Genetically Encoding an Electrophilic Amino Acid for Protein Stapling and Covalent Binding to Native Receptors

Covalent bonds can be generated within and between proteins by an unnatural amino acid (Uaa) reacting with a natural residue through proximity-enabled bioreactivity. Until now, Uaas have been developed to react mainly with cysteine in proteins. Here we genetically encoded an electrophilic Uaa capabl...

Full description

Saved in:
Bibliographic Details
Published in:ACS chemical biology Vol. 9; no. 9; pp. 1956 - 1961
Main Authors: Chen, Xiao-Hua, Xiang, Zheng, Hu, Ying S, Lacey, Vanessa K, Cang, Hu, Wang, Lei
Format: Journal Article
Language:English
Published: United States American Chemical Society 19.09.2014
Subjects:
ISSN:1554-8929, 1554-8937, 1554-8937
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Covalent bonds can be generated within and between proteins by an unnatural amino acid (Uaa) reacting with a natural residue through proximity-enabled bioreactivity. Until now, Uaas have been developed to react mainly with cysteine in proteins. Here we genetically encoded an electrophilic Uaa capable of reacting with histidine and lysine, thereby expanding the diversity of target proteins and the scope of the proximity-enabled protein cross-linking technology. In addition to efficient cross-linking of proteins inter- and intramolecularly, this Uaa permits direct stapling of a protein α-helix in a recombinant manner and covalent binding of native membrane receptors in live cells. The target diversity, recombinant stapling, and covalent targeting of endogenous proteins enabled by this versatile Uaa should prove valuable in developing novel research tools, biological diagnostics, and therapeutics by exploiting covalent protein linkages for specificity, irreversibility, and stability.
AbstractList Covalent bonds can be generated within and between proteins by an unnatural amino acid (Uaa) reacting with a natural residue through proximity-enabled bioreactivity. Until now, Uaas have been developed to react mainly with cysteine in proteins. Here we genetically encoded an electrophilic Uaa capable of reacting with histidine and lysine, thereby expanding the diversity of target proteins and the scope of the proximity-enabled protein cross-linking technology. In addition to efficient cross-linking of proteins inter- and intramolecularly, this Uaa permits direct stapling of a protein α-helix in a recombinant manner and covalent binding of native membrane receptors in live cells. The target diversity, recombinant stapling, and covalent targeting of endogenous proteins enabled by this versatile Uaa should prove valuable in developing novel research tools, biological diagnostics, and therapeutics by exploiting covalent protein linkages for specificity, irreversibility, and stability.
Covalent bonds can be generated within and between proteins by an unnatural amino acid (Uaa) reacting with a natural residue through proximity-enabled bioreactivity. Until now, Uaas have been developed to react mainly with cysteine in proteins. Here we genetically encoded an electrophilic Uaa capable of reacting with histidine and lysine, thereby expanding the diversity of target proteins and the scope of the proximity-enabled protein cross-linking technology. In addition to efficient cross-linking of proteins inter- and intramolecularly, this Uaa permits direct stapling of a protein α-helix in a recombinant manner and covalent binding of native membrane receptors in live cells. The target diversity, recombinant stapling, and covalent targeting of endogenous proteins enabled by this versatile Uaa should prove valuable in developing novel research tools, biological diagnostics, and therapeutics by exploiting covalent protein linkages for specificity, irreversibility, and stability.Covalent bonds can be generated within and between proteins by an unnatural amino acid (Uaa) reacting with a natural residue through proximity-enabled bioreactivity. Until now, Uaas have been developed to react mainly with cysteine in proteins. Here we genetically encoded an electrophilic Uaa capable of reacting with histidine and lysine, thereby expanding the diversity of target proteins and the scope of the proximity-enabled protein cross-linking technology. In addition to efficient cross-linking of proteins inter- and intramolecularly, this Uaa permits direct stapling of a protein α-helix in a recombinant manner and covalent binding of native membrane receptors in live cells. The target diversity, recombinant stapling, and covalent targeting of endogenous proteins enabled by this versatile Uaa should prove valuable in developing novel research tools, biological diagnostics, and therapeutics by exploiting covalent protein linkages for specificity, irreversibility, and stability.
