3D Printing for Electrochemical Energy Applications
Additive manufacturing (also known as three-dimensional (3D) printing) is being extensively utilized in many areas of electrochemistry to produce electrodes and devices, as this technique allows for fast prototyping and is relatively low cost. Furthermore, there is a variety of 3D-printing technolog...
Uloženo v:
| Vydáno v: | Chemical reviews Ročník 120; číslo 5; s. 2783 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
11.03.2020
|
| ISSN: | 1520-6890, 1520-6890 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Additive manufacturing (also known as three-dimensional (3D) printing) is being extensively utilized in many areas of electrochemistry to produce electrodes and devices, as this technique allows for fast prototyping and is relatively low cost. Furthermore, there is a variety of 3D-printing technologies available, which include fused deposition modeling (FDM), inkjet printing, select laser melting (SLM), and stereolithography (SLA), making additive manufacturing a highly desirable technique for electrochemical purposes. In particular, over the last number of years, a significant amount of research into using 3D printing to create electrodes/devices for electrochemical energy conversion and storage has emerged. Strides have been made in this area; however, there are still a number of challenges and drawbacks that need to be overcome in order to 3D print active and stable electrodes/devices for electrochemical energy conversion and storage to rival that of the state-of-the-art. In this Review, we will give an overview of the reasoning behind using 3D printing for these electrochemical applications. We will then discuss how the electrochemical performance of the electrodes/devices are affected by the various 3D-printing technologies and by manipulating the 3D-printed electrodes by post modification techniques. Finally, we will give our insights into the future perspectives of this exciting field based on our discussion through this Review. |
|---|---|
| AbstractList | Additive manufacturing (also known as three-dimensional (3D) printing) is being extensively utilized in many areas of electrochemistry to produce electrodes and devices, as this technique allows for fast prototyping and is relatively low cost. Furthermore, there is a variety of 3D-printing technologies available, which include fused deposition modeling (FDM), inkjet printing, select laser melting (SLM), and stereolithography (SLA), making additive manufacturing a highly desirable technique for electrochemical purposes. In particular, over the last number of years, a significant amount of research into using 3D printing to create electrodes/devices for electrochemical energy conversion and storage has emerged. Strides have been made in this area; however, there are still a number of challenges and drawbacks that need to be overcome in order to 3D print active and stable electrodes/devices for electrochemical energy conversion and storage to rival that of the state-of-the-art. In this Review, we will give an overview of the reasoning behind using 3D printing for these electrochemical applications. We will then discuss how the electrochemical performance of the electrodes/devices are affected by the various 3D-printing technologies and by manipulating the 3D-printed electrodes by post modification techniques. Finally, we will give our insights into the future perspectives of this exciting field based on our discussion through this Review.Additive manufacturing (also known as three-dimensional (3D) printing) is being extensively utilized in many areas of electrochemistry to produce electrodes and devices, as this technique