Hierarchically Structured Zeolites: From Design to Application

Hierarchical zeolites combine the intrinsic catalytic properties of microporous zeolites and the enhanced access and transport of the additional meso- and/or macroporous system. These materials are the most desirable catalysts and sorbents for industry and become a highly evolving field of important...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical reviews Jg. 120; H. 20; S. 11194
Hauptverfasser: Chen, Li-Hua, Sun, Ming-Hui, Wang, Zhao, Yang, Weimin, Xie, Zaiku, Su, Bao-Lian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 28.10.2020
ISSN:1520-6890, 1520-6890
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Hierarchical zeolites combine the intrinsic catalytic properties of microporous zeolites and the enhanced access and transport of the additional meso- and/or macroporous system. These materials are the most desirable catalysts and sorbents for industry and become a highly evolving field of important current interests. In addition to the enhanced mass transfer leading to high activity, selectivity, and cycle time, another essential merit of the hierarchical structure in zeolite materials is that it can significantly improve the utilization effectiveness of zeolite materials resulting in the minimum energy, time, and raw materials consumption. Substantial progress has been made in the synthesis, characterization, and application of hierarchical zeolites. Herein, we provide an overview of recent achievements in the field, highlighting the significant progress in the past decade on the development of novel and remarkable strategies to create an additional pore system in zeolites. The most innovative synthesis approaches are reviewed according to the principle, versatility, effectiveness, and degree of reality while establishing a firm link between the preparation route and the resultant hierarchical pore quality in zeolites. Zeolites with different hierarchically porous structures, i.e., micro-mesoporous structure, micro-macroporous structure, and micro-meso-macroporous structure, are then analyzed in detail with concrete examples to illustrate their benefits and their fabrications. The significantly improved performances in catalytic, environmental, and biological applications resulting from enhanced mass transport properties are discussed through a series of representative cases. In the concluding part, we envision the emergence of "material-properties-by-quantitative and real rational design" based on the "generalized Murray's Law" that enables the predictable and controlled productions of bioinspired hierarchically structured zeolites. This Review is expected to attract important interests from catalysis, separation, environment, advanced materials, and chemical engineering fields as well as biomedicine for artificial organ and drug delivery systems.
AbstractList Hierarchical zeolites combine the intrinsic catalytic properties of microporous zeolites and the enhanced access and transport of the additional meso- and/or macroporous system. These materials are the most desirable catalysts and sorbents for industry and become a highly evolving field of important current interests. In addition to the enhanced mass transfer leading to high activity, selectivity, and cycle time, another essential merit of the hierarchical structure in zeolite materials is that it can significantly improve the utilization effectiveness of zeolite materials resulting in the minimum energy, time, and raw materials consumption. Substantial progress has been made in the synthesis, characterization, and application of hierarchical zeolites. Herein, we provide an overview of recent achievements in the field, highlighting the significant progress in the past decade on the development of novel and remarkable strategies to create an additional pore system in zeolites. The most innovative synthesis approaches are reviewed according to the principle, versatility, effectiveness, and degree of reality while establishing a firm link between the preparation route and the resultant hierarchical pore quality in zeolites. Zeolites with different hierarchically porous structures, i.e., micro-mesoporous structure, micro-macroporous structure, and micro-meso-macroporous structure, are then analyzed in detail with concrete examples to illustrate their benefits and their fabrications. The significantly improved performances in catalytic, environmental, and biological applications resulting from enhanced mass transport properties are discussed through a series of representative cases. In the concluding part, we envision the emergence of "material-properties-by-quantitative and real rational design" based on the "generalized Murray's Law" that enables the predictable and controlled productions of bioinspired hierarchically structured zeolites. This Review is expected to attract important interests from catalysis, separation, environment, advanced materials, and chemical engineering fields as well as biomedicine for artificial organ and drug delivery systems.