Author Lacey, Vanessa K
Cang, Hu
Hu, Ying S
Wang, Lei
Chen, Xiao-Hua
Xiang, Zheng
AuthorAffiliation Waitt Advanced Biophotonics Center
The Jack H. Skirball Center for Chemical Biology and Proteomics
The Salk Institute for Biological Studies
AuthorAffiliation_xml – name: The Salk Institute for Biological Studies
– name: Waitt Advanced Biophotonics Center
– name: The Jack H. Skirball Center for Chemical Biology and Proteomics
Author_xml – sequence: 1
  givenname: Xiao-Hua
  surname: Chen
  fullname: Chen, Xiao-Hua
– sequence: 2
  givenname: Zheng
  surname: Xiang
  fullname: Xiang, Zheng
– sequence: 3
  givenname: Ying S
  surname: Hu
  fullname: Hu, Ying S
– sequence: 4
  givenname: Vanessa K
  surname: Lacey
  fullname: Lacey, Vanessa K
– sequence: 5
  givenname: Hu
  surname: Cang
  fullname: Cang, Hu
– sequence: 6
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  email: lwang@salk.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25010185$$D View this record in MEDLINE/PubMed
BookMark eNo9kEtPAyEUhYmpsQ9d-AcMGxM3VWCGKSxrU6tJo8bHesLArdJQGAemSf-9o62uzl189-TkG6KeDx4QOqfkmhJGb3TFCcl5po7QgHKej4XMJr3_m8k-Gsa47pisEPIE9RknlFDBB8gvwEOyWjm3w3Ovg7H-AyuP5w50akL9aZ3VeLqxPuCptgavQoOfm5DAevyaVO32DwbPwlY58AnfWv_bkgJ-VMluAb-AhjqFJp6i45VyEc4OOULvd_O32f14-bR4mE2XY5VPaBqDZJxJDSttJgVjShqVaxArCUaoTBmayYpIk0-I1kJwAMV5pRnPDQhZFSwboat9b92ErxZiKjc2anBOeQhtLCkvMikKmRcdenFA22oDpqwbu1HNrvxz1AGXe0DpWK5D2_hueUlJ-eO-_HeffQM7onak
CitedBy_id crossref_primary_10_1002_chem_202202828
crossref_primary_10_1073_pnas_1813574115
crossref_primary_10_1002_anie_201805869
crossref_primary_10_1002_ange_201611841
crossref_primary_10_1016_j_cbpa_2023_102285
crossref_primary_10_1016_j_cbpa_2020_07_012
crossref_primary_10_1021_jacs_8b00172
crossref_primary_10_3109_07388551_2015_1048504
crossref_primary_10_1016_j_bioorg_2023_106359
crossref_primary_10_1002_cbic_202100111
crossref_primary_10_1002_mog2_56
crossref_primary_10_1073_pnas_1909653116
crossref_primary_10_1016_j_addr_2022_114460
crossref_primary_10_1016_j_comptc_2023_114346
crossref_primary_10_1002_anie_202202657
crossref_primary_10_1016_j_bmc_2018_02_028
crossref_primary_10_1016_j_csbj_2020_12_043
crossref_primary_10_1016_j_bmc_2021_116219
crossref_primary_10_1039_C4CC06528J
crossref_primary_10_1038_s42003_022_03845_4
crossref_primary_10_1002_anie_201908713
crossref_primary_10_1021_acs_chemrev_3c00878
crossref_primary_10_1002_ange_201412070
crossref_primary_10_1021_jacs_4c03974
crossref_primary_10_1016_j_ijbiomac_2020_08_021
crossref_primary_10_3390_ijms16036513
crossref_primary_10_1021_jacs_1c04259
crossref_primary_10_1073_pnas_1605363113
crossref_primary_10_1016_j_chempr_2024_02_010
crossref_primary_10_1002_ange_201811837
crossref_primary_10_1016_j_bmc_2020_115896
crossref_primary_10_1002_anie_201412070
crossref_primary_10_1016_j_chempr_2019_08_020
crossref_primary_10_1038_s41557_022_01059_z
crossref_primary_10_1039_C8CC01639A
crossref_primary_10_1021_jacs_9b01738
crossref_primary_10_1002_anie_201706927
crossref_primary_10_1016_j_nbt_2016_10_003
crossref_primary_10_1002_ange_201908713
crossref_primary_10_1021_jacs_1c08521
crossref_primary_10_1016_j_chembiol_2023_09_004
crossref_primary_10_1021_jacs_8b01087
crossref_primary_10_1002_ange_202202657
crossref_primary_10_1073_pnas_1708907114
crossref_primary_10_1016_j_cbpa_2018_07_019
crossref_primary_10_1038_s41467_017_02409_z
crossref_primary_10_1039_C6CC01226D
crossref_primary_10_1002_ange_201805869
crossref_primary_10_1016_j_cbpa_2021_102106
crossref_primary_10_1038_s41467_020_20702_2
crossref_primary_10_1002_anie_201811837
crossref_primary_10_1039_C8CC00281A
crossref_primary_10_1002_anie_201611841
crossref_primary_10_1002_pro_4228
crossref_primary_10_1002_pro_3379
crossref_primary_10_1002_ange_201706927
crossref_primary_10_3389_fchem_2022_815991
crossref_primary_10_1038_s41467_021_20963_5
crossref_primary_10_1021_jacs_5b06234
crossref_primary_10_7554_eLife_69047
crossref_primary_10_1042_BST20200508
crossref_primary_10_1007_s12257_019_0163_x
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID N~.
