Hierarchically Structured Zeolites: From Design to Application
Hierarchical zeolites combine the intrinsic catalytic properties of microporous zeolites and the enhanced access and transport of the additional meso- and/or macroporous system. These materials are the most desirable catalysts and sorbents for industry and become a highly evolving field of important...
Gespeichert in:
| Veröffentlicht in: | Chemical reviews Jg. 120; H. 20; S. 11194 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
28.10.2020
|
| ISSN: | 1520-6890, 1520-6890 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Hierarchical zeolites combine the intrinsic catalytic properties of microporous zeolites and the enhanced access and transport of the additional meso- and/or macroporous system. These materials are the most desirable catalysts and sorbents for industry and become a highly evolving field of important current interests. In addition to the enhanced mass transfer leading to high activity, selectivity, and cycle time, another essential merit of the hierarchical structure in zeolite materials is that it can significantly improve the utilization effectiveness of zeolite materials resulting in the minimum energy, time, and raw materials consumption. Substantial progress has been made in the synthesis, characterization, and application of hierarchical zeolites. Herein, we provide an overview of recent achievements in the field, highlighting the significant progress in the past decade on the development of novel and remarkable strategies to create an additional pore system in zeolites. The most innovative synthesis approaches are reviewed according to the principle, versatility, effectiveness, and degree of reality while establishing a firm link between the preparation route and the resultant hierarchical pore quality in zeolites. Zeolites with different hierarchically porous structures, i.e., micro-mesoporous structure, micro-macroporous structure, and micro-meso-macroporous structure, are then analyzed in detail with concrete examples to illustrate their benefits and their fabrications. The significantly improved performances in catalytic, environmental, and biological applications resulting from enhanced mass transport properties are discussed through a series of representative cases. In the concluding part, we envision the emergence of "material-properties-by-quantitative and real rational design" based on the "generalized Murray's Law" that enables the predictable and controlled productions of bioinspired hierarchically structured zeolites. This Review is expected to attract important interests from catalysis, separation, environment, advanced materials, and chemical engineering fields as well as biomedicine for artificial organ and drug delivery systems. |
|---|---|
| AbstractList | Hierarchical zeolites combine the intrinsic catalytic properties of microporous zeolites and the enhanced access and transport of the additional meso- and/or macroporous system. These materials are the most desirable catalysts and sorbents for industry and become a highly evolving field of important current interests. In addition to the enhanced mass transfer leading to high activity, selectivity, and cycle time, another essential merit of the hierarchical structure in zeolite materials is that it can significantly improve the utilization effectiveness of zeolite materials resulting in the minimum energy, time, and raw materials consumption. Substantial progress has been made in the synthesis, characterization, and application of hierarchical zeolites. Herein, we provide an overview of recent achievements in the field, highlighting the significant progress in the past decade on the development of novel and remarkable strategies to create an additional pore system in zeolites. The most innovative synthesis approaches are reviewed according to the principle, versatility, effectiveness, and degree of reality while establishing a firm link between the preparation route