Performance and Cost Assessment of Machine Learning Interatomic Potentials

Machine learning of the quantitative relationship between local environment descriptors and the potential energy surface of a system of atoms has emerged as a new frontier in the development of interatomic potentials (IAPs). Here, we present a comprehensive evaluation of machine learning IAPs (ML-IA...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Ročník 124; číslo 4; s. 731
Hlavní autoři: Zuo, Yunxing, Chen, Chi, Li, Xiangguo, Deng, Zhi, Chen, Yiming, Behler, Jörg, Csányi, Gábor, Shapeev, Alexander V, Thompson, Aidan P, Wood, Mitchell A, Ong, Shyue Ping
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 30.01.2020
ISSN:1520-5215, 1520-5215
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Machine learning of the quantitative relationship between local environment descriptors and the potential energy surface of a system of atoms has emerged as a new frontier in the development of interatomic potentials (IAPs). Here, we present a comprehensive evaluation of machine learning IAPs (ML-IAPs) based on four local environment descriptors-atom-centered symmetry functions (ACSF), smooth overlap of atomic positions (SOAP), the spectral neighbor analysis potential (SNAP) bispectrum components, and moment tensors-using a diverse data set generated using high-throughput density functional theory (DFT) calculations. The data set comprising bcc (Li, Mo) and fcc (Cu, Ni) metals and diamond group IV semiconductors (Si, Ge) is chosen to span a range of crystal structures and bonding. All descriptors studied show excellent performance in predicting energies and forces far surpassing that of classical IAPs, as well as predicting properties such as elastic constants and phonon dispersion curves. We observe a general trade-off between accuracy and the degrees of freedom of each model and, consequently, computational cost. We will discuss these trade-offs in the context of model selection for molecular dynamics and other applications.
AbstractList Machine learning of the quantitative relationship between local environment descriptors and the potential energy surface of a system of atoms has emerged as a new frontier in the development of interatomic potentials (IAPs). Here, we present a comprehensive evaluation of machine learning IAPs (ML-IAPs) based on four local environment descriptors-atom-centered symmetry functions (ACSF), smooth overlap of atomic positions (SOAP), the spectral neighbor analysis potential (SNAP) bispectrum components, and moment tensors-using a diverse data set generated using high-throughput density functional theory (DFT) calculations. The data set comprising bcc (Li, Mo) and fcc (Cu, Ni) metals and diamond group IV semiconductors (Si, Ge) is chosen to span a range of crystal structures and bonding. All descriptors studied show excellent performance in predicting energies and forces far surpassing that of classical IAPs, as well as predicting properties such as elastic constants and phonon dispersion curves. We observe a general trade-off between accuracy and the degrees of freedom of each model and, consequently, computational cost. We will discuss these trade-offs in the context of model selection for molecular dynamics and other applications.
Machine learning of the quantitative relationship between local environment descriptors and the potential energy surface of a system of atoms has emerged as a new frontier in the development of interatomic potentials (IAPs). Here, we present a comprehensive evaluation of machine learning IAPs (ML-IAPs) based on four local environment descriptors-atom-centered symmetry functions (ACSF), smooth overlap of atomic positions (SOAP), the spectral neighbor analysis potential (SNAP) bispectrum components, and moment tensors-using a diverse data set generated using high-throughput density functional theory (DFT) calculations. The data set comprising bcc (Li, Mo) and fcc (Cu, Ni) metals and diamond group IV semiconductors (Si, Ge) is chosen to span a range of crystal structures and bonding. All descriptors studied show excellent performance in predicting energies and forces far surpassing that of classical IAPs, as well as predicting properties such as elastic constants and phonon dispersion curves. We observe a general trade-off between accuracy and the degrees of freedom of each model and, consequently, computational cost. We will discuss these trade-offs in the context of model selection for molecular dynamics and other applications.Machine learning of the quantitative relationship between local environment descriptors and the potential energy surface of a system of atoms has emerged as a new frontier in the development of interatomic potentials (IAPs). Here, we present a comprehensive evaluation of machine learning IAPs (ML-IAPs) based on four local environment descriptors-atom-centered symmetry functions (ACSF), smooth overlap of atomic positions (SOAP), the spectral neighbor analysis potential (SNAP) bispectrum components, and moment tensors-using a diverse data set generated using high-throughput density functional theory (DFT) calculations. The data set comprising bcc (Li, Mo) and fcc (Cu, Ni) metals and diamond group IV semiconductors (Si, Ge) is chosen to span a range of crystal structures and bonding. All descriptors studied show excellent performance in predicting energies and forces far surpassing that of classical IAPs, as well as predicting properties such as elastic constants and phonon dispersion curves. We observe a general trade-off between accuracy and the degrees of freedom of each model and, consequently, computational cost. We will discuss these trade-offs in the context of model selection for molecular dynamics and other applications.