allows for fast prototyping and is relatively low cost. Furthermore, there is a variety of 3D-printing technologies available, which include fused deposition modeling (FDM), inkjet printing, select laser melting (SLM), and stereolithography (SLA), making additive manufacturing a highly desirable technique for electrochemical purposes. In particular, over the last number of years, a significant amount of research into using 3D printing to create electrodes/devices for electrochemical energy conversion and storage has emerged. Strides have been made in this area; however, there are still a number of challenges and drawbacks that need to be overcome in order to 3D print active and stable electrodes/devices for electrochemical energy conversion and storage to rival that of the state-of-the-art. In this Review, we will give an overview of the reasoning behind using 3D printing for these electrochemical applications. We will then discuss how the electrochemical performance of the electrodes/devices are affected by the various 3D-printing technologies and by manipulating the 3D-printed electrodes by post modification techniques. Finally, we will give our insights into the future perspectives of this exciting field based on our discussion through this Review. Additive manufacturing (also known as three-dimensional (3D) printing) is being extensively utilized in many areas of electrochemistry to produce electrodes and devices, as this technique allows for fast prototyping and is relatively low cost. Furthermore, there is a variety of 3D-printing technologies available, which include fused deposition modeling (FDM), inkjet printing, select laser melting (SLM), and stereolithography (SLA), making additive manufacturing a highly desirable technique for electrochemical purposes. In particular, over the last number of years, a significant amount of research into using 3D printing to create electrodes/devices for electrochemical energy conversion and storage has emerged. Strides have been made in this area; however, there are still a number of challenges and drawbacks that need to be overcome in order to 3D print active and stable electrodes/devices for electrochemical energy conversion and storage to rival that of the state-of-the-art. In this Review, we will give an overview of the reasoning behind using 3D printing for these electrochemical applications. We will then discuss how the electrochemical performance of the electrodes/devices are affected by the various 3D-printing technologies and by manipulating the 3D-printed electrodes by post modification techniques. Finally, we will give our insights into the future perspectives of this exciting field based on our discussion through this Review. |
| Author | Pumera, Martin Redondo, Edurne Browne, Michelle P |
| Author_xml | – sequence: 1 givenname: Michelle P orcidid: 0000-0002-3574-9113 surname: Browne fullname: Browne, Michelle P organization: Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic – sequence: 2 givenname: Edurne surname: Redondo fullname: Redondo, Edurne organization: Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno CZ-616 00, Czech Republic – sequence: 3 givenname: Martin orcidid: 0000-0001-5846-2951 surname: Pumera fullname: Pumera, Martin organization: Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno CZ-616 00, Czech Republic |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32049499$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj8tKxDAARYOMOA_9AkG6dNOaZ5Msh7E-YEAXui5pHmOlTWrSCvP34-AIru69cDhwl2Dmg7cAXCNYIIjRndKp0B-2j_a7kA2EXJAzsEAMw7wUEs7-9TlYpvQJIWQM8wswJxhSSaVcAELus9fY-rH1u8yFmFWd1WMMR3GrVZdV3sbdPlsPQ_ezxzb4dAnOneqSvTrlCrw_VG-bp3z78vi8WW9zRTkec0cJbhhyXEqqqGiUlEwIqZwVWmGkS8c1N8gw67RxVDDJkGRGC6iFNgriFbj99Q4xfE02jXXfJm27TnkbplRjwignoiRH9OaETk1vTT3EtldxX_8dxQdYyljT |