and the resultant hierarchical pore quality in zeolites. Zeolites with different hierarchically porous structures, i.e., micro-mesoporous structure, micro-macroporous structure, and micro-meso-macroporous structure, are then analyzed in detail with concrete examples to illustrate their benefits and their fabrications. The significantly improved performances in catalytic, environmental, and biological applications resulting from enhanced mass transport properties are discussed through a series of representative cases. In the concluding part, we envision the emergence of "material-properties-by-quantitative and real rational design" based on the "generalized Murray's Law" that enables the predictable and controlled productions of bioinspired hierarchically structured zeolites. This Review is expected to attract important interests from catalysis, separation, environment, advanced materials, and chemical engineering fields as well as biomedicine for artificial organ and drug delivery systems. Hierarchical zeolites combine the intrinsic catalytic properties of microporous zeolites and the enhanced access and transport of the additional meso- and/or macroporous system. These materials are the most desirable catalysts and sorbents for industry and become a highly evolving field of important current interests. In addition to the enhanced mass transfer leading to high activity, selectivity, and cycle time, another essential merit of the hierarchical structure in zeolite materials is that it can significantly improve the utilization effectiveness of zeolite materials resulting in the minimum energy, time, and raw materials consumption. Substantial progress has been made in the synthesis, characterization, and application of hierarchical zeolites. Herein, we provide an overview of recent achievements in the field, highlighting the significant progress in the past decade on the development of novel and remarkable strategies to create an additional pore system in zeolites. The most innovative synthesis approaches are reviewed according to the principle, versatility, effectiveness, and degree of reality while establishing a firm link between the preparation route and the resultant hierarchical pore quality in zeolites. Zeolites with different hierarchically porous structures, i.e., micro-mesoporous structure, micro-macroporous structure, and micro-meso-macroporous structure, are then analyzed in detail with concrete examples to illustrate their benefits and their fabrications. The significantly improved performances in catalytic, environmental, and biological applications resulting from enhanced mass transport properties are discussed through a series of representative cases. In the concluding part, we envision the emergence of "material-properties-by-quantitative and real rational design" based on the "generalized Murray's Law" that enables the predictable and controlled productions of bioinspired hierarchically structured zeolites. This Review is expected to attract important interests from catalysis, separation, environment, advanced materials, and chemical engineering fields as well as biomedicine for artificial organ and drug delivery systems.Hierarchical zeolites combine the intrinsic catalytic properties of microporous zeolites and the enhanced access and transport of the additional meso- and/or macroporous system. These materials are the most desirable catalysts and sorbents for industry and become a highly evolving field of important current interests. In addition to the enhanced mass transfer leading to high activity, selectivity, and cycle time, another essential merit of the hierarchical structure in zeolite materials is that it can significantly improve the utilization effectiveness of zeolite materials resulting in the minimum energy, time, and raw materials consumption. Substantial progress has been made in the synthesis, characterization, and application of hierarchical zeolites. Herein, we provide an overview of recent