Hierarchical zeolites combine the intrinsic catalytic properties of microporous zeolites and the enhanced access and transport of the additional meso- and/or macroporous system. These materials are the most desirable catalysts and sorbents for industry and become a highly evolving field of important current interests. In addition to the enhanced mass transfer leading to high activity, selectivity, and cycle time, another essential merit of the hierarchical structure in zeolite materials is that it can significantly improve the utilization effectiveness of zeolite materials resulting in the minimum energy, time, and raw materials consumption. Substantial progress has been made in the synthesis, characterization, and application of hierarchical zeolites. Herein, we provide an overview of recent achievements in the field, highlighting the significant progress in the past decade on the development of novel and remarkable strategies to create an additional pore system in zeolites. The most innovative synthesis approaches are reviewed according to the principle, versatility, effectiveness, and degree of reality while establishing a firm link between the preparation route and the resultant hierarchical pore quality in zeolites. Zeolites with different hierarchically porous structures, i.e., micro-mesoporous structure, micro-macroporous structure, and micro-meso-macroporous structure, are then analyzed in detail with concrete examples to illustrate their benefits and their fabrications. The significantly improved performances in catalytic, environmental, and biological applications resulting from enhanced mass transport properties are discussed through a series of representative cases. In the concluding part, we envision the emergence of "material-properties-by-quantitative and real rational design" based on the "generalized Murray's Law" that enables the predictable and controlled productions of bioinspired hierarchically structured zeolites. This Review is expected to attract important interests from catalysis, separation, environment, advanced materials, and chemical engineering fields as well as biomedicine for artificial organ and drug delivery systems.Hierarchical zeolites combine the intrinsic catalytic properties of microporous zeolites and the enhanced access and transport of the additional meso- and/or macroporous system. These materials are the most desirable catalysts and sorbents for industry and become a highly evolving field of important current interests. In addition to the enhanced mass transfer leading to high activity, selectivity, and cycle time, another essential merit of the hierarchical structure in zeolite materials is that it can significantly improve the utilization effectiveness of zeolite materials resulting in the minimum energy, time, and raw materials consumption. Substantial progress has been made in the synthesis, characterization, and application of hierarchical zeolites. Herein, we provide an overview of recent achievements in the field, highlighting the significant progress in the past decade on the development of novel and remarkable strategies to create an additional pore system in zeolites. The most innovative synthesis approaches are reviewed according to the principle, versatility, effectiveness, and degree of reality while establishing a firm link between the preparation route and the resultant hierarchical pore quality in zeolites. Zeolites with different hierarchically porous structures, i.e., micro-mesoporous structure, micro-macroporous structure, and micro-meso-macroporous structure, are then analyzed in detail with concrete examples to illustrate their benefits and their fabrications. The significantly improved performances in catalytic, environmental, and biological applications resulting from enhanced mass transport properties are discussed through a series of representative cases. In the concluding part, we envision the emergence of "material-properties-by-quantitative and real rational design" based on the "generalized Murray's Law" that enables the predictable and controlled productions of bioinspired hierarchically structured zeolites. This Review is expected to attract important interests from catalysis, separation, environment, advanced materials, and chemical engineering fields as well as biomedicine for artificial organ and drug delivery systems.