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/cb500453a
DatabaseName American Chemical Society (ACS) Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1554-8937
EndPage 1961
ExternalDocumentID 25010185
a229505534
Genre Letter
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA014195
– fundername: NIH HHS
  grantid: DP2 OD004744
– fundername: NIH HHS
  grantid: 1DP2OD004744-01
– fundername: NCI NIH HHS
  grantid: P30CA014195
GroupedDBID -
23M
4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
EBS
ED
ED~
EJD
F5P
GNL
GX1
IH9
IHE
JG
JG~
LG6
N~.
P2P
RNS
ROL
UI2
VF5
VG9
W1F
---
5VS
5ZA
6J9
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AHGAQ
BAANH
CGR
CUPRZ
CUY
CVF
ECM
EIF
GGK
NPM
7X8
ID FETCH-LOGICAL-a471t-e92529cefcd7622a9da4ce8f9ed8a3ad139b09d470cc885eea55bc254de89b623
IEDL.DBID N~.
ISICitedReferencesCount 86
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000342121200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1554-8929
1554-8937
IngestDate Fri Jul 11 07:40:03 EDT 2025
Mon Jul 21 05:26:51 EDT 2025
Thu Aug 27 13:42:35 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a471t-e92529cefcd7622a9da4ce8f9ed8a3ad139b09d470cc885eea55bc254de89b623
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Correspondence-1
content type line 23
OpenAccessLink http://dx.doi.org/10.1021/cb500453a
PMID 25010185
PQID 1563986946
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1563986946
pubmed_primary_25010185
acs_journals_10_1021_cb500453a
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
N~.
UI2
PublicationCentury 2000
PublicationDate 2014-09-19
PublicationDateYYYYMMDD 2014-09-19
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS chemical biology
PublicationTitleAlternate ACS Chem. Biol
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References 21545173 - ACS Chem Biol. 2011 Jul 15;6(7):733-43
24449339 - Angew Chem Int Ed Engl. 2014 Feb 17;53(8):2190-3
19318213 - Chem Biol. 2009 Mar 27;16(3):323-36
24019075 - Chembiochem. 2013 Nov 4;14(16):2100-5
12610629 - Nature. 2003 Feb 13;421(6924):756-60
23949426 - Nat Rev Cancer. 2013 Sep;13(9):663-73
23913257 - Nat Methods. 2013 Sep;10(9):885-8
20644540 - Nat Chem Biol. 2010 Aug;6(8):566-7
17363599 - Cancer Res. 2007 Mar 15;67(6):2773-82
12824487 - Protein Sci. 2003 Jul;12(7):1406-17
10880430 - EMBO J. 2000 Jul 3;19(13):3159-67
23735044 - ACS Chem Biol. 2013 Aug 16;8(8):1664-70
24474648 - Angew Chem Int Ed Engl. 2014 Feb 17;53(8):2245-9
24428347 - J Am Chem Soc. 2014 Jan 29;136(4):1238-41
24290358 - Cell. 2013 Dec 5;155(6):1258-69
22689270 - Angew Chem Int Ed Engl. 2012 Jul 16;51(29):7246-9
24846839 - J Am Chem Soc. 2014 Jun 11;136(23):8411-7
20696930 - Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15039-44
12604795 - Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3191-6
11313494 - Science. 2001 Apr 20;292(5516):498-500