achievements in the field, highlighting the significant progress in the past decade on the development of novel and remarkable strategies to create an additional pore system in zeolites. The most innovative synthesis approaches are reviewed according to the principle, versatility, effectiveness, and degree of reality while establishing a firm link between the preparation route and the resultant hierarchical pore quality in zeolites. Zeolites with different hierarchically porous structures, i.e., micro-mesoporous structure, micro-macroporous structure, and micro-meso-macroporous structure, are then analyzed in detail with concrete examples to illustrate their benefits and their fabrications. The significantly improved performances in catalytic, environmental, and biological applications resulting from enhanced mass transport properties are discussed through a series of representative cases. In the concluding part, we envision the emergence of "material-properties-by-quantitative and real rational design" based on the "generalized Murray's Law" that enables the predictable and controlled productions of bioinspired hierarchically structured zeolites. This Review is expected to attract important interests from catalysis, separation, environment, advanced materials, and chemical engineering fields as well as biomedicine for artificial organ and drug delivery systems. |
| Author | Su, Bao-Lian Sun, Ming-Hui Xie, Zaiku Wang, Zhao Chen, Li-Hua Yang, Weimin |
| Author_xml | – sequence: 1 givenname: Li-Hua surname: Chen fullname: Chen, Li-Hua organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, China – sequence: 2 givenname: Ming-Hui surname: Sun fullname: Sun, Ming-Hui organization: Laboratory of Inorganic Materials Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium – sequence: 3 givenname: Zhao surname: Wang fullname: Wang, Zhao organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, China – sequence: 4 givenname: Weimin surname: Yang fullname: Yang, Weimin organization: State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China – sequence: 5 givenname: Zaiku surname: Xie fullname: Xie, Zaiku organization: State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China – sequence: 6 givenname: Bao-Lian orcidid: 0000-0001-8474-0652 surname: Su fullname: Su, Bao-Lian organization: Clare Hall, University of Cambridge, Cambridge CB2 1EW, United Kingdom |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32915551$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNz0tLAzEUBeAgFfvQXyDILN1MTdK8xoUg1Vqh4ELduBmSzB0byTxMMkL_vRUruLpn8XE4d4pGbdcCQucEzwmm5ErbOLdbaAJ8zbHFGBNxhCaEU5wLVeDRvzxG0xg_9oRzKk_QeEELwjknE3SzdhB0sFtntfe77DmFwaYhQJW9QeddgnidrULXZHcQ3XubpS677Xu_58l17Sk6rrWPcHa4M_S6un9ZrvPN08Pj8naTayZpylW1EFoUVsjaVESxSmpmeMGl0qwiVlYYVE0ls4X5mVXjmmBphCmUMBg40Bm6_O3tQ_c5QExl46IF73UL3RBLyhilRHFB9_TiQAfTQFX2wTU67Mq_n-k3-H9cgA |
| CitedBy_id | crossref_primary_10_1039_D2DT01027E crossref_primary_10_1002_adma_202406472 crossref_primary_10_1002_admi_202001841 crossref_primary_10_1007_s10853_024_10152_2 crossref_primary_10_1016_j_cej_2024_150332 crossref_primary_10_1038_s41598_025_12767_0 crossref_primary_10_1002_anie_202312131 crossref_primary_10_3390_cryst12111520 crossref_primary_10_1039_D2QI00696K crossref_primary_10_6023_A22100442 crossref_primary_10_3390_catal14070450 crossref_primary_10_1007_s42765_025_00592_z crossref_primary_10_1021_jacs_4c01061 crossref_primary_10_1007_s40242_024_4099_0 crossref_primary_10_1016_j_cattod_2025_115570 crossref_primary_10_1016_j_micromeso_2023_112731 crossref_primary_10_1002_ange_202116483 crossref_primary_10_1002_anie_202200677 crossref_primary_10_1002_advs_202106117 crossref_primary_10_1016_j_micromeso_2022_112352 crossref_primary_10_1007_s40820_023_01237_9 crossref_primary_10_1016_j_mtsust_2023_100417 crossref_primary_10_1016_j_cej_2022_135874 crossref_primary_10_1016_j_crgsc_2025_100463 crossref_primary_10_1016_j_matt_2024_04_040 crossref_primary_10_1016_j_fuel_2023_128704 