Author Shapeev, Alexander V
Csányi, Gábor
Thompson, Aidan P
Ong, Shyue Ping
Zuo, Yunxing
Chen, Yiming
Wood, Mitchell A
Chen, Chi
Li, Xiangguo
Deng, Zhi
Behler, Jörg
Author_xml – sequence: 1
  givenname: Yunxing
  orcidid: 0000-0002-2734-7720
  surname: Zuo
  fullname: Zuo, Yunxing
  organization: Department of NanoEngineering , University of California San Diego , 9500 Gilman Drive , Mail Code 0448, La Jolla , California 92093-0448 , United States
– sequence: 2
  givenname: Chi
  orcidid: 0000-0001-8008-7043
  surname: Chen
  fullname: Chen, Chi
  organization: Department of NanoEngineering , University of California San Diego , 9500 Gilman Drive , Mail Code 0448, La Jolla , California 92093-0448 , United States
– sequence: 3
  givenname: Xiangguo
  surname: Li
  fullname: Li, Xiangguo
  organization: Department of NanoEngineering , University of California San Diego , 9500 Gilman Drive , Mail Code 0448, La Jolla , California 92093-0448 , United States
– sequence: 4
  givenname: Zhi
  surname: Deng
  fullname: Deng, Zhi
  organization: Department of NanoEngineering , University of California San Diego , 9500 Gilman Drive , Mail Code 0448, La Jolla , California 92093-0448 , United States
– sequence: 5
  givenname: Yiming
  orcidid: 0000-0002-1501-5550
  surname: Chen
  fullname: Chen, Yiming
  organization: Department of NanoEngineering , University of California San Diego , 9500 Gilman Drive , Mail Code 0448, La Jolla , California 92093-0448 , United States
– sequence: 6
  givenname: Jörg
  orcidid: 0000-0002-1220-1542
  surname: Behler
  fullname: Behler, Jörg
  organization: Institut für Physikalische Chemie, Theoretische Chemie , Universität Göttingen , Tammannstraße 6 , 37077 Göttingen , Germany
– sequence: 7
  givenname: Gábor
  surname: Csányi
  fullname: Csányi, Gábor
  organization: Department of Engineering , University of Cambridge , Trumpington Street , Cambridge , CB2 1PZ , U.K
– sequence: 8
  givenname: Alexander V
  surname: Shapeev
  fullname: Shapeev, Alexander V
  organization: Skolkovo Institute of Science and Technology , Skolkovo Innovation Center, Building 3 , Moscow , 143026 , Russia
– sequence: 9
  givenname: Aidan P
  surname: Thompson
  fullname: Thompson, Aidan P
  organization: Center for Computing Research , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
– sequence: 10
  givenname: Mitchell A
  surname: Wood
  fullname: Wood, Mitchell A
  organization: Center for Computing Research , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
– sequence: 11
  givenname: Shyue Ping
  orcidid: 0000-0001-5726-2587
  surname: Ong
  fullname: Ong, Shyue Ping
  organization: Department of NanoEngineering , University of California San Diego , 9500 Gilman Drive , Mail Code 0448, La Jolla , California 92093-0448 , United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31916773$$D View this record in MEDLINE/PubMed
BookMark eNpNjztPwzAUhS1URB-wMyGPLCnXdhwnY1XxVBEdYI6unWtI1dglTgf-PUUUCZ3hO8OnI50pG4UYiLFLAXMBUtygS_PNzuG8slAaqU7YRGgJmZZCj_71MZumtAEAoWR-xsZKVKIwRk3Y05p6H_sOgyOOoeHLmAa-SIlS6igMPHr-jO6jDcRXhH1owzt_DAP1OMSudXwdh4PW4jads1N_AF0cOWNvd7evy4ds9XL_uFysMsyNGLKmrKDINSoUBkpXelFUyjqjDvGlJ5Te2VxAU0jhjHNoLRjrGvRA4DXIGbv-3d318XNPaai7NjnabjFQ3KdaKqWF0QX8qFdHdW87aupd33bYf9V__-U3eCxgKQ