20414207 - Nat Rev Immunol. 2010 May;10(5):345-52
21055949 - Trends Biochem Sci. 2011 Apr;36(4):229-37
22230563 - Methods Enzymol. 2012;503:3-33
16618759 - Cancer Res. 2006 Apr 15;66(8):4339-48
23170954 - ACS Chem Biol. 2013 Mar 15;8(3):488-99
21884641 - Breast Cancer Res. 2011;13(4):215
19022179 - Chem Biol. 2008 Nov 24;15(11):1187-97
21892184 - Nat Chem Biol. 2011 Oct;7(10):671-7
20414204 - Nat Rev Immunol. 2010 May;10(5):301-16
20307192 - Annu Rev Biochem. 2010;79:413-44
23873613 - Angew Chem Int Ed Engl. 2013 Sep 9;52(37):9700-4
24358963 - ACS Chem Biol. 2014 Mar 21;9(3):831-7
References_xml – reference: 22230563 - Methods Enzymol. 2012;503:3-33
– reference: 21892184 - Nat Chem Biol. 2011 Oct;7(10):671-7
– reference: 20644540 - Nat Chem Biol. 2010 Aug;6(8):566-7
– reference: 23949426 - Nat Rev Cancer. 2013 Sep;13(9):663-73
– reference: 20414207 - Nat Rev Immunol. 2010 May;10(5):345-52
– reference: 20414204 - Nat Rev Immunol. 2010 May;10(5):301-16
– reference: 23873613 - Angew Chem Int Ed Engl. 2013 Sep 9;52(37):9700-4
– reference: 19022179 - Chem Biol. 2008 Nov 24;15(11):1187-97
– reference: 24428347 - J Am Chem Soc. 2014 Jan 29;136(4):1238-41
– reference: 24474648 - Angew Chem Int Ed Engl. 2014 Feb 17;53(8):2245-9
– reference: 24290358 - Cell. 2013 Dec 5;155(6):1258-69
– reference: 21055949 - Trends Biochem Sci. 2011 Apr;36(4):229-37
– reference: 23170954 - ACS Chem Biol. 2013 Mar 15;8(3):488-99
– reference: 24358963 - ACS Chem Biol. 2014 Mar 21;9(3):831-7
– reference: 22689270 - Angew Chem Int Ed Engl. 2012 Jul 16;51(29):7246-9
– reference: 23735044 - ACS Chem Biol. 2013 Aug 16;8(8):1664-70
– reference: 24449339 - Angew Chem Int Ed Engl. 2014 Feb 17;53(8):2190-3
– reference: 24846839 - J Am Chem Soc. 2014 Jun 11;136(23):8411-7
– reference: 19318213 - Chem Biol. 2009 Mar 27;16(3):323-36
– reference: 17363599 - Cancer Res. 2007 Mar 15;67(6):2773-82
– reference: 12824487 - Protein Sci. 2003 Jul;12(7):1406-17
– reference: 23913257 - Nat Methods. 2013 Sep;10(9):885-8
– reference: 20696930 - Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15039-44
– reference: 21884641 - Breast Cancer Res. 2011;13(4):215
– reference: 12610629 - Nature. 2003 Feb 13;421(6924):756-60
– reference: 20307192 - Annu Rev Biochem. 2010;79:413-44
– reference: 12604795 - Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3191-6
– reference: 21545173 - ACS Chem Biol. 2011 Jul 15;6(7):733-43
– reference: 10880430 - EMBO J. 2000 Jul 3;19(13):3159-67
– reference: 16618759 - Cancer Res. 2006 Apr 15;66(8):4339-48
– reference: 24019075 - Chembiochem. 2013 Nov 4;14(16):2100-5
– reference: 11313494 - Science. 2001 Apr 20;292(5516):498-500
SSID ssj0043689
Score 2.3932047
Snippet Covalent bonds can be generated within and between proteins by an unnatural amino acid (Uaa) reacting with a natural residue through proximity-enabled...