crossref_primary_10_1016_j_matchemphys_2024_130034 crossref_primary_10_1002_smtd_202402065 crossref_primary_10_1016_j_micromeso_2021_111076 crossref_primary_10_1016_j_seppur_2022_122715 crossref_primary_10_1002_slct_202303918 crossref_primary_10_3390_catal13020316 crossref_primary_10_1016_j_matlet_2024_135994 crossref_primary_10_1039_D5CY00469A crossref_primary_10_1021_acs_iecr_4c04104 crossref_primary_10_1039_D2QI00320A crossref_primary_10_1016_j_ccr_2024_216372 crossref_primary_10_1016_j_mattod_2023_06_008 crossref_primary_10_1016_j_apsusc_2024_162260 crossref_primary_10_1002_adma_202100897 crossref_primary_10_1016_j_cjsc_2024_100336 crossref_primary_10_1016_j_jclepro_2024_143260 crossref_primary_10_1002_marc_202200950 crossref_primary_10_1016_j_micromeso_2022_112112 crossref_primary_10_1016_j_trac_2025_118249 crossref_primary_10_3390_ma17174401 crossref_primary_10_1016_j_jcis_2024_03_092 crossref_primary_10_3390_inorganics11070297 crossref_primary_10_1016_j_apsusc_2023_156405 crossref_primary_10_1002_anie_202100954 crossref_primary_10_1016_j_jece_2025_118050 crossref_primary_10_3390_molecules29050981 crossref_primary_10_1016_j_fuel_2025_134923 crossref_primary_10_1126_sciadv_ads4018 crossref_primary_10_1016_j_micromeso_2022_112252 crossref_primary_10_3390_molecules28052013 crossref_primary_10_1016_j_seppur_2025_134640 crossref_primary_10_1016_j_fuel_2022_126363 crossref_primary_10_1016_j_indcrop_2025_120597 crossref_primary_10_1016_j_carbpol_2021_118787 crossref_primary_10_1007_s40242_024_4041_5 crossref_primary_10_1039_D4NR04482G crossref_primary_10_1039_D5CC01006C crossref_primary_10_1016_j_micromeso_2023_112700 crossref_primary_10_1093_nsr_nwac236 crossref_primary_10_1016_j_micromeso_2022_112368 crossref_primary_10_3390_catal13030570 crossref_primary_10_1021_accountsmr_4c00402 crossref_primary_10_1016_j_matlet_2024_136825 crossref_primary_10_1016_j_checat_2022_01_014 crossref_primary_10_1016_j_matpr_2022_03_146 crossref_primary_10_1093_nsr_nwac023 crossref_primary_10_3390_nano13152184 crossref_primary_10_1080_08927022_2022_2088745 crossref_primary_10_3390_catal12121629 crossref_primary_10_1016_j_jorganchem_2023_122885 crossref_primary_10_1002_smll_202503660 crossref_primary_10_1002_ange_202416564 crossref_primary_10_1007_s10934_024_01615_7 crossref_primary_10_1039_D5SU00074B crossref_primary_10_1016_j_micromeso_2024_113089 crossref_primary_10_1016_j_fcr_2024_109690 crossref_primary_10_1016_j_micromeso_2022_112275 crossref_primary_10_1002_slct_202200839 crossref_primary_10_1016_j_micromeso_2022_112274 crossref_primary_10_1016_j_jaap_2024_106551 crossref_primary_10_3390_catal12040405 crossref_primary_10_1021_acscatal_5c00856 crossref_primary_10_1039_D4SC06164K crossref_primary_10_1016_j_apcata_2022_118769 crossref_primary_10_1016_j_fuel_2022_126588 crossref_primary_10_1016_j_ces_2023_119694 crossref_primary_10_3390_inorganics11050214 crossref_primary_10_1016_j_renene_2024_121811 crossref_primary_10_1002_anie_202116483 crossref_primary_10_1002_anie_202416564 crossref_primary_10_1016_j_mcat_2022_112170 crossref_primary_10_1007_s12209_023_00377_8 crossref_primary_10_1002_aic_18183 crossref_primary_10_1002_smll_202311659 crossref_primary_10_1007_s11705_021_2090_6 crossref_primary_10_1016_j_foodres_2025_115982 crossref_primary_10_3390_reactions5040048 crossref_primary_10_1021_acs_iecr_5c00999 crossref_primary_10_1016_j_device_2023_100173 crossref_primary_10_1016_j_energy_2025_136626 crossref_primary_10_1007_s11172_024_4371_y crossref_primary_10_1016_j_fuel_2024_132489 crossref_primary_10_1016_j_micromeso_2024_113185 crossref_primary_10_1016_j_dwt_2025_101285 crossref_primary_10_1016_j_micromeso_2024_113060 crossref_primary_10_1021_acs_iecr_4c04674 crossref_primary_10_1016_j_jssc_2023_123989 crossref_primary_10_1134_S0023158425600038 crossref_primary_10_1039_D2QI00388K crossref_primary_10_1016_j_jwpe_2024_105709 crossref_primary_10_1002_crat_202200287 crossref_primary_10_1002_sstr_202200187 crossref_primary_10_1016_j_cattod_2022_04_024 