CitedBy_id crossref_primary_10_1063_5_0251119
crossref_primary_10_1088_2632_2153_abdaf7
crossref_primary_10_1063_5_0135269
crossref_primary_10_1088_0256_307X_37_12_126301
crossref_primary_10_1038_s41524_024_01321_7
crossref_primary_10_3390_ma16083070
crossref_primary_10_1021_acs_jpclett_4c03474
crossref_primary_10_1039_D3MH00125C
crossref_primary_10_3390_membranes12100925
crossref_primary_10_1016_j_commatsci_2021_110364
crossref_primary_10_1063_5_0188905
crossref_primary_10_1016_j_actamat_2025_121306
crossref_primary_10_1016_j_actamat_2024_120199
crossref_primary_10_1063_5_0139611
crossref_primary_10_3390_pr12112407
crossref_primary_10_1063_5_0055035
crossref_primary_10_1039_D3NR00399J
crossref_primary_10_1016_j_cossms_2021_100975
crossref_primary_10_1021_acs_jpclett_5c00952
crossref_primary_10_1039_D4DD00265B
crossref_primary_10_1038_s41467_023_37115_6
crossref_primary_10_1063_5_0088089
crossref_primary_10_1016_j_anucene_2023_110023
crossref_primary_10_1080_00268976_2022_2162456
crossref_primary_10_1002_adma_202102807
crossref_primary_10_1103_PhysRevMaterials_7_103602
crossref_primary_10_1103_PhysRevB_106_054106
crossref_primary_10_1016_j_ijplas_2025_104308
crossref_primary_10_1016_j_matdes_2022_111162
crossref_primary_10_1038_s41524_021_00510_y
crossref_primary_10_1016_j_commatsci_2021_110493
crossref_primary_10_1088_1402_4896_acf533
crossref_primary_10_3762_bjnano_14_48
crossref_primary_10_1088_2515_7639_ada996
crossref_primary_10_1016_j_jnucmat_2024_155040
crossref_primary_10_1088_1361_651X_ad585f
crossref_primary_10_1007_s10853_023_08672_4
crossref_primary_10_1016_j_jcp_2024_113073
crossref_primary_10_1088_1361_651X_ad2d68
crossref_primary_10_1061_JENMDT_EMENG_6831
crossref_primary_10_1038_s41524_022_00847_y
crossref_primary_10_3390_e24081134
crossref_primary_10_1002_jcc_27487
crossref_primary_10_1063_5_0278501
crossref_primary_10_1016_j_mtcomm_2025_112504
crossref_primary_10_1063_5_0280935
crossref_primary_10_1038_s41524_025_01722_2
crossref_primary_10_1088_2632_2153_ad79b5
crossref_primary_10_1038_s41524_023_00964_2
crossref_primary_10_1038_s41524_022_00956_8
crossref_primary_10_1038_s41524_024_01464_7
crossref_primary_10_1038_s41524_020_0339_0
crossref_primary_10_1016_j_jmrt_2025_05_114
crossref_primary_10_1063_5_0216220
crossref_primary_10_1002_adts_202200848
crossref_primary_10_1038_s41524_024_01441_0
crossref_primary_10_1063_5_0173745
crossref_primary_10_1016_j_commatsci_2022_111706
crossref_primary_10_1063_5_0069443
crossref_primary_10_1002_aenm_202202892
crossref_primary_10_1038_s41524_022_00717_7
crossref_primary_10_1088_1361_648X_abe6e1
crossref_primary_10_1111_jace_19934
crossref_primary_10_3390_nano15100769
crossref_primary_10_1016_j_carbon_2022_07_055
crossref_primary_10_3390_ijms25053023
crossref_primary_10_1039_D2MH01279K
crossref_primary_10_1016_j_apsusc_2022_156107
crossref_primary_10_1061__ASCE_EM_1943_7889_0002096