Author Su, Bao-Lian
Sun, Ming-Hui
Xie, Zaiku
Wang, Zhao
Chen, Li-Hua
Yang, Weimin
Author_xml – sequence: 1
  givenname: Li-Hua
  surname: Chen
  fullname: Chen, Li-Hua
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, China
– sequence: 2
  givenname: Ming-Hui
  surname: Sun
  fullname: Sun, Ming-Hui
  organization: Laboratory of Inorganic Materials Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
– sequence: 3
  givenname: Zhao
  surname: Wang
  fullname: Wang, Zhao
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, China
– sequence: 4
  givenname: Weimin
  surname: Yang
  fullname: Yang, Weimin
  organization: State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China
– sequence: 5
  givenname: Zaiku
  surname: Xie
  fullname: Xie, Zaiku
  organization: State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China
– sequence: 6
  givenname: Bao-Lian
  orcidid: 0000-0001-8474-0652
  surname: Su
  fullname: Su, Bao-Lian
  organization: Clare Hall, University of Cambridge, Cambridge CB2 1EW, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32915551$$D View this record in MEDLINE/PubMed
BookMark eNpNz0tLAzEUBeAgFfvQXyDILN1MTdK8xoUg1Vqh4ELduBmSzB0byTxMMkL_vRUruLpn8XE4d4pGbdcCQucEzwmm5ErbOLdbaAJ8zbHFGBNxhCaEU5wLVeDRvzxG0xg_9oRzKk_QeEELwjknE3SzdhB0sFtntfe77DmFwaYhQJW9QeddgnidrULXZHcQ3XubpS677Xu_58l17Sk6rrWPcHa4M_S6un9ZrvPN08Pj8naTayZpylW1EFoUVsjaVESxSmpmeMGl0qwiVlYYVE0ls4X5mVXjmmBphCmUMBg40Bm6_O3tQ_c5QExl46IF73UL3RBLyhilRHFB9_TiQAfTQFX2wTU67Mq_n-k3-H9cgA
CitedBy_id crossref_primary_10_1039_D2DT01027E
crossref_primary_10_1002_adma_202406472
crossref_primary_10_1002_admi_202001841
crossref_primary_10_1007_s10853_024_10152_2
crossref_primary_10_1016_j_cej_2024_150332
crossref_primary_10_1038_s41598_025_12767_0
crossref_primary_10_1002_anie_202312131
crossref_primary_10_3390_cryst12111520
crossref_primary_10_1039_D2QI00696K
crossref_primary_10_6023_A22100442
crossref_primary_10_3390_catal14070450
crossref_primary_10_1007_s42765_025_00592_z
crossref_primary_10_1021_jacs_4c01061
crossref_primary_10_1007_s40242_024_4099_0
crossref_primary_10_1016_j_cattod_2025_115570
crossref_primary_10_1016_j_micromeso_2023_112731
crossref_primary_10_1002_ange_202116483
crossref_primary_10_1002_anie_202200677
crossref_primary_10_1002_advs_202106117
crossref_primary_10_1016_j_micromeso_2022_112352
crossref_primary_10_1007_s40820_023_01237_9
crossref_primary_10_1016_j_mtsust_2023_100417
crossref_primary_10_1016_j_cej_2022_135874
crossref_primary_10_1016_j_crgsc_2025_100463
crossref_primary_10_1016_j_matt_2024_04_040
crossref_primary_10_1016_j_fuel_2023_128704
crossref_primary_10_1016_j_matchemphys_2024_130034
crossref_primary_10_1002_smtd_202402065
crossref_primary_10_1016_j_micromeso_2021_111076
crossref_primary_10_1016_j_seppur_2022_122715
crossref_primary_10_1002_slct_202303918
crossref_primary_10_3390_catal13020316
crossref_primary_10_1016_j_matlet_2024_135994
crossref_primary_10_1039_D5CY00469A
crossref_primary_10_1021_acs_iecr_4c04104
crossref_primary_10_1039_D2QI00320A
crossref_primary_10_1016_j_ccr_2024_216372
crossref_primary_10_1016_j_mattod_2023_06_008
crossref_primary_10_1016_j_apsusc_2024_162260
crossref_primary_10_1002_adma_202100897
crossref_primary_10_1016_j_cjsc_2024_100336