crossref_primary_10_1016_j_cej_2025_167120 crossref_primary_10_1016_j_heliyon_2024_e36417 crossref_primary_10_1016_j_apcata_2025_120116 crossref_primary_10_1016_j_mtsust_2023_100364 crossref_primary_10_1021_acsami_4c22163 crossref_primary_10_1016_j_ccr_2022_214576 crossref_primary_10_1093_nsr_nwad155 crossref_primary_10_1007_s10562_025_05116_3 crossref_primary_10_1016_j_micromeso_2022_111767 crossref_primary_10_1021_jacs_4c03086 crossref_primary_10_1016_j_cattod_2022_11_022 crossref_primary_10_1016_j_micromeso_2023_112578 crossref_primary_10_1021_acs_chemmater_4c03233 crossref_primary_10_3390_catal14080526 crossref_primary_10_1007_s10934_025_01813_x crossref_primary_10_1016_j_cej_2025_159282 crossref_primary_10_1016_j_jcis_2025_137677 crossref_primary_10_1016_j_mseb_2024_117510 crossref_primary_10_1039_D3SC05851D crossref_primary_10_1016_j_jece_2025_115614 crossref_primary_10_1016_j_micromeso_2021_111359 crossref_primary_10_1002_zaac_202300161 crossref_primary_10_1016_j_colsurfa_2025_137847 crossref_primary_10_1002_cssc_202300608 crossref_primary_10_1016_j_cattod_2022_07_017 crossref_primary_10_1039_D5QI00403A crossref_primary_10_1016_j_jece_2021_105380 crossref_primary_10_1002_ange_202200677 crossref_primary_10_1007_s10450_021_00337_5 crossref_primary_10_1021_acs_inorgchem_5c03113 crossref_primary_10_1016_j_seppur_2023_125339 crossref_primary_10_1016_j_cej_2023_146600 crossref_primary_10_1016_j_mtchem_2022_101061 crossref_primary_10_1016_j_mtsust_2023_100351 crossref_primary_10_1016_j_seppur_2024_129963 crossref_primary_10_1016_j_fuel_2022_124105 crossref_primary_10_3390_s25051634 crossref_primary_10_1016_j_cej_2024_154755 crossref_primary_10_1016_j_nexres_2025_100181 crossref_primary_10_1016_j_recm_2022_03_002 crossref_primary_10_1002_anie_202215985 crossref_primary_10_1002_adfm_202505207 crossref_primary_10_1002_ange_202421523 crossref_primary_10_1007_s11164_025_05699_x crossref_primary_10_1134_S0023158422020070 crossref_primary_10_3390_nano15141118 crossref_primary_10_1016_j_fuel_2023_129289 crossref_primary_10_1093_nsr_nwae172 crossref_primary_10_1016_j_mtcata_2023_100037 crossref_primary_10_1002_anie_202424690 crossref_primary_10_1080_01496395_2024_2421416 crossref_primary_10_3390_molecules30010195 crossref_primary_10_1016_j_cattod_2022_06_026 crossref_primary_10_1093_nsr_nwaf258 crossref_primary_10_1016_j_ces_2021_117286 crossref_primary_10_1016_j_fuel_2024_131889 crossref_primary_10_1016_j_seppur_2024_127537 crossref_primary_10_1039_D2CY00154C crossref_primary_10_1002_adma_202404658 crossref_primary_10_1002_smll_202303897 crossref_primary_10_1016_j_micromeso_2023_112895 crossref_primary_10_1039_D5CC02883C crossref_primary_10_1016_j_efmat_2024_02_001 crossref_primary_10_1039_D5QI00664C crossref_primary_10_1002_ange_202114388 crossref_primary_10_1039_D2CY02137D crossref_primary_10_3389_fbioe_2022_1066552 crossref_primary_10_1002_adfm_202510605 crossref_primary_10_1134_S0022476624030120 crossref_primary_10_1016_j_mcat_2022_112568 crossref_primary_10_1002_anie_202409288 crossref_primary_10_1016_j_clay_2025_107877 crossref_primary_10_1039_D3QI00360D crossref_primary_10_1016_j_seppur_2024_128739 crossref_primary_10_1155_2023_7259974 crossref_primary_10_1016_j_micromeso_2022_112425 crossref_primary_10_3390_pr13092896 crossref_primary_10_1039_D0QI01417F crossref_primary_10_1002_admi_202001388 crossref_primary_10_1016_j_biortech_2021_125874 crossref_primary_10_3390_catal15020146 crossref_primary_10_1016_j_cclet_2022_04_042 crossref_primary_10_1016_j_fuel_2024_131429 crossref_primary_10_1016_j_jenvman_2025_126774 crossref_primary_10_1016_j_cej_2024_149369 crossref_primary_10_1016_j_micromeso_2022_112310 crossref_primary_10_1016_j_mtener_2023_101406 crossref_primary_10_1002_cssc_202401279 crossref_primary_10_1016_j_fuel_2024_132990 crossref_primary_10_1039_D2RE00065B crossref_primary_10_1039_D4NR04717F crossref_primary_10_1016_j_supflu_2023_105940 crossref_primary_10_1002_ange_202312131 crossref_primary_10_1016_j_jallcom_2025_181573 