crossref_primary_10_1016_j_jechem_2023_01_003
crossref_primary_10_1016_j_mtcomm_2024_110332
crossref_primary_10_1103_g49f_b1x5
crossref_primary_10_1016_j_msea_2021_141817
crossref_primary_10_1103_PhysRevMaterials_9_053807
crossref_primary_10_1103_PhysRevMaterials_9_053805
crossref_primary_10_1007_s40195_025_01894_2
crossref_primary_10_1016_j_mattod_2021_08_012
crossref_primary_10_1016_j_cossms_2024_101201
crossref_primary_10_1103_PhysRevMaterials_9_063601
crossref_primary_10_1016_j_nanoen_2024_109436
crossref_primary_10_1016_j_carbon_2021_09_007
crossref_primary_10_1016_j_jmrt_2025_05_207
crossref_primary_10_1088_1361_648X_ac6f39
crossref_primary_10_1016_j_jcp_2024_113271
crossref_primary_10_1103_PhysRevMaterials_9_043802
crossref_primary_10_1039_D4NR04364B
crossref_primary_10_1016_j_jpcs_2022_110909
crossref_primary_10_1016_j_jpowsour_2025_236181
crossref_primary_10_1038_s41524_022_00825_4
crossref_primary_10_1016_j_mtphys_2021_100463
crossref_primary_10_1038_s41524_024_01247_0
crossref_primary_10_1063_5_0087042
crossref_primary_10_1134_S0012501622700026
crossref_primary_10_3390_nano13040696
crossref_primary_10_1016_j_commatsci_2024_113155
crossref_primary_10_1016_j_commatsci_2021_110581
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123307
crossref_primary_10_1073_pnas_2322962121
crossref_primary_10_1016_j_cjche_2020_10_044
crossref_primary_10_1103_PhysRevLett_126_156002
crossref_primary_10_1038_s41524_024_01259_w
crossref_primary_10_1002_qua_27389
crossref_primary_10_1016_j_molliq_2024_125402
crossref_primary_10_1038_s41524_025_01754_8
crossref_primary_10_1002_smtd_202301415
crossref_primary_10_1088_1361_651X_ad93ec
crossref_primary_10_1515_jnma_2024_0025
crossref_primary_10_1038_s41524_024_01333_3
crossref_primary_10_1063_5_0253010
crossref_primary_10_1557_s43578_023_01239_8
crossref_primary_10_1093_nsr_nwad128
crossref_primary_10_1557_s43579_022_00221_5
crossref_primary_10_1016_j_carbon_2023_118314
crossref_primary_10_1039_D4CP00535J
crossref_primary_10_1080_08927022_2022_2156561
crossref_primary_10_3390_nano12213891
crossref_primary_10_1016_j_actamat_2025_121390
crossref_primary_10_1557_s43577_025_00911_0
crossref_primary_10_1088_1367_2630_abc392
crossref_primary_10_1557_s43577_023_00575_8
crossref_primary_10_1016_j_saa_2021_119864
crossref_primary_10_1515_pac_2025_0500
crossref_primary_10_1002_adfm_202418802
crossref_primary_10_1063_5_0096645
crossref_primary_10_1016_j_molliq_2022_120803
crossref_primary_10_1038_s41529_024_00536_9
crossref_primary_10_1016_j_commatsci_2023_112284
crossref_primary_10_1007_s40843_024_3114_4
crossref_primary_10_1016_j_jmrt_2025_08_046
crossref_primary_10_1016_j_jnucmat_2022_154029
crossref_primary_10_1021_acsami_4c16856
crossref_primary_10_1063_5_0218705
crossref_primary_10_1038_s41524_022_00856_x
crossref_primary_10_1088_1674_1056_acd5c2
crossref_primary_10_1016_j_actamat_2022_117988
crossref_primary_10_1038_s41929_025_01398_3
crossref_primary_10_3390_cryst13050756
crossref_primary_10_1039_D1SC01825F
crossref_primary_10_1063_5_0214588
crossref_primary_10_1103_PhysRevApplied_19_024058