crossref_primary_10_1016_j_jclepro_2024_143260
crossref_primary_10_1002_marc_202200950
crossref_primary_10_1016_j_micromeso_2022_112112
crossref_primary_10_1016_j_trac_2025_118249
crossref_primary_10_3390_ma17174401
crossref_primary_10_1016_j_jcis_2024_03_092
crossref_primary_10_3390_inorganics11070297
crossref_primary_10_1016_j_apsusc_2023_156405
crossref_primary_10_1002_anie_202100954
crossref_primary_10_1016_j_jece_2025_118050
crossref_primary_10_3390_molecules29050981
crossref_primary_10_1016_j_fuel_2025_134923
crossref_primary_10_1126_sciadv_ads4018
crossref_primary_10_1016_j_micromeso_2022_112252
crossref_primary_10_3390_molecules28052013
crossref_primary_10_1016_j_seppur_2025_134640
crossref_primary_10_1016_j_fuel_2022_126363
crossref_primary_10_1016_j_indcrop_2025_120597
crossref_primary_10_1016_j_carbpol_2021_118787
crossref_primary_10_1007_s40242_024_4041_5
crossref_primary_10_1039_D4NR04482G
crossref_primary_10_1039_D5CC01006C
crossref_primary_10_1016_j_micromeso_2023_112700
crossref_primary_10_1093_nsr_nwac236
crossref_primary_10_1016_j_micromeso_2022_112368
crossref_primary_10_3390_catal13030570
crossref_primary_10_1021_accountsmr_4c00402
crossref_primary_10_1016_j_matlet_2024_136825
crossref_primary_10_1016_j_checat_2022_01_014
crossref_primary_10_1016_j_matpr_2022_03_146
crossref_primary_10_1093_nsr_nwac023
crossref_primary_10_3390_nano13152184
crossref_primary_10_1080_08927022_2022_2088745
crossref_primary_10_3390_catal12121629
crossref_primary_10_1016_j_jorganchem_2023_122885
crossref_primary_10_1002_smll_202503660
crossref_primary_10_1002_ange_202416564
crossref_primary_10_1007_s10934_024_01615_7
crossref_primary_10_1039_D5SU00074B
crossref_primary_10_1016_j_micromeso_2024_113089
crossref_primary_10_1016_j_fcr_2024_109690
crossref_primary_10_1016_j_micromeso_2022_112275
crossref_primary_10_1002_slct_202200839
crossref_primary_10_1016_j_micromeso_2022_112274
crossref_primary_10_1016_j_jaap_2024_106551
crossref_primary_10_3390_catal12040405
crossref_primary_10_1021_acscatal_5c00856
crossref_primary_10_1039_D4SC06164K
crossref_primary_10_1016_j_apcata_2022_118769
crossref_primary_10_1016_j_fuel_2022_126588
crossref_primary_10_1016_j_ces_2023_119694
crossref_primary_10_3390_inorganics11050214
crossref_primary_10_1016_j_renene_2024_121811
crossref_primary_10_1002_anie_202116483
crossref_primary_10_1002_anie_202416564
crossref_primary_10_1016_j_mcat_2022_112170
crossref_primary_10_1007_s12209_023_00377_8
crossref_primary_10_1002_aic_18183
crossref_primary_10_1002_smll_202311659
crossref_primary_10_1007_s11705_021_2090_6
crossref_primary_10_1016_j_foodres_2025_115982
crossref_primary_10_3390_reactions5040048
crossref_primary_10_1021_acs_iecr_5c00999
crossref_primary_10_1016_j_device_2023_100173
crossref_primary_10_1016_j_energy_2025_136626
crossref_primary_10_1007_s11172_024_4371_y
crossref_primary_10_1016_j_fuel_2024_132489
crossref_primary_10_1016_j_micromeso_2024_113185
crossref_primary_10_1016_j_dwt_2025_101285
crossref_primary_10_1016_j_micromeso_2024_113060
crossref_primary_10_1021_acs_iecr_4c04674
crossref_primary_10_1016_j_jssc_2023_123989
crossref_primary_10_1134_S0023158425600038
crossref_primary_10_1039_D2QI00388K
crossref_primary_10_1016_j_jwpe_2024_105709
crossref_primary_10_1002_crat_202200287
crossref_primary_10_1002_sstr_202200187
crossref_primary_10_1016_j_cattod_2022_04_024
crossref_primary_10_1016_j_cej_2025_167120
crossref_primary_10_1016_j_heliyon_2024_e36417
crossref_primary_10_1016_j_apcata_2025_120116
crossref_primary_10_1016_j_mtsust_2023_100364
crossref_primary_10_1021_acsami_4c22163
crossref_primary_10_1016_j_ccr_2022_214576
crossref_primary_10_1093_nsr_nwad155
crossref_primary_10_1007_s10562_025_05116_3
crossref_primary_10_1016_j_micromeso_2022_111767
crossref_primary_10_1021_jacs_4c03086