| CitedBy_id | crossref_primary_10_1016_j_aca_2023_341379 crossref_primary_10_1002_adfm_202208034 crossref_primary_10_1002_admi_202201734 crossref_primary_10_1016_j_joule_2020_11_010 crossref_primary_10_1016_j_jechem_2023_01_037 crossref_primary_10_1002_cctc_202400899 crossref_primary_10_1016_j_est_2024_114737 crossref_primary_10_1016_j_elecom_2024_107754 crossref_primary_10_1039_D3MH00234A crossref_primary_10_1002_cey2_114 crossref_primary_10_1016_j_nanoen_2021_106539 crossref_primary_10_1002_cben_202300054 crossref_primary_10_1016_j_ijhydene_2025_04_077 crossref_primary_10_1002_smll_202505089 crossref_primary_10_1007_s11837_024_06961_0 crossref_primary_10_1016_j_cis_2025_103595 crossref_primary_10_1007_s40820_023_01177_4 crossref_primary_10_1016_j_apmt_2024_102491 crossref_primary_10_1016_j_bios_2025_117866 crossref_primary_10_1002_admt_202100672 crossref_primary_10_1016_j_jhazmat_2020_123411 crossref_primary_10_3390_ma14010081 crossref_primary_10_1002_aenm_202202303 crossref_primary_10_1002_batt_202100258 crossref_primary_10_1016_j_matdes_2020_108797 crossref_primary_10_1016_j_checat_2024_101120 crossref_primary_10_1016_j_polymer_2025_128301 crossref_primary_10_1002_adfm_202407071 crossref_primary_10_1002_cssc_202301434 crossref_primary_10_1002_adem_202201191 crossref_primary_10_1016_j_mattod_2023_09_006 crossref_primary_10_1002_adfm_202410356 crossref_primary_10_1002_adom_202300782 crossref_primary_10_1002_smll_202408869 crossref_primary_10_1007_s42864_022_00181_2 crossref_primary_10_1002_app_54348 crossref_primary_10_1016_j_jelechem_2022_116698 crossref_primary_10_1038_s41598_022_22444_1 crossref_primary_10_1126_science_adv7126 crossref_primary_10_1039_D2RE00395C crossref_primary_10_1002_smll_202101233 crossref_primary_10_3390_su14052751 crossref_primary_10_1016_j_jmrt_2025_08_098 crossref_primary_10_1016_j_carbon_2023_118737 crossref_primary_10_1039_D3QM00588G crossref_primary_10_1016_j_polymer_2020_123154 crossref_primary_10_1002_adfm_202300381 crossref_primary_10_1007_s41918_024_00217_w crossref_primary_10_1016_j_ijhydene_2024_01_364 crossref_primary_10_1016_j_ijhydene_2025_151457 crossref_primary_10_1039_D0NR06679F crossref_primary_10_1016_j_addma_2023_103567 crossref_primary_10_1016_j_nimb_2023_165210 crossref_primary_10_1039_D0NR04864J crossref_primary_10_1016_j_jmst_2023_07_073 crossref_primary_10_1002_adfm_202509897 crossref_primary_10_1039_D0EE02714F crossref_primary_10_1016_j_amf_2024_200151 crossref_primary_10_1016_j_addma_2024_104318 crossref_primary_10_1088_2053_1583_ad6910 crossref_primary_10_1002_adfm_202007285 crossref_primary_10_1016_j_elecom_2020_106890 crossref_primary_10_1080_00202967_2023_2185977 crossref_primary_10_1007_s12274_020_3230_x crossref_primary_10_1080_17452759_2025_2457580 crossref_primary_10_1016_j_ijhydene_2025_04_047 crossref_primary_10_1007_s40684_025_00753_w crossref_primary_10_1021_acs_cgd_4c00880 crossref_primary_10_1088_1757_899X_1224_1_012006 crossref_primary_10_1002_pc_28236 crossref_primary_10_1016_j_ensm_2024_103934 crossref_primary_10_1016_j_mattod_2022_07_016 crossref_primary_10_1080_17452759_2023_2264281 crossref_primary_10_1016_j_cjmeam_2022_100053 crossref_primary_10_1002_adfm_202110535 crossref_primary_10_1016_j_addma_2022_103154 crossref_primary_10_3390_polym17182499 crossref_primary_10_1016_j_bios_2023_115113 crossref_primary_10_1016_j_apmt_2024_102285 crossref_primary_10_1051_mfreview_2022033 crossref_primary_10_1070_RCR4980 crossref_primary_10_3390_polym15112564 crossref_primary_10_1080_15583724_2025_2470689 crossref_primary_10_1007_s12008_024_02065_w crossref_primary_10_1080_17452759_2023_2276260 