crossref_primary_10_1016_S1872_2067_23_64463_8 crossref_primary_10_1016_j_micromeso_2023_112625 crossref_primary_10_1016_j_micromeso_2023_112740 crossref_primary_10_1016_j_ica_2023_121838 crossref_primary_10_3390_catal13040702 crossref_primary_10_1002_chem_202301942 crossref_primary_10_1039_D4QM00059E crossref_primary_10_1016_j_jcat_2022_12_004 crossref_primary_10_1016_j_micromeso_2025_113708 crossref_primary_10_1002_cctc_202500932 crossref_primary_10_1016_j_fuel_2025_135120 crossref_primary_10_1016_j_inoche_2024_113303 crossref_primary_10_1360_SSC_2024_0292 crossref_primary_10_1021_jacs_3c07873 crossref_primary_10_1016_j_mtchem_2023_101412 crossref_primary_10_1016_j_cattod_2023_114365 crossref_primary_10_1016_j_mcat_2024_114029 crossref_primary_10_1016_j_cej_2024_148947 crossref_primary_10_3390_catal14100734 crossref_primary_10_3390_molecules30051030 crossref_primary_10_1016_j_cattod_2022_01_020 crossref_primary_10_1002_anie_202409001 crossref_primary_10_1016_j_memsci_2024_122510 crossref_primary_10_1016_j_micromeso_2022_111813 crossref_primary_10_1016_j_apcata_2022_119011 crossref_primary_10_1016_j_jece_2021_106868 crossref_primary_10_1016_S1872_2067_23_64562_0 crossref_primary_10_1016_j_micromeso_2021_111633 crossref_primary_10_1002_advs_202100001 crossref_primary_10_1039_D4SC05121A crossref_primary_10_1039_D5CY00704F crossref_primary_10_1039_D5RE00183H crossref_primary_10_1016_j_apcata_2024_119704 crossref_primary_10_1021_jacs_4c09483 crossref_primary_10_1002_chem_202301608 crossref_primary_10_1021_acs_inorgchem_5c02428 crossref_primary_10_1016_j_micromeso_2025_113602 crossref_primary_10_1016_j_micromeso_2025_113723 crossref_primary_10_3389_fchem_2022_860795 crossref_primary_10_1016_j_psep_2022_11_009 crossref_primary_10_1016_j_seppur_2024_130678 crossref_primary_10_1002_app_51536 crossref_primary_10_1016_j_fuel_2023_130127 crossref_primary_10_1021_acs_iecr_5c00386 crossref_primary_10_1016_j_apt_2022_103666 crossref_primary_10_1002_adma_202104442 crossref_primary_10_1039_D2CY00701K crossref_primary_10_1016_j_mtsust_2024_100684 crossref_primary_10_1007_s10934_025_01803_z crossref_primary_10_1002_slct_202304754 crossref_primary_10_1002_ange_202409001 crossref_primary_10_1039_D2QI00952H crossref_primary_10_1016_j_cjche_2023_04_024 crossref_primary_10_1016_j_micromeso_2021_111207 crossref_primary_10_1002_ange_202215985 crossref_primary_10_1039_D5TA02473K crossref_primary_10_1002_cctc_202200795 crossref_primary_10_1016_j_pmatsci_2023_101104 crossref_primary_10_1016_j_mtbio_2025_101558 crossref_primary_10_1016_j_cattod_2022_10_007 crossref_primary_10_1039_D5NR00443H crossref_primary_10_1016_j_snb_2023_135134 crossref_primary_10_1002_advs_202301834 crossref_primary_10_1016_j_apsusc_2023_157172 crossref_primary_10_1002_advs_202004943 crossref_primary_10_1155_2022_4250299 crossref_primary_10_1002_chem_202300543 crossref_primary_10_1016_j_seppur_2024_130414 crossref_primary_10_1021_acs_energyfuels_5c03432 crossref_primary_10_1007_s10934_022_01221_5 crossref_primary_10_3390_catal13081217 crossref_primary_10_1016_j_seppur_2024_127247 crossref_primary_10_6023_A23040177 crossref_primary_10_1002_smll_202405280 crossref_primary_10_1016_j_fuel_2023_130541 crossref_primary_10_1007_s40242_022_2038_5 crossref_primary_10_1002_agt2_275 crossref_primary_10_26599_NR_2025_94907137 crossref_primary_10_1002_anie_202508909 crossref_primary_10_1016_j_renene_2023_05_119 crossref_primary_10_1016_j_jechem_2025_09_007 crossref_primary_10_1002_cctc_202500957 crossref_primary_10_1016_j_cej_2021_131598 crossref_primary_10_1016_j_jssc_2021_122503 crossref_primary_10_1007_s40843_022_2148_4 crossref_primary_10_1016_j_micromeso_2022_111869 crossref_primary_10_1002_anie_202017031 crossref_primary_10_1016_j_micromeso_2022_111867 crossref_primary_10_1002_cnma_202400041 crossref_primary_10_3390_molecules30153279 crossref_primary_10_1016_j_micromeso_2024_112996 crossref_primary_10_1016_j_fuproc_2022_107622 crossref_primary_10_1039_D4EE00042K