crossref_primary_10_1016_j_cattod_2022_11_022
crossref_primary_10_1016_j_micromeso_2023_112578
crossref_primary_10_1021_acs_chemmater_4c03233
crossref_primary_10_3390_catal14080526
crossref_primary_10_1007_s10934_025_01813_x
crossref_primary_10_1016_j_cej_2025_159282
crossref_primary_10_1016_j_jcis_2025_137677
crossref_primary_10_1016_j_mseb_2024_117510
crossref_primary_10_1039_D3SC05851D
crossref_primary_10_1016_j_jece_2025_115614
crossref_primary_10_1016_j_micromeso_2021_111359
crossref_primary_10_1002_zaac_202300161
crossref_primary_10_1016_j_colsurfa_2025_137847
crossref_primary_10_1002_cssc_202300608
crossref_primary_10_1016_j_cattod_2022_07_017
crossref_primary_10_1039_D5QI00403A
crossref_primary_10_1016_j_jece_2021_105380
crossref_primary_10_1002_ange_202200677
crossref_primary_10_1007_s10450_021_00337_5
crossref_primary_10_1021_acs_inorgchem_5c03113
crossref_primary_10_1016_j_seppur_2023_125339
crossref_primary_10_1016_j_cej_2023_146600
crossref_primary_10_1016_j_mtchem_2022_101061
crossref_primary_10_1016_j_mtsust_2023_100351
crossref_primary_10_1016_j_seppur_2024_129963
crossref_primary_10_1016_j_fuel_2022_124105
crossref_primary_10_3390_s25051634
crossref_primary_10_1016_j_cej_2024_154755
crossref_primary_10_1016_j_nexres_2025_100181
crossref_primary_10_1016_j_recm_2022_03_002
crossref_primary_10_1002_anie_202215985
crossref_primary_10_1002_adfm_202505207
crossref_primary_10_1002_ange_202421523
crossref_primary_10_1007_s11164_025_05699_x
crossref_primary_10_1134_S0023158422020070
crossref_primary_10_3390_nano15141118
crossref_primary_10_1016_j_fuel_2023_129289
crossref_primary_10_1093_nsr_nwae172
crossref_primary_10_1016_j_mtcata_2023_100037
crossref_primary_10_1002_anie_202424690
crossref_primary_10_1080_01496395_2024_2421416
crossref_primary_10_3390_molecules30010195
crossref_primary_10_1016_j_cattod_2022_06_026
crossref_primary_10_1093_nsr_nwaf258
crossref_primary_10_1016_j_ces_2021_117286
crossref_primary_10_1016_j_fuel_2024_131889
crossref_primary_10_1016_j_seppur_2024_127537
crossref_primary_10_1039_D2CY00154C
crossref_primary_10_1002_adma_202404658
crossref_primary_10_1002_smll_202303897
crossref_primary_10_1016_j_micromeso_2023_112895
crossref_primary_10_1039_D5CC02883C
crossref_primary_10_1016_j_efmat_2024_02_001
crossref_primary_10_1039_D5QI00664C
crossref_primary_10_1002_ange_202114388
crossref_primary_10_1039_D2CY02137D
crossref_primary_10_3389_fbioe_2022_1066552
crossref_primary_10_1002_adfm_202510605
crossref_primary_10_1134_S0022476624030120
crossref_primary_10_1016_j_mcat_2022_112568
crossref_primary_10_1002_anie_202409288
crossref_primary_10_1016_j_clay_2025_107877
crossref_primary_10_1039_D3QI00360D
crossref_primary_10_1016_j_seppur_2024_128739
crossref_primary_10_1155_2023_7259974
crossref_primary_10_1016_j_micromeso_2022_112425
crossref_primary_10_3390_pr13092896
crossref_primary_10_1039_D0QI01417F
crossref_primary_10_1002_admi_202001388
crossref_primary_10_1016_j_biortech_2021_125874
crossref_primary_10_3390_catal15020146
crossref_primary_10_1016_j_cclet_2022_04_042
crossref_primary_10_1016_j_fuel_2024_131429
crossref_primary_10_1016_j_jenvman_2025_126774
crossref_primary_10_1016_j_cej_2024_149369
crossref_primary_10_1016_j_micromeso_2022_112310
crossref_primary_10_1016_j_mtener_2023_101406
crossref_primary_10_1002_cssc_202401279
crossref_primary_10_1016_j_fuel_2024_132990
crossref_primary_10_1039_D2RE00065B
crossref_primary_10_1039_D4NR04717F
crossref_primary_10_1016_j_supflu_2023_105940
crossref_primary_10_1002_ange_202312131
crossref_primary_10_1016_j_jallcom_2025_181573
crossref_primary_10_1016_S1872_2067_23_64463_8
crossref_primary_10_1016_j_micromeso_2023_112625
crossref_primary_10_1016_j_micromeso_2023_112740
crossref_primary_10_1016_j_ica_2023_121838
crossref_primary_10_3390_catal13040702