crossref_primary_10_1016_j_elecom_2020_106735 crossref_primary_10_3390_asi5040072 crossref_primary_10_1016_j_jcis_2024_07_018 crossref_primary_10_1016_j_mattod_2025_01_011 crossref_primary_10_1016_j_chphma_2021_09_002 crossref_primary_10_1016_j_aca_2024_342429 crossref_primary_10_1016_j_electacta_2020_136984 crossref_primary_10_1016_j_trac_2025_118420 crossref_primary_10_20517_energymater_2025_92 crossref_primary_10_1088_2515_7655_ad2497 crossref_primary_10_1002_batt_202300045 crossref_primary_10_1016_j_bioelechem_2024_108830 crossref_primary_10_1007_s12274_023_6037_8 crossref_primary_10_1088_2752_5724_ad8898 crossref_primary_10_1002_smll_202103189 crossref_primary_10_3390_polym15051138 crossref_primary_10_1016_j_heliyon_2024_e25873 crossref_primary_10_3390_ma17122833 crossref_primary_10_1007_s12274_021_3693_4 crossref_primary_10_1016_j_jpowsour_2022_232263 crossref_primary_10_1002_adem_202300953 crossref_primary_10_1002_smll_202302718 crossref_primary_10_1002_aenm_202203683 crossref_primary_10_1002_mba2_51 crossref_primary_10_1016_j_tet_2020_131875 crossref_primary_10_1063_5_0232592 crossref_primary_10_1002_celc_202100724 crossref_primary_10_1002_aesr_202400258 crossref_primary_10_3390_polym12102229 crossref_primary_10_1016_j_electacta_2025_145680 crossref_primary_10_1016_j_elecom_2021_106920 crossref_primary_10_1039_D3RA06755F crossref_primary_10_3390_polym15244706 crossref_primary_10_1002_cssc_202201490 crossref_primary_10_1016_j_apsusc_2021_149720 crossref_primary_10_1002_cphc_202400849 crossref_primary_10_3390_ma15041360 crossref_primary_10_1002_celc_202300463 crossref_primary_10_1002_adfm_202506723 crossref_primary_10_1016_j_diamond_2024_111720 crossref_primary_10_1002_admt_202400136 crossref_primary_10_1002_advs_202204681 crossref_primary_10_1016_j_teac_2025_e00274 crossref_primary_10_1016_j_addma_2022_102939 crossref_primary_10_1080_14658011_2022_2110554 crossref_primary_10_1088_2053_1583_ac3f43 crossref_primary_10_1002_smll_202105572 crossref_primary_10_1002_aic_18728 crossref_primary_10_1007_s12274_022_4200_2 crossref_primary_10_1016_j_cis_2021_102415 crossref_primary_10_1021_acs_chemmater_4c03287 crossref_primary_10_1016_j_cej_2024_157829 crossref_primary_10_1038_s44160_022_00193_3 crossref_primary_10_1016_j_heliyon_2024_e33023 crossref_primary_10_1021_acs_nanolett_5c00837 crossref_primary_10_1016_j_est_2023_107648 crossref_primary_10_1016_j_talanta_2024_125814 crossref_primary_10_1002_admt_202300611 crossref_primary_10_1016_j_apcatb_2022_121609 crossref_primary_10_1002_cctc_202500417 crossref_primary_10_1002_advs_202204751 crossref_primary_10_1002_admt_202300972 crossref_primary_10_1016_j_ccr_2020_213483 crossref_primary_10_1016_j_mtnano_2020_100094 crossref_primary_10_1002_smtd_202401912 crossref_primary_10_3390_catal14020110 crossref_primary_10_1016_j_cej_2022_139947 crossref_primary_10_1002_cey2_199 crossref_primary_10_1002_adfm_202004613 crossref_primary_10_1016_j_indcrop_2023_116286 crossref_primary_10_1002_app_51904 crossref_primary_10_1016_j_carbon_2021_01_107 crossref_primary_10_1016_j_elecom_2025_107988 crossref_primary_10_1002_admt_202101121 crossref_primary_10_1002_mba2_11 crossref_primary_10_1002_smll_202412161 crossref_primary_10_1007_s11783_025_1921_y crossref_primary_10_1002_ente_202000844 crossref_primary_10_1080_17452759_2024_2326897 crossref_primary_10_1002_admt_202202080 crossref_primary_10_1016_j_est_2023_110129 crossref_primary_10_1007_s00604_021_05006_6 crossref_primary_10_1002_elsa_202100184 crossref_primary_10_1002_flm2_14 crossref_primary_10_1016_j_cclet_2024_110325 crossref_primary_10_1016_j_cis_2021_102436 crossref_primary_10_1016_j_ceramint_2022_07_117 crossref_primary_10_1016_j_elecom_2020_106827 