_1002_aenm_202203683
crossref_primary_10_1002_mba2_51
crossref_primary_10_1016_j_tet_2020_131875
crossref_primary_10_1063_5_0232592
crossref_primary_10_1002_celc_202100724
crossref_primary_10_1002_aesr_202400258
crossref_primary_10_3390_polym12102229
crossref_primary_10_1016_j_electacta_2025_145680
crossref_primary_10_1016_j_elecom_2021_106920
crossref_primary_10_1039_D3RA06755F
crossref_primary_10_3390_polym15244706
crossref_primary_10_1002_cssc_202201490
crossref_primary_10_1016_j_apsusc_2021_149720
crossref_primary_10_1002_cphc_202400849
crossref_primary_10_3390_ma15041360
crossref_primary_10_1002_celc_202300463
crossref_primary_10_1002_adfm_202506723
crossref_primary_10_1016_j_diamond_2024_111720
crossref_primary_10_1002_admt_202400136
crossref_primary_10_1002_advs_202204681
crossref_primary_10_1016_j_teac_2025_e00274
crossref_primary_10_1016_j_addma_2022_102939
crossref_primary_10_1080_14658011_2022_2110554
crossref_primary_10_1088_2053_1583_ac3f43
crossref_primary_10_1002_smll_202105572
crossref_primary_10_1002_aic_18728
crossref_primary_10_1007_s12274_022_4200_2
crossref_primary_10_1016_j_cis_2021_102415
crossref_primary_10_1021_acs_chemmater_4c03287
crossref_primary_10_1016_j_cej_2024_157829
crossref_primary_10_1038_s44160_022_00193_3
crossref_primary_10_1016_j_heliyon_2024_e33023
crossref_primary_10_1021_acs_nanolett_5c00837
crossref_primary_10_1016_j_est_2023_107648
crossref_primary_10_1016_j_talanta_2024_125814
crossref_primary_10_1002_admt_202300611
crossref_primary_10_1016_j_apcatb_2022_121609
crossref_primary_10_1002_cctc_202500417
crossref_primary_10_1002_advs_202204751
crossref_primary_10_1002_admt_202300972
crossref_primary_10_1016_j_ccr_2020_213483
crossref_primary_10_1016_j_mtnano_2020_100094
crossref_primary_10_1002_smtd_202401912
crossref_primary_10_3390_catal14020110
crossref_primary_10_1016_j_cej_2022_139947
crossref_primary_10_1002_cey2_199
crossref_primary_10_1002_adfm_202004613
crossref_primary_10_1016_j_indcrop_2023_116286
crossref_primary_10_1002_app_51904
crossref_primary_10_1016_j_carbon_2021_01_107
crossref_primary_10_1016_j_elecom_2025_107988
crossref_primary_10_1002_admt_202101121
crossref_primary_10_1002_mba2_11
crossref_primary_10_1002_smll_202412161
crossref_primary_10_1007_s11783_025_1921_y
crossref_primary_10_1002_ente_202000844
crossref_primary_10_1080_17452759_2024_2326897
crossref_primary_10_1002_admt_202202080
crossref_primary_10_1016_j_est_2023_110129
crossref_primary_10_1007_s00604_021_05006_6
crossref_primary_10_1002_elsa_202100184
crossref_primary_10_1002_flm2_14
crossref_primary_10_1016_j_cclet_2024_110325
crossref_primary_10_1016_j_cis_2021_102436
crossref_primary_10_1016_j_ceramint_2022_07_117
crossref_primary_10_1016_j_elecom_2020_106827
crossref_primary_10_1016_j_jpowsour_2022_231774
crossref_primary_10_1002_smtd_202100518
crossref_primary_10_1016_j_polymer_2022_124609
crossref_primary_10_1002_smll_202507312
crossref_primary_10_1002_smll_202505135
crossref_primary_10_1146_annurev_food_111523_121736
crossref_primary_10_1007_s42114_025_01338_6
crossref_primary_10_1007_s40032_025_01222_8
crossref_primary_10_32571_ijct_1375421
crossref_primary_10_1002_admi_202300557
crossref_primary_10_1016_j_decarb_2023_100019
crossref_primary_10_3389_fenrg_2021_651041