crossref_primary_10_1002_chem_202301942
crossref_primary_10_1039_D4QM00059E
crossref_primary_10_1016_j_jcat_2022_12_004
crossref_primary_10_1016_j_micromeso_2025_113708
crossref_primary_10_1002_cctc_202500932
crossref_primary_10_1016_j_fuel_2025_135120
crossref_primary_10_1016_j_inoche_2024_113303
crossref_primary_10_1360_SSC_2024_0292
crossref_primary_10_1021_jacs_3c07873
crossref_primary_10_1016_j_mtchem_2023_101412
crossref_primary_10_1016_j_cattod_2023_114365
crossref_primary_10_1016_j_mcat_2024_114029
crossref_primary_10_1016_j_cej_2024_148947
crossref_primary_10_3390_catal14100734
crossref_primary_10_3390_molecules30051030
crossref_primary_10_1016_j_cattod_2022_01_020
crossref_primary_10_1002_anie_202409001
crossref_primary_10_1016_j_memsci_2024_122510
crossref_primary_10_1016_j_micromeso_2022_111813
crossref_primary_10_1016_j_apcata_2022_119011
crossref_primary_10_1016_j_jece_2021_106868
crossref_primary_10_1016_S1872_2067_23_64562_0
crossref_primary_10_1016_j_micromeso_2021_111633
crossref_primary_10_1002_advs_202100001
crossref_primary_10_1039_D4SC05121A
crossref_primary_10_1039_D5CY00704F
crossref_primary_10_1039_D5RE00183H
crossref_primary_10_1016_j_apcata_2024_119704
crossref_primary_10_1021_jacs_4c09483
crossref_primary_10_1002_chem_202301608
crossref_primary_10_1021_acs_inorgchem_5c02428
crossref_primary_10_1016_j_micromeso_2025_113602
crossref_primary_10_1016_j_micromeso_2025_113723
crossref_primary_10_3389_fchem_2022_860795
crossref_primary_10_1016_j_psep_2022_11_009
crossref_primary_10_1016_j_seppur_2024_130678
crossref_primary_10_1002_app_51536
crossref_primary_10_1016_j_fuel_2023_130127
crossref_primary_10_1021_acs_iecr_5c00386
crossref_primary_10_1016_j_apt_2022_103666
crossref_primary_10_1002_adma_202104442
crossref_primary_10_1039_D2CY00701K
crossref_primary_10_1016_j_mtsust_2024_100684
crossref_primary_10_1007_s10934_025_01803_z
crossref_primary_10_1002_slct_202304754
crossref_primary_10_1002_ange_202409001
crossref_primary_10_1039_D2QI00952H
crossref_primary_10_1016_j_cjche_2023_04_024
crossref_primary_10_1016_j_micromeso_2021_111207
crossref_primary_10_1002_ange_202215985
crossref_primary_10_1039_D5TA02473K
crossref_primary_10_1002_cctc_202200795
crossref_primary_10_1016_j_pmatsci_2023_101104
crossref_primary_10_1016_j_mtbio_2025_101558
crossref_primary_10_1016_j_cattod_2022_10_007
crossref_primary_10_1039_D5NR00443H
crossref_primary_10_1016_j_snb_2023_135134
crossref_primary_10_1002_advs_202301834
crossref_primary_10_1016_j_apsusc_2023_157172
crossref_primary_10_1002_advs_202004943
crossref_primary_10_1155_2022_4250299
crossref_primary_10_1002_chem_202300543
crossref_primary_10_1016_j_seppur_2024_130414
crossref_primary_10_1021_acs_energyfuels_5c03432
crossref_primary_10_1007_s10934_022_01221_5
crossref_primary_10_3390_catal13081217
crossref_primary_10_1016_j_seppur_2024_127247
crossref_primary_10_6023_A23040177
crossref_primary_10_1002_smll_202405280
crossref_primary_10_1016_j_fuel_2023_130541
crossref_primary_10_1007_s40242_022_2038_5
crossref_primary_10_1002_agt2_275
crossref_primary_10_26599_NR_2025_94907137
crossref_primary_10_1002_anie_202508909
crossref_primary_10_1016_j_renene_2023_05_119
crossref_primary_10_1016_j_jechem_2025_09_007
crossref_primary_10_1002_cctc_202500957
crossref_primary_10_1016_j_cej_2021_131598
crossref_primary_10_1016_j_jssc_2021_122503
crossref_primary_10_1007_s40843_022_2148_4
crossref_primary_10_1016_j_micromeso_2022_111869
crossref_primary_10_1002_anie_202017031
crossref_primary_10_1016_j_micromeso_2022_111867
crossref_primary_10_1002_cnma_202400041
crossref_primary_10_3390_molecules30153279
crossref_primary_10_1016_j_micromeso_2024_112996
crossref_primary_10_1016_j_fuproc_2022_107622
crossref_primary_10_1039_D4EE00042K
crossref_primary_10_1002_ange_202508909
crossref_primary_10_1134_S0022476625030175