crossref_primary_10_1002_ange_202508909 crossref_primary_10_1134_S0022476625030175 crossref_primary_10_1016_j_matchemphys_2024_129825 crossref_primary_10_1016_j_cej_2024_155761 crossref_primary_10_1016_j_apcata_2024_119873 crossref_primary_10_1002_ange_202017031 crossref_primary_10_1016_j_jallcom_2023_171454 crossref_primary_10_1016_j_jssc_2023_124271 crossref_primary_10_1134_S0023158422050093 crossref_primary_10_1016_j_surfin_2024_103885 crossref_primary_10_1002_anie_202114388 crossref_primary_10_1016_j_cclet_2024_109693 crossref_primary_10_1016_j_ccr_2021_214179 crossref_primary_10_1002_ange_202409288 crossref_primary_10_1002_pat_6465 crossref_primary_10_1039_D5CS00169B crossref_primary_10_1016_j_micromeso_2025_113547 crossref_primary_10_1016_j_micromeso_2024_113389 crossref_primary_10_1021_jacs_3c04995 crossref_primary_10_1126_science_abn2048 crossref_primary_10_1002_smll_202506106 crossref_primary_10_1002_adma_202107891 crossref_primary_10_1007_s11665_021_06195_0 crossref_primary_10_1007_s11705_024_2432_2 crossref_primary_10_1038_s41598_025_14220_8 crossref_primary_10_1002_asia_202400342 crossref_primary_10_1021_acscentsci_2c00434 crossref_primary_10_1016_j_ijhydene_2024_02_337 crossref_primary_10_3390_molecules27238156 crossref_primary_10_1016_j_mcat_2024_114670 crossref_primary_10_1016_j_micromeso_2022_112068 crossref_primary_10_1016_j_envres_2022_114306 crossref_primary_10_1002_ange_202100954 crossref_primary_10_1002_adma_202407266 crossref_primary_10_1016_j_ensm_2025_104369 crossref_primary_10_1021_jacs_5c04247 crossref_primary_10_1021_acscatal_5c03831 crossref_primary_10_3390_catal12040434 crossref_primary_10_1021_acs_accounts_5c00223 crossref_primary_10_3390_catal13030604 crossref_primary_10_1016_j_apcata_2021_118131 crossref_primary_10_1039_D1CY00772F crossref_primary_10_1016_j_fuproc_2025_108318 crossref_primary_10_1016_j_micromeso_2024_113009 crossref_primary_10_1016_j_cogsc_2022_100632 crossref_primary_10_1002_anie_202421523 crossref_primary_10_1021_jacs_5c06417 crossref_primary_10_3390_catal12101106 crossref_primary_10_1016_j_colsurfa_2021_126853 crossref_primary_10_1002_adfm_202301179 crossref_primary_10_3390_separations10030196 crossref_primary_10_1016_j_seppur_2025_132865 crossref_primary_10_1007_s10934_025_01753_6 crossref_primary_10_1016_j_cej_2025_159701 crossref_primary_10_3390_molecules29194623 crossref_primary_10_1016_j_matchemphys_2024_130335 crossref_primary_10_1007_s12274_022_4789_1 crossref_primary_10_1016_j_cej_2025_165476 crossref_primary_10_1002_slct_202100381 crossref_primary_10_1016_j_mtchem_2024_102022 crossref_primary_10_1016_j_fuel_2024_134118 crossref_primary_10_1016_j_cej_2023_148219 crossref_primary_10_1039_D3BM01247F crossref_primary_10_1039_D1QI01598B crossref_primary_10_1039_D2QI00653G crossref_primary_10_1016_j_cattod_2024_115010 crossref_primary_10_1007_s10853_021_06643_1 crossref_primary_10_1016_j_joule_2022_04_014 crossref_primary_10_1016_j_micromeso_2025_113509 crossref_primary_10_1093_nsr_nwaa249 crossref_primary_10_1016_j_micromeso_2025_113868 crossref_primary_10_1016_j_micromeso_2025_113746 crossref_primary_10_1016_j_polymdegradstab_2025_111220 crossref_primary_10_3390_ma16165694 crossref_primary_10_1016_j_fuel_2025_134353 crossref_primary_10_1016_j_psep_2024_05_082 crossref_primary_10_1002_adma_202405079 crossref_primary_10_1002_adma_202103130 crossref_primary_10_1016_j_fluid_2024_114235 crossref_primary_10_1016_j_apcata_2025_120290 crossref_primary_10_1016_j_mseb_2025_118342 crossref_primary_10_1016_j_seppur_2025_131634 crossref_primary_10_1007_s11426_022_1307_5 crossref_primary_10_1016_j_chemosphere_2023_140879 crossref_primary_10_1016_j_cjche_2024_07_016 crossref_primary_10_1016_j_isci_2024_109064 crossref_primary_10_1016_j_cej_2025_167631 crossref_primary_10_3390_catal13081191 crossref_primary_10_1007_s11705_024_2446_9 crossref_primary_10_1016_j_jallcom_2021_159030 crossref_primary_10_1016_j_micromeso_2025_113651 crossref_primary_10_1016_j_biteb_2025_102258 crossref_primary_10_1016_j_seppur_2023_124729 