crossref_primary_10_1002_adts_202301171
crossref_primary_10_1038_s41524_021_00508_6
crossref_primary_10_1146_annurev_matsci_100520_015716
crossref_primary_10_1021_jacs_2c07482
crossref_primary_10_1063_5_0013208
crossref_primary_10_1021_acs_jcim_5c01262
crossref_primary_10_1021_acs_jcim_5c00293
crossref_primary_10_1073_pnas_2414074122
crossref_primary_10_1016_j_mtener_2025_102059
crossref_primary_10_1016_j_apmt_2020_100685
crossref_primary_10_1007_s42823_025_00867_w
crossref_primary_10_1016_j_molliq_2022_118979
crossref_primary_10_1016_j_commatsci_2023_112486
crossref_primary_10_1021_acs_jpclett_4c03179
crossref_primary_10_1038_s41524_024_01252_3
crossref_primary_10_1039_D3NR06133G
crossref_primary_10_1038_s41524_023_01092_7
crossref_primary_10_1016_j_commatsci_2021_110796
crossref_primary_10_1038_s42005_023_01413_8
crossref_primary_10_1016_j_commatsci_2025_113845
crossref_primary_10_1016_j_nxmate_2025_100683
crossref_primary_10_1038_s41586_023_06735_9
crossref_primary_10_1088_2515_7655_abb011
crossref_primary_10_1088_2516_1083_ac1a65
crossref_primary_10_1016_j_commatsci_2021_110960
crossref_primary_10_1088_1361_6528_ad8357
crossref_primary_10_1038_s41524_024_01388_2
crossref_primary_10_1103_PhysRevB_108_125146
crossref_primary_10_1134_S0021364024601155
crossref_primary_10_1016_j_cpc_2025_109730
crossref_primary_10_1038_s41467_021_25134_0
crossref_primary_10_1039_D5CP02189H
crossref_primary_10_1146_annurev_matsci_081420_041617
crossref_primary_10_1016_j_carbon_2020_06_007
crossref_primary_10_1063_5_0180818
crossref_primary_10_3390_met13010169
crossref_primary_10_1063_5_0244175
crossref_primary_10_1038_s41524_021_00617_2
crossref_primary_10_1002_adma_202402369
crossref_primary_10_1038_s41598_021_91068_8
crossref_primary_10_1038_s41524_024_01330_6
crossref_primary_10_1038_s41524_025_01580_y
crossref_primary_10_1016_j_progpolymsci_2024_101874
crossref_primary_10_1088_2515_7639_ad2983
crossref_primary_10_1016_j_commatsci_2023_112057
crossref_primary_10_1007_s00894_024_06084_y
crossref_primary_10_1088_1361_651X_ae0505
crossref_primary_10_1038_s41524_025_01747_7
crossref_primary_10_1016_j_jnucmat_2023_154794
crossref_primary_10_1002_cphc_202200592
crossref_primary_10_1007_s41403_023_00435_6
crossref_primary_10_1007_s44210_025_00054_6
crossref_primary_10_3390_met15010048
crossref_primary_10_1021_acs_jpcc_4c04018
crossref_primary_10_1002_wcms_1645
crossref_primary_10_1021_acs_jpca_5c00391
crossref_primary_10_1016_j_commatsci_2025_113850
crossref_primary_10_1063_5_0155621
crossref_primary_10_1080_15421406_2023_2243691
crossref_primary_10_1016_j_ijmecsci_2025_110471
crossref_primary_10_1007_s44210_025_00065_3
crossref_primary_10_1016_j_commatsci_2021_110752
crossref_primary_10_1063_5_0155618
crossref_primary_10_1088_1741_4326_abe7bd
crossref_primary_10_1016_j_ijplas_2021_103157
crossref_primary_10_1002_anie_202501017
crossref_primary_10_1016_j_ijmecsci_2024_109911
crossref_primary_10_1063_5_0122502
crossref_primary_10_1016_j_nanoen_2020_105716
crossref_primary_10_1002_pssb_202400483
crossref_primary_10_1021_acsnano_5c05553
crossref_primary_10_3390_bioengineering9030090