crossref_primary_10_1016_j_jpowsour_2022_231774 crossref_primary_10_1002_smtd_202100518 crossref_primary_10_1016_j_polymer_2022_124609 crossref_primary_10_1002_smll_202507312 crossref_primary_10_1002_smll_202505135 crossref_primary_10_1146_annurev_food_111523_121736 crossref_primary_10_1007_s42114_025_01338_6 crossref_primary_10_1007_s40032_025_01222_8 crossref_primary_10_32571_ijct_1375421 crossref_primary_10_1002_admi_202300557 crossref_primary_10_1016_j_decarb_2023_100019 crossref_primary_10_3389_fenrg_2021_651041 crossref_primary_10_1016_j_jeurceramsoc_2022_12_019 crossref_primary_10_1016_j_jiec_2024_06_025 crossref_primary_10_1016_j_mattod_2024_06_007 crossref_primary_10_1016_j_mtcomm_2021_102053 crossref_primary_10_1039_D4MH01160K crossref_primary_10_1016_j_cej_2025_159811 crossref_primary_10_1002_app_53304 crossref_primary_10_1002_adfm_202100450 crossref_primary_10_1016_j_ijhydene_2024_07_175 crossref_primary_10_1002_adfm_202010608 crossref_primary_10_1016_j_matdes_2020_108811 crossref_primary_10_1002_adma_202005967 crossref_primary_10_1080_01614940_2025_2556095 crossref_primary_10_1016_j_trac_2020_116151 crossref_primary_10_1002_smll_202105017 crossref_primary_10_1002_adfm_202310563 crossref_primary_10_1016_j_matdes_2025_114310 crossref_primary_10_3390_ma13204475 crossref_primary_10_1016_j_mtcomm_2024_111030 crossref_primary_10_1016_j_desal_2024_117452 crossref_primary_10_1557_s43578_021_00243_0 crossref_primary_10_3390_polym15030668 crossref_primary_10_1002_adfm_202421987 crossref_primary_10_1002_smll_202404227 crossref_primary_10_1002_adfm_202108107 crossref_primary_10_1039_D4AY02271H crossref_primary_10_1039_D4NR00401A crossref_primary_10_1063_5_0138178 crossref_primary_10_1016_j_mtener_2022_101100 crossref_primary_10_1557_s43579_023_00385_8 crossref_primary_10_1039_D0NR06479C crossref_primary_10_1021_acsapm_4c04101 crossref_primary_10_1016_j_colsurfa_2024_134701 crossref_primary_10_1016_j_apmt_2023_101995 crossref_primary_10_1002_admt_202000744 crossref_primary_10_1016_j_jeurceramsoc_2022_01_058 crossref_primary_10_1016_j_addma_2025_104715 crossref_primary_10_1080_14686996_2024_2421740 crossref_primary_10_1016_j_cej_2024_154978 crossref_primary_10_1016_j_carbpol_2022_119475 crossref_primary_10_1016_j_mattod_2022_03_014 crossref_primary_10_1002_batt_202200223 crossref_primary_10_1016_j_apmt_2023_101984 crossref_primary_10_1016_j_jallcom_2025_178941 crossref_primary_10_1002_admt_202500898 crossref_primary_10_1002_celc_202500234 crossref_primary_10_1002_smtd_202101076 crossref_primary_10_1016_j_bios_2022_114003 crossref_primary_10_1109_ACCESS_2025_3542554 crossref_primary_10_1016_j_talanta_2023_125476 crossref_primary_10_1021_acs_jchemed_1c01278 crossref_primary_10_1016_j_fuel_2023_129741 crossref_primary_10_1002_chem_202004250 crossref_primary_10_1016_j_cclet_2023_109353 crossref_primary_10_1038_s41378_024_00708_2 crossref_primary_10_1016_j_microc_2022_108083 crossref_primary_10_1088_1361_6463_ae04f3 crossref_primary_10_3390_mi11070658 crossref_primary_10_1016_j_elecom_2023_107652 crossref_primary_10_1039_D1SE01851E crossref_primary_10_22184_2227_572X_2025_15_2_122_131 crossref_primary_10_3390_polym15071700 crossref_primary_10_1016_j_apmt_2021_101253 crossref_primary_10_1016_j_mtcomm_2023_107069 crossref_primary_10_1002_adem_202402179 crossref_primary_10_1002_adfm_202106990 crossref_primary_10_1016_j_apmt_2020_100881 crossref_primary_10_1002_smll_202104513 crossref_primary_10_1016_j_cej_2022_141047 crossref_primary_10_1016_j_ijhydene_2021_04_090 crossref_primary_10_1002_ejic_202001024 crossref_primary_10_1007_s40032_021_00723_6 crossref_primary_10_1039_D4SC06477A crossref_primary_10_1016_j_cej_2021_133949 crossref_primary_10_1002_adfm_202410618 