crossref_primary_10_1016_j_cjsc_2024_100252 crossref_primary_10_3390_catal13081197 crossref_primary_10_1007_s13399_023_04324_4 crossref_primary_10_1016_j_checat_2022_03_003 crossref_primary_10_1021_jacs_2c13160 crossref_primary_10_1016_j_rser_2022_112607 crossref_primary_10_1039_D2RA00209D crossref_primary_10_1021_acs_iecr_5c00478 crossref_primary_10_3390_molecules29061386 crossref_primary_10_1016_j_ccr_2025_216903 crossref_primary_10_1016_j_jenvman_2024_122434 crossref_primary_10_1039_D2QI00313A crossref_primary_10_1038_s44160_022_00091_8 crossref_primary_10_1039_D2PY01350A crossref_primary_10_1016_j_fuel_2023_128406 crossref_primary_10_1093_nsr_nwaa251 crossref_primary_10_1002_ange_202424690 crossref_primary_10_1002_aic_17913 crossref_primary_10_1007_s11426_023_1823_9 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1021/acs.chemrev.0c00016 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1520-6890 |
| ExternalDocumentID | 32915551 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .DC .K2 29B 4.4 53G 55A 5GY 5RE 5VS 6J9 7~N 85S AABXI AAHBH ABJNI ABMVS ABPPZ ABQRX ABUCX ACGFO ACGFS ACGOD ACIWK ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AFXLT AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 CUPRZ D0L DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ LG6 NPM P2P PQQKQ ROL RWL TAE TN5 UI2 UKR UPT VF5 VG9 W1F WH7 XSW YZZ ~02 7X8 ABBLG ABLBI |
| ID | FETCH-LOGICAL-a472t-8d36a69c67fbd184d7a4b59578a4d1c7d0e8f274c9b5551f0f107b6b986b0e5e2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 540 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582672400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-6890 |
| IngestDate | Thu Jul 10 20:57:27 EDT 2025 Thu Apr 03 06:57:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a472t-8d36a69c67fbd184d7a4b59578a4d1c7d0e8f274c9b5551f0f107b6b986b0e5e2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-8474-0652 |
| PMID | 32915551 |
| PQID | 2442218562 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2442218562 pubmed_primary_32915551 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-28 |
| PublicationDateYYYYMMDD | 2020-10-28 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Chemical reviews |
| PublicationTitleAlternate | Chem Rev |
| PublicationYear | 2020 |
| SSID | ssj0005527 |
| Score | 2.7225697 |
| SecondaryResourceType | review_article |
| Snippet | Hierarchical zeolites combine the intrinsic catalytic properties of microporous zeolites and the enhanced access and transport of the additional meso- and/or... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 11194 |
| Title | Hierarchically Structured Zeolites: From Design to Application |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32915551 https://www.proquest.com/docview/2442218562 |
| Volume | 120 |
| WOSCitedRecordID | wos000582672400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qBH3xfpk3Kvga1qZpmvqgyHTsxTFQYfhScisOtnaum-C_9yRt2ZMg-NK3QHNyku87OSfnQ-iGMM01zxhWYUwx5YHAkgsfc6rBQQRw2EA7sYl4MOCjUTKsL9zKuqyyORPdQa0LZe_IOwBDBOAI4Pp-9omtapTNrtYSGuuoFQKVsV4dj1bdwqNKshUgCkIknvhN1yESdISCJf0wUyv04ivHfH7nmA5rerv__cs9tFOzTO-hcot9tGbyA7TVbcTdDtFdf2xfHjshlMnk23txbWSXc6O9d2NL4kx56_XmxdR7dCUe3qLwHla57iP01nt67fZxLaWABY3JAnMdMsESxeJMagjqdCyojBLYroLqQMXaNzyDAFUlMgIOlfkZhIWSyYQz6ZvIkGO0kRe5OUVeRpTWka-FoQkF8iFDyYBmBhpWgBLftNF1Y5oUJmXzDyI3xbJMV8Zpo5PKvums6qmRhsQ2qo-Csz-MPkfbxEa9gCCEX6BWBhvVXKJN9bUYl_Mr5wPwHQyffwAnwLuY |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchically+Structured+Zeolites%3A+From+Design+to+Application&rft.jtitle=Chemical+reviews&rft.au=Chen%2C+Li-Hua&rft.au=Sun%2C+Ming-Hui&rft.au=Wang%2C+Zhao&rft.au=Yang%2C+Weimin&rft.date=2020-10-28&rft.issn=1520-6890&rft.eissn=1520-6890&rft.volume=120&rft.issue=20&rft.spage=11194&rft_id=info:doi/10.1021%2Facs.chemrev.0c00016&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6890&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6890&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6890&client=summon |