crossref_primary_10_1039_D3QI02410E
crossref_primary_10_1038_s41467_020_19267_x
crossref_primary_10_1088_1361_651X_adba03
crossref_primary_10_1103_PhysRevMaterials_9_045403
crossref_primary_10_1002_adma_202310455
crossref_primary_10_1038_s41524_023_01134_0
crossref_primary_10_1088_1674_1056_ad01a4
crossref_primary_10_1016_j_commatsci_2025_114063
crossref_primary_10_1557_s43578_023_01152_0
crossref_primary_10_1038_s41524_023_01049_w
crossref_primary_10_1063_5_0142127
crossref_primary_10_1002_adma_202412005
crossref_primary_10_1002_aenm_202403876
crossref_primary_10_1016_j_commatsci_2020_109891
crossref_primary_10_1038_s41524_025_01651_0
crossref_primary_10_1016_j_mser_2021_100642
crossref_primary_10_1038_s43588_020_00002_x
crossref_primary_10_1088_1361_648X_ac2864
crossref_primary_10_1088_2632_2153_ad95db
crossref_primary_10_1103_8w5w_f3kd
crossref_primary_10_1038_s41524_020_00367_7
crossref_primary_10_1038_s41524_023_01123_3
crossref_primary_10_1016_j_pmatsci_2022_101018
crossref_primary_10_1103_PhysRevLett_134_036402
crossref_primary_10_1016_j_actamat_2023_119465
crossref_primary_10_1016_j_actamat_2024_120508
crossref_primary_10_1016_j_apsusc_2021_152094
crossref_primary_10_1016_j_commatsci_2023_112655
crossref_primary_10_1038_s41467_025_63221_8
crossref_primary_10_1039_D2ME00149G
crossref_primary_10_1007_s00340_021_07582_0
crossref_primary_10_1007_s10008_024_05952_0
crossref_primary_10_1088_2632_2153_abc9fe
crossref_primary_10_1088_2632_2153_abc9fd
crossref_primary_10_1038_s41524_024_01207_8
crossref_primary_10_1063_5_0129045
crossref_primary_10_1016_j_actamat_2021_116980
crossref_primary_10_1007_s12666_024_03524_4
crossref_primary_10_1038_s41467_020_19168_z
crossref_primary_10_1088_2752_5724_ac681d
crossref_primary_10_1016_j_actamat_2024_119788
crossref_primary_10_1016_j_commatsci_2023_112526
crossref_primary_10_1038_s41597_023_02200_4
crossref_primary_10_1038_s41557_023_01427_3
crossref_primary_10_1021_jacs_4c01897
crossref_primary_10_1088_2752_5724_acb506
crossref_primary_10_1088_1361_648X_adbba5
crossref_primary_10_3390_molecules28072892
crossref_primary_10_1039_D3NR06468A
crossref_primary_10_1039_D5CS00104H
crossref_primary_10_3390_en15186599
crossref_primary_10_1016_j_actamat_2024_120408
crossref_primary_10_1038_s41524_024_01264_z
crossref_primary_10_1021_acsmaterialslett_5c00093
crossref_primary_10_1016_j_cpc_2020_107679
crossref_primary_10_1063_5_0156682
crossref_primary_10_1016_j_commatsci_2024_113608
crossref_primary_10_1038_s41524_022_00865_w
crossref_primary_10_1134_S0022476624040188
crossref_primary_10_1007_s11431_022_2095_7
crossref_primary_10_1134_S0031918X24602178
crossref_primary_10_1016_j_cpc_2023_108896
crossref_primary_10_1088_1361_648X_ad7086
crossref_primary_10_1038_s43588_022_00349_3
crossref_primary_10_1088_2515_7655_abc7f3
crossref_primary_10_1007_s12598_025_03499_1
crossref_primary_10_1002_qua_26956
crossref_primary_10_1039_D5DD00085H
crossref_primary_10_1088_2632_2153_adfffd
crossref_primary_10_1002_ange_202501017
crossref_primary_10_1038_s41524_024_01251_4