crossref_primary_10_1016_j_matchemphys_2024_129825
crossref_primary_10_1016_j_cej_2024_155761
crossref_primary_10_1016_j_apcata_2024_119873
crossref_primary_10_1002_ange_202017031
crossref_primary_10_1016_j_jallcom_2023_171454
crossref_primary_10_1016_j_jssc_2023_124271
crossref_primary_10_1134_S0023158422050093
crossref_primary_10_1016_j_surfin_2024_103885
crossref_primary_10_1002_anie_202114388
crossref_primary_10_1016_j_cclet_2024_109693
crossref_primary_10_1016_j_ccr_2021_214179
crossref_primary_10_1002_ange_202409288
crossref_primary_10_1002_pat_6465
crossref_primary_10_1039_D5CS00169B
crossref_primary_10_1016_j_micromeso_2025_113547
crossref_primary_10_1016_j_micromeso_2024_113389
crossref_primary_10_1021_jacs_3c04995
crossref_primary_10_1126_science_abn2048
crossref_primary_10_1002_smll_202506106
crossref_primary_10_1002_adma_202107891
crossref_primary_10_1007_s11665_021_06195_0
crossref_primary_10_1007_s11705_024_2432_2
crossref_primary_10_1038_s41598_025_14220_8
crossref_primary_10_1002_asia_202400342
crossref_primary_10_1021_acscentsci_2c00434
crossref_primary_10_1016_j_ijhydene_2024_02_337
crossref_primary_10_3390_molecules27238156
crossref_primary_10_1016_j_mcat_2024_114670
crossref_primary_10_1016_j_micromeso_2022_112068
crossref_primary_10_1016_j_envres_2022_114306
crossref_primary_10_1002_ange_202100954
crossref_primary_10_1002_adma_202407266
crossref_primary_10_1016_j_ensm_2025_104369
crossref_primary_10_1021_jacs_5c04247
crossref_primary_10_1021_acscatal_5c03831
crossref_primary_10_3390_catal12040434
crossref_primary_10_1021_acs_accounts_5c00223
crossref_primary_10_3390_catal13030604
crossref_primary_10_1016_j_apcata_2021_118131
crossref_primary_10_1039_D1CY00772F
crossref_primary_10_1016_j_fuproc_2025_108318
crossref_primary_10_1016_j_micromeso_2024_113009
crossref_primary_10_1016_j_cogsc_2022_100632
crossref_primary_10_1002_anie_202421523
crossref_primary_10_1021_jacs_5c06417
crossref_primary_10_3390_catal12101106
crossref_primary_10_1016_j_colsurfa_2021_126853
crossref_primary_10_1002_adfm_202301179
crossref_primary_10_3390_separations10030196
crossref_primary_10_1016_j_seppur_2025_132865
crossref_primary_10_1007_s10934_025_01753_6
crossref_primary_10_1016_j_cej_2025_159701
crossref_primary_10_3390_molecules29194623
crossref_primary_10_1016_j_matchemphys_2024_130335
crossref_primary_10_1007_s12274_022_4789_1
crossref_primary_10_1016_j_cej_2025_165476
crossref_primary_10_1002_slct_202100381
crossref_primary_10_1016_j_mtchem_2024_102022
crossref_primary_10_1016_j_fuel_2024_134118
crossref_primary_10_1016_j_cej_2023_148219
crossref_primary_10_1039_D3BM01247F
crossref_primary_10_1039_D1QI01598B
crossref_primary_10_1039_D2QI00653G
crossref_primary_10_1016_j_cattod_2024_115010
crossref_primary_10_1007_s10853_021_06643_1
crossref_primary_10_1016_j_joule_2022_04_014
crossref_primary_10_1016_j_micromeso_2025_113509
crossref_primary_10_1093_nsr_nwaa249
crossref_primary_10_1016_j_micromeso_2025_113868
crossref_primary_10_1016_j_micromeso_2025_113746
crossref_primary_10_1016_j_polymdegradstab_2025_111220
crossref_primary_10_3390_ma16165694
crossref_primary_10_1016_j_fuel_2025_134353
crossref_primary_10_1016_j_psep_2024_05_082
crossref_primary_10_1002_adma_202405079
crossref_primary_10_1002_adma_202103130
crossref_primary_10_1016_j_fluid_2024_114235
crossref_primary_10_1016_j_apcata_2025_120290
crossref_primary_10_1016_j_mseb_2025_118342
crossref_primary_10_1016_j_seppur_2025_131634
crossref_primary_10_1007_s11426_022_1307_5
crossref_primary_10_1016_j_chemosphere_2023_140879
crossref_primary_10_1016_j_cjche_2024_07_016
crossref_primary_10_1016_j_isci_2024_109064
crossref_primary_10_1016_j_cej_2025_167631
crossref_primary_10_3390_catal13081191
crossref_primary_10_1007_s11705_024_2446_9
crossref_primary_10_1016_j_jallcom_2021_159030