crossref_primary_10_1016_j_jeurceramsoc_2022_12_019
crossref_primary_10_1016_j_jiec_2024_06_025
crossref_primary_10_1016_j_mattod_2024_06_007
crossref_primary_10_1016_j_mtcomm_2021_102053
crossref_primary_10_1039_D4MH01160K
crossref_primary_10_1016_j_cej_2025_159811
crossref_primary_10_1002_app_53304
crossref_primary_10_1002_adfm_202100450
crossref_primary_10_1016_j_ijhydene_2024_07_175
crossref_primary_10_1002_adfm_202010608
crossref_primary_10_1016_j_matdes_2020_108811
crossref_primary_10_1002_adma_202005967
crossref_primary_10_1080_01614940_2025_2556095
crossref_primary_10_1016_j_trac_2020_116151
crossref_primary_10_1002_smll_202105017
crossref_primary_10_1002_adfm_202310563
crossref_primary_10_1016_j_matdes_2025_114310
crossref_primary_10_3390_ma13204475
crossref_primary_10_1016_j_mtcomm_2024_111030
crossref_primary_10_1016_j_desal_2024_117452
crossref_primary_10_1557_s43578_021_00243_0
crossref_primary_10_3390_polym15030668
crossref_primary_10_1002_adfm_202421987
crossref_primary_10_1002_smll_202404227
crossref_primary_10_1002_adfm_202108107
crossref_primary_10_1039_D4AY02271H
crossref_primary_10_1039_D4NR00401A
crossref_primary_10_1063_5_0138178
crossref_primary_10_1016_j_mtener_2022_101100
crossref_primary_10_1557_s43579_023_00385_8
crossref_primary_10_1039_D0NR06479C
crossref_primary_10_1021_acsapm_4c04101
crossref_primary_10_1016_j_colsurfa_2024_134701
crossref_primary_10_1016_j_apmt_2023_101995
crossref_primary_10_1002_admt_202000744
crossref_primary_10_1016_j_jeurceramsoc_2022_01_058
crossref_primary_10_1016_j_addma_2025_104715
crossref_primary_10_1080_14686996_2024_2421740
crossref_primary_10_1016_j_cej_2024_154978
crossref_primary_10_1016_j_carbpol_2022_119475
crossref_primary_10_1016_j_mattod_2022_03_014
crossref_primary_10_1002_batt_202200223
crossref_primary_10_1016_j_apmt_2023_101984
crossref_primary_10_1016_j_jallcom_2025_178941
crossref_primary_10_1002_admt_202500898
crossref_primary_10_1002_celc_202500234
crossref_primary_10_1002_smtd_202101076
crossref_primary_10_1016_j_bios_2022_114003
crossref_primary_10_1109_ACCESS_2025_3542554
crossref_primary_10_1016_j_talanta_2023_125476
crossref_primary_10_1021_acs_jchemed_1c01278
crossref_primary_10_1016_j_fuel_2023_129741
crossref_primary_10_1002_chem_202004250
crossref_primary_10_1016_j_cclet_2023_109353
crossref_primary_10_1038_s41378_024_00708_2
crossref_primary_10_1016_j_microc_2022_108083
crossref_primary_10_1088_1361_6463_ae04f3
crossref_primary_10_3390_mi11070658
crossref_primary_10_1016_j_elecom_2023_107652
crossref_primary_10_1039_D1SE01851E
crossref_primary_10_22184_2227_572X_2025_15_2_122_131
crossref_primary_10_3390_polym15071700
crossref_primary_10_1016_j_apmt_2021_101253
crossref_primary_10_1016_j_mtcomm_2023_107069
crossref_primary_10_1002_adem_202402179
crossref_primary_10_1002_adfm_202106990
crossref_primary_10_1016_j_apmt_2020_100881
crossref_primary_10_1002_smll_202104513
crossref_primary_10_1016_j_cej_2022_141047
crossref_primary_10_1016_j_ijhydene_2021_04_090
crossref_primary_10_1002_ejic_202001024
crossref_primary_10_1007_s40032_021_00723_6
crossref_primary_10_1039_D4SC06477A
crossref_primary_10_1016_j_cej_2021_133949
crossref_primary_10_1002_adfm_202410618
crossref_primary_10_1016_j_mtchem_2024_102156
crossref_primary_10_1016_j_apsusc_2021_152183