crossref_primary_10_1039_D2CP01560A
crossref_primary_10_3389_fmats_2024_1466793
crossref_primary_10_1103_PhysRevMaterials_7_053804
crossref_primary_10_1007_s00205_022_01809_w
crossref_primary_10_1016_j_cpc_2023_108883
crossref_primary_10_1016_j_jpowsour_2022_232389
crossref_primary_10_1116_6_0004288
crossref_primary_10_1103_PhysRevLett_132_086301
crossref_primary_10_1007_s10853_021_06865_3
crossref_primary_10_1038_s41524_022_00721_x
crossref_primary_10_1111_jace_20128
crossref_primary_10_1016_j_pecs_2023_101084
crossref_primary_10_1103_PhysRevMaterials_7_085601
crossref_primary_10_1557_s43578_022_00783_z
crossref_primary_10_1103_PhysRevMaterials_6_043801
crossref_primary_10_1088_1361_651X_ad9d63
crossref_primary_10_1557_s43577_022_00324_3
crossref_primary_10_1557_s43578_023_01167_7
crossref_primary_10_1088_1674_1056_adc661
crossref_primary_10_1039_D5CP00373C
crossref_primary_10_1016_j_cpc_2020_107583
crossref_primary_10_1038_s41563_024_01919_8
crossref_primary_10_1038_s41598_023_44265_6
crossref_primary_10_1016_j_ces_2021_117224
crossref_primary_10_1063_5_0016005
crossref_primary_10_1038_s41524_023_01046_z
crossref_primary_10_1557_s43580_022_00228_z
crossref_primary_10_1016_j_actamat_2023_119041
crossref_primary_10_1088_2632_2153_abcc44
crossref_primary_10_1063_5_0063534
crossref_primary_10_1002_adfm_202417891
crossref_primary_10_1088_1402_4896_ad37ab
crossref_primary_10_1038_s41598_022_10658_2
crossref_primary_10_1021_acs_jctc_4c01475
crossref_primary_10_1103_PhysRevB_106_L180101
crossref_primary_10_1038_s41524_023_01120_6
crossref_primary_10_1088_2632_2153_ad4ae5
crossref_primary_10_1557_s43578_023_01023_8
crossref_primary_10_1039_D0SC00594K
crossref_primary_10_1038_s41524_024_01227_4
crossref_primary_10_1016_j_commatsci_2021_111180
crossref_primary_10_1038_s41524_024_01205_w
crossref_primary_10_1038_s41467_021_21488_7
crossref_primary_10_1016_j_commatsci_2023_112715
crossref_primary_10_1039_D3MH00314K
crossref_primary_10_1063_5_0158783
crossref_primary_10_1002_aidi_202500031
crossref_primary_10_1515_pac_2022_0202
crossref_primary_10_1002_chem_202401148
crossref_primary_10_1016_j_ijpvp_2021_104514
crossref_primary_10_1016_j_cpc_2021_108171
crossref_primary_10_1002_adfm_202313188
crossref_primary_10_1038_s41524_025_01550_4
crossref_primary_10_1103_vtyl_j1nz
crossref_primary_10_1088_1361_651X_ad5dd2
crossref_primary_10_1103_tszb_gfxr
crossref_primary_10_1016_j_scriptamat_2025_116568
crossref_primary_10_1039_D5TA00982K
crossref_primary_10_1016_j_jallcom_2023_169964
crossref_primary_10_1088_1361_648X_ae0111
crossref_primary_10_1002_mgea_58
crossref_primary_10_1002_aenm_202202279
crossref_primary_10_1016_j_compositesb_2024_111452
crossref_primary_10_1557_s43578_023_01183_7
crossref_primary_10_1038_s43246_024_00603_3
crossref_primary_10_1038_s41578_021_00340_w
crossref_primary_10_1038_s41524_021_00559_9
crossref_primary_10_1038_s41524_022_00696_9
crossref_primary_10_1016_j_molliq_2023_121751
crossref_primary_10_1016_j_ultramic_2022_113644
crossref_primary_10_1073_pnas_2005847117
crossref_primary_10_1080_00268976_2024_2381617