crossref_primary_10_1016_j_micromeso_2025_113651
crossref_primary_10_1016_j_biteb_2025_102258
crossref_primary_10_1016_j_seppur_2023_124729
crossref_primary_10_1016_j_cjsc_2024_100252
crossref_primary_10_3390_catal13081197
crossref_primary_10_1007_s13399_023_04324_4
crossref_primary_10_1016_j_checat_2022_03_003
crossref_primary_10_1021_jacs_2c13160
crossref_primary_10_1016_j_rser_2022_112607
crossref_primary_10_1039_D2RA00209D
crossref_primary_10_1021_acs_iecr_5c00478
crossref_primary_10_3390_molecules29061386
crossref_primary_10_1016_j_ccr_2025_216903
crossref_primary_10_1016_j_jenvman_2024_122434
crossref_primary_10_1039_D2QI00313A
crossref_primary_10_1038_s44160_022_00091_8
crossref_primary_10_1039_D2PY01350A
crossref_primary_10_1016_j_fuel_2023_128406
crossref_primary_10_1093_nsr_nwaa251
crossref_primary_10_1002_ange_202424690
crossref_primary_10_1002_aic_17913
crossref_primary_10_1007_s11426_023_1823_9
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/acs.chemrev.0c00016
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-6890
ExternalDocumentID 32915551
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
.K2
29B
4.4
53G
55A
5GY
5RE
5VS
6J9
7~N
85S
AABXI
AAHBH
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AFXLT
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
LG6
NPM
P2P
PQQKQ
ROL
RWL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
W1F
WH7
XSW
YZZ
~02
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a472t-8d36a69c67fbd184d7a4b59578a4d1c7d0e8f274c9b5551f0f107b6b986b0e5e2
IEDL.DBID 7X8
ISICitedReferencesCount 540
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582672400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-6890
IngestDate Thu Jul 10 20:57:27 EDT 2025
Thu Apr 03 06:57:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a472t-8d36a69c67fbd184d7a4b59578a4d1c7d0e8f274c9b5551f0f107b6b986b0e5e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8474-0652
PMID 32915551
PQID 2442218562
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2442218562
pubmed_primary_32915551
PublicationCentury 2000
PublicationDate 2020-10-28
PublicationDateYYYYMMDD 2020-10-28
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Chemical reviews
PublicationTitleAlternate Chem Rev
PublicationYear 2020
SSID ssj0005527
Score 2.7225697
SecondaryResourceType review_article
Snippet Hierarchical zeolites combine the intrinsic catalytic properties of microporous zeolites and the enhanced access and transport of the additional meso- and/or...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 11194
Title Hierarchically Structured Zeolites: From Design to Application
URI https://www.ncbi.nlm.nih.gov/pubmed/32915551
https://www.proquest.com/docview/2442218562
Volume 120
WOSCitedRecordID wos000582672400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qBH3xfpk3Kvga1qZpmvqgyHTsxTFQYfhScisOtnaum-C_9yRt2ZMg-NK3QHNyku87OSfnQ-iGMM01zxhWYUwx5YHAkgsfc6rBQQRw2EA7sYl4MOCjUTKsL9zKuqyyORPdQa0LZe_IOwBDBOAI4Pp-9omtapTNrtYSGuuoFQKVsV4dj1bdwqNKshUgCkIknvhN1yESdISCJf0wUyv04ivHfH7nmA5rerv__cs9tFOzTO-hcot9tGbyA7TVbcTdDtFdf2xfHjshlMnk23txbWSXc6O9d2NL4kx56_XmxdR7dCUe3qLwHla57iP01nt67fZxLaWABY3JAnMdMsESxeJMagjqdCyojBLYroLqQMXaNzyDAFUlMgIOlfkZhIWSyYQz6ZvIkGO0kRe5OUVeRpTWka-FoQkF8iFDyYBmBhpWgBLftNF1Y5oUJmXzDyI3xbJMV8Zpo5PKvums6qmRhsQ2qo-Csz-MPkfbxEa9gCCEX6BWBhvVXKJN9bUYl_Mr5wPwHQyffwAnwLuY
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchically+Structured+Zeolites%3A+From+Design+to+Application&rft.jtitle=Chemical+reviews&rft.au=Chen%2C+Li-Hua&rft.au=Sun%2C+Ming-Hui&rft.au=Wang%2C+Zhao&rft.au=Yang%2C+Weimin&rft.date=2020-10-28&rft.issn=1520-6890&rft.eissn=1520-6890&rft.volume=120&rft.issue=20&rft.spage=11194&rft_id=info:doi/10.1021%2Facs.chemrev.0c00016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6890&client=summon