crossref_primary_10_1016_j_mtchem_2024_102156 crossref_primary_10_1016_j_apsusc_2021_152183 crossref_primary_10_1016_j_apsusc_2024_160209 crossref_primary_10_1016_j_jmapro_2021_12_007 crossref_primary_10_1002_smll_202402638 crossref_primary_10_1016_j_electacta_2023_143074 crossref_primary_10_1002_asia_202400568 crossref_primary_10_1002_adma_202503658 crossref_primary_10_1016_j_ensm_2025_104291 crossref_primary_10_1016_j_nxener_2025_100283 crossref_primary_10_1093_jpp_rgaf028 crossref_primary_10_1016_j_trac_2022_116672 crossref_primary_10_1002_adfm_202201166 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1021/acs.chemrev.9b00783 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1520-6890 |
| ExternalDocumentID | 32049499 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X .DC .K2 29B 4.4 53G 55A 5GY 5RE 5VS 6J9 7~N 85S AABXI AAHBH ABJNI ABMVS ABPPZ ABQRX ABUCX ACGFO ACGFS ACGOD ACIWK ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AFXLT AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 CUPRZ D0L DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ LG6 NPM P2P PQQKQ ROL RWL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YZZ ~02 7X8 ABBLG ABLBI |
| ID | FETCH-LOGICAL-a472t-f432b51f7994a48ba995889afe8ca21c6f7c7d1d5efcdf48595195dc80c8cda02 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 337 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526392500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-6890 |
| IngestDate | Wed Oct 01 14:42:26 EDT 2025 Thu Jan 02 22:58:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a472t-f432b51f7994a48ba995889afe8ca21c6f7c7d1d5efcdf48595195dc80c8cda02 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-5846-2951 0000-0002-3574-9113 |
| PMID | 32049499 |
| PQID | 2354738630 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2354738630 pubmed_primary_32049499 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-11 |
| PublicationDateYYYYMMDD | 2020-03-11 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Chemical reviews |
| PublicationTitleAlternate | Chem Rev |
| PublicationYear | 2020 |
| SSID | ssj0005527 |
| Score | 2.6935494 |
| Snippet | Additive manufacturing (also known as three-dimensional (3D) printing) is being extensively utilized in many areas of electrochemistry to produce electrodes... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2783 |
| Title | 3D Printing for Electrochemical Energy Applications |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32049499 https://www.proquest.com/docview/2354738630 |
| Volume | 120 |
| WOSCitedRecordID | wos000526392500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAIsHC-1FeChJrVD-S2J5QBa0YoOoAqFvk-CE60Ja28Pu5y0NlQUJi8RbLufP5znfn7yPkJuOWhoyZOHUFw9QN2JxVNubao8OBbVCi878-ysFAjUZ6WCfcFnVbZXMmlge1m1rMkXe4QJZclQl6O_uIkTUKq6s1hcY6aQkIZbClS45WaOFpRdkKLgquSErTBnWIs46xoNI3_45ELwgLKBE38LcYs_Q1_d3_rnKP7NRRZtSttsU-WfOTA7J115C7HRIh7qPhfFzSREQQt0a9ig7H1vgBUa98Exh1f9S3j8hLv_d89xDX_AmxSSRfxiERvEhZkFonJlGF0TpVSpvglTWc2SxIKx1zqQ_WhQSRzphOnVUUtOUM5cdkYzKd-FN82S2oz3ThaACr12C2MjNcw5wSrJ75Nrlu5JHDn2DRwUz89HORryTSJieVUPNZBaSRC05LcJyzP3x9TrY5XnWxlY5dkFYA6_SXZNN-LceL-VWpeBgHw6dv7GC3HQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Printing+for+Electrochemical+Energy+Applications&rft.jtitle=Chemical+reviews&rft.au=Browne%2C+Michelle+P&rft.au=Redondo%2C+Edurne&rft.au=Pumera%2C+Martin&rft.date=2020-03-11&rft.issn=1520-6890&rft.eissn=1520-6890&rft.volume=120&rft.issue=5&rft.spage=2783&rft_id=info:doi/10.1021%2Facs.chemrev.9b00783&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6890&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6890&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6890&client=summon |