SourceID proquest
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 1956
SubjectTerms Amino Acyl-tRNA Synthetases - genetics
Amino Acyl-tRNA Synthetases - metabolism
Cross-Linking Reagents - chemistry
Cysteine - chemistry
Histidine - chemistry
Histidine - genetics
Humans
Lysine - chemistry
Lysine - genetics
Methanosarcina - genetics
Methanosarcina - metabolism
Myoglobin - genetics
Myoglobin - metabolism
Protein Binding
Protein Conformation
Protein Engineering - methods
Receptor, ErbB-2 - chemistry
Receptor, ErbB-2 - metabolism
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
Title Genetically Encoding an Electrophilic Amino Acid for Protein Stapling and Covalent Binding to Native Receptors
URI http://dx.doi.org/10.1021/cb500453a
https://www.ncbi.nlm.nih.gov/pubmed/25010185
https://www.proquest.com/docview/1563986946
Volume 9
WOSCitedRecordID wos000342121200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMdPpSDBwvtRHpURrIE2iRN7LFUrBog6AOoWOWcjRQKn6gOJhc_OOWkQSwVLpjiKzo7v57vc_wCusYtE9X7scY6BF0YcPSWU9mSAIjOhVGEZ0315iJNEjMdy1ICrFRl8v3uLGXfcERAErftRHLn-DMnXTb3dOgV1WYqi8tAT5Oxr-aDfQ53rwdlqiCydyXDnX6-xC9tLVmS9anL3oGHsPmz26xZtB2CdaHQZjH77ZAOLhXNETFk2qJrbTFy0BFnvPbcF62GuGSEqGzlphtwy4kxXjusGaNYvaMmRA2J3eVnnwuYFS0pRcEZkaSauKc8hPA8HT_17b9lAwVPkc-aekT73JZpX1LTn-UpqFaIRr9JooQKlif6yjtRh3EEUghujOM-QjozaCJkRGB1B0xbWnADrBFmgojhTIlKuGDVTOjAmogONEpz72II2WThdfgCztMxt-930x2wtuKyNn5KVXFpCWVMs6FZOlCQiGUYtOK5mJZ1UUhspAZqTFOOnfz3-DLYIZUL3J0dXnkNzPl2YC9jAj3k-m7ZhLR4Luiajx3a5er4B6ii8HQ
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEMeDVKFefD_qM4LX1e5usk2OtVQU6-KhSm9LdhJhQbOluxW8-NmdpK16EfG-CWHymN8kO_8h5BxCQKqPOgHnEAcs4RAooXQgYxC5YVIxf6f7NOikqRiN5MNcJsflwuAgKuyp8o_43-oC4SXk3OFHjCy0zBMWukAr_bhYnLpOSF16bVTOAoE-f6Ei9LOp80BQ_c6S3qdcr_9nNBtkbU6OtDub6k2yZOwWafYWBdu2iXUS0v5q-uWd9i2Uzi1RZWl_Vupm7O5OgHZfC1vSLhSaIrDSByfUUFiK1OmSc10DTXslLkB0R_Sq8FkvtC5p6iXCKXKmGbsSPTvk8bo_7N0E83IKgUIPVAdGRjySYJ5B4wkYKakVAyOepdFCxUojC-ZtqVmnDSAEN0ZxngMGkNoImSMm7ZKGLa3ZJ7Qd57FKOrkSiXKpqbnSsTEJhjdKcB5Bi5yg1bL5dqgy_9IdhdmX2VrkbDEHGVrJPVIoa8opfsqRmUQiWdIie7PJycYz4Y0Mcc0JjPGDv7o_Jc2b4f0gG9ymd4dkFSGHuX88QnlEGvVkao7JCrzVRTU58YvoE4jswpE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEMeDqKgX34_6jOB1td3dbJNjrS2KUnpQ8bZkJyksaHbptoIXP7sz6Va8iHjfhJDX_Gay8x_GLqAFSPVhOxACoiBOBARaahOoCGRmY6VjH9N9fmgPBvLlRQ1rR5FyYXAQFfZU-Ud8OtWlGdUKA60ryAQhSIQ8tCQSPOJU6PLzcn7zkpi68vqoIg4k2v25ktDPpmSFoPqdJ71d6W_8d0SbbL0mSN6ZLfkWW7Bum61254XbdpgjKWkfon794D0HBZknrh3vzUrelBRDAd55y13BO5AbjuDKhyTYkDuO9ElJutTA8G6BGxHNEr_OffYLnxR84KXCOfKmLalUzy576vceu7dBXVYh0GiJJoFVoQgV2BEYvAlDrYyOwcqRskbqSBtkwqypTNxuAkgprNVCZICOpLFSZYhLe2zRFc4eMN6Mskgn7UzLRFOKaqZNZG2Cbo6WQoTQYKc4c2l9LKrUv3iHrfR72hrsfL4OKc4SPVZoZ4spfiqQnWSi4qTB9mcLlJYzAY4UsY2ExsThX92fsZXhTT99uBvcH7E1ZJ2YfvVoqWO2OBlP7QlbhvdJXo1P_T76AgvGxRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetically+Encoding+an+Electrophilic+Amino+Acid+for+Protein+Stapling+and+Covalent+Binding+to+Native+Receptors&rft.jtitle=ACS+chemical+biology&rft.au=Chen%2C+Xiao-Hua&rft.au=Xiang%2C+Zheng&rft.au=Hu%2C+Ying+S&rft.au=Lacey%2C+Vanessa+K&rft.date=2014-09-19&rft.pub=American+Chemical+Society&rft.issn=1554-8929&rft.eissn=1554-8937&rft.volume=9&rft.issue=9&rft.spage=1956&rft.epage=1961&rft_id=info:doi/10.1021%2Fcb500453a&rft.externalDocID=a229505534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-8929&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-8929&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-8929&client=summon