crossref_primary_10_1016_j_apsusc_2024_160209
crossref_primary_10_1016_j_jmapro_2021_12_007
crossref_primary_10_1002_smll_202402638
crossref_primary_10_1016_j_electacta_2023_143074
crossref_primary_10_1002_asia_202400568
crossref_primary_10_1002_adma_202503658
crossref_primary_10_1016_j_ensm_2025_104291
crossref_primary_10_1016_j_nxener_2025_100283
crossref_primary_10_1093_jpp_rgaf028
crossref_primary_10_1016_j_trac_2022_116672
crossref_primary_10_1002_adfm_202201166
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/acs.chemrev.9b00783
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-6890
ExternalDocumentID 32049499
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.DC
.K2
29B
4.4
53G
55A
5GY
5RE
5VS
6J9
7~N
85S
AABXI
AAHBH
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AFXLT
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
LG6
NPM
P2P
PQQKQ
ROL
RWL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YZZ
~02
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a472t-f432b51f7994a48ba995889afe8ca21c6f7c7d1d5efcdf48595195dc80c8cda02
IEDL.DBID 7X8
ISICitedReferencesCount 337
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526392500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-6890
IngestDate Wed Oct 01 14:42:26 EDT 2025
Thu Jan 02 22:58:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a472t-f432b51f7994a48ba995889afe8ca21c6f7c7d1d5efcdf48595195dc80c8cda02
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5846-2951
0000-0002-3574-9113
PMID 32049499
PQID 2354738630
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2354738630
pubmed_primary_32049499
PublicationCentury 2000
PublicationDate 2020-03-11
PublicationDateYYYYMMDD 2020-03-11
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Chemical reviews
PublicationTitleAlternate Chem Rev
PublicationYear 2020
SSID ssj0005527
Score 2.6935494
Snippet Additive manufacturing (also known as three-dimensional (3D) printing) is being extensively utilized in many areas of electrochemistry to produce electrodes...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2783
Title 3D Printing for Electrochemical Energy Applications
URI https://www.ncbi.nlm.nih.gov/pubmed/32049499
https://www.proquest.com/docview/2354738630
Volume 120
WOSCitedRecordID wos000526392500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwMhEJ6oNdGL70d9ZU28ku4Cu8DJNLWNB216UNPbhp2F2EO3ta3-fmEfqRcTEy_cSGCAmQ9m-D6AO4YuJmWCEpblgnCdIFHIFJHIMRGGKluSPb89ieFQjsdqVD-4LeuyysYnlo46n6F_I-9Q5lVyZcLC-_kH8apRPrtaS2hsQos5KONLusR4zRYeV5KtLkS5K5JUYcM6RKOORrek72bqhV48LaDwvIG_Ycwy1gz2_zvKA9irUWbQrbbFIWyY4gh2eo242zEw9hCMFpNSJiJwuDXoV3I4WPMHBP3yT2DQ_ZHfPoHXQf-l90hq_QSiuaArYjmjWRxZoRTXXGZaqVhKpa2RqGmEiRUo8iiPjcXccs90Fqk4RxmixFyH9BS2illhziFw7hkzhZkDe4aH2sFKyoVDArFkmQNYsg23jT1SNxOfdNCFmX0u07VF2nBWGTWdV0QaKaNhSY5z8Yfel7BL_VXXl9JFV9Cy7nSaa9jGr9VkubgpF961w9HzN7nVuAU
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Printing+for+Electrochemical+Energy+Applications&rft.jtitle=Chemical+reviews&rft.au=Browne%2C+Michelle+P&rft.au=Redondo%2C+Edurne&rft.au=Pumera%2C+Martin&rft.date=2020-03-11&rft.issn=1520-6890&rft.eissn=1520-6890&rft.volume=120&rft.issue=5&rft.spage=2783&rft_id=info:doi/10.1021%2Facs.chemrev.9b00783&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6890&client=summon