crossref_primary_10_1038_s41524_022_00771_1
crossref_primary_10_1088_1361_651X_adf56d
crossref_primary_10_1016_j_physb_2025_417499
crossref_primary_10_3389_fenrg_2025_1621807
crossref_primary_10_1016_j_commatsci_2024_113074
crossref_primary_10_1038_s41524_025_01742_y
crossref_primary_10_1002_adem_202302043
crossref_primary_10_1016_j_jcp_2024_113102
crossref_primary_10_1063_5_0031249
crossref_primary_10_1134_S0036024424702418
crossref_primary_10_1016_j_cma_2020_113500
crossref_primary_10_1039_D4NR00929K
crossref_primary_10_1016_j_jmst_2024_10_052
crossref_primary_10_1088_2515_7655_abc96f
crossref_primary_10_1039_D5CP00532A
crossref_primary_10_1016_j_commatsci_2022_111660
crossref_primary_10_1016_j_surfin_2023_103442
crossref_primary_10_1063_5_0013826
crossref_primary_10_1007_s40843_024_2851_9
crossref_primary_10_1016_j_rineng_2025_106626
crossref_primary_10_1021_acs_jctc_5c00402
crossref_primary_10_1021_jacs_4c17739
crossref_primary_10_1039_D1SC02136B
crossref_primary_10_1063_5_0262323
crossref_primary_10_1016_j_cis_2024_103312
crossref_primary_10_1016_j_commatsci_2021_111012
crossref_primary_10_1016_j_matchemphys_2023_128053
crossref_primary_10_1134_S0022476624080109
crossref_primary_10_1063_5_0146122
crossref_primary_10_1088_1361_648X_ac7f73
crossref_primary_10_1088_2632_2153_acf115
crossref_primary_10_3389_fenrg_2021_695902
crossref_primary_10_1016_j_commatsci_2023_112624
crossref_primary_10_1016_j_commatsci_2024_112925
crossref_primary_10_1016_j_jechem_2025_08_058
crossref_primary_10_1016_j_mser_2024_100825
crossref_primary_10_1016_j_scriptamat_2022_114803
crossref_primary_10_1039_D4NR02114B
crossref_primary_10_1021_acs_jpcc_5c02777
crossref_primary_10_1063_5_0151833
crossref_primary_10_1038_s41524_023_01053_0
crossref_primary_10_1016_j_commatsci_2021_111028
crossref_primary_10_1140_epjb_s10051_021_00233_5
crossref_primary_10_3390_ceramics7010015
crossref_primary_10_1016_j_actamat_2025_120924
crossref_primary_10_1038_s41578_020_00255_y
crossref_primary_10_1002_adma_202305758
crossref_primary_10_1103_PhysRevResearch_6_013292
crossref_primary_10_1038_s41524_023_01184_4
crossref_primary_10_1016_j_commatsci_2023_112732
crossref_primary_10_1016_j_mtcomm_2025_113871
crossref_primary_10_1088_2632_2153_abfe7c
crossref_primary_10_1021_acs_langmuir_4c04578
crossref_primary_10_1016_j_icheatmasstransfer_2025_109231
crossref_primary_10_1021_acselectrochem_4c00102
crossref_primary_10_1038_s41567_025_02925_6
crossref_primary_10_1038_s41524_025_01599_1
crossref_primary_10_1039_D2SC02980D
crossref_primary_10_1063_5_0206215
crossref_primary_10_1103_q4nm_qyk4
crossref_primary_10_1038_s43246_025_00766_7
crossref_primary_10_1016_j_physb_2025_417281
crossref_primary_10_1038_s41467_024_47422_1
crossref_primary_10_1016_j_jnucmat_2024_155011
crossref_primary_10_1016_j_actamat_2024_119742
crossref_primary_10_1103_PhysRevMaterials_6_063802
crossref_primary_10_1016_j_corsci_2024_112541
crossref_primary_10_1016_j_jcp_2023_112030
crossref_primary_10_1038_s41524_022_00872_x
crossref_primary_10_1063_5_0009550
crossref_primary_10_1016_j_mtphys_2024_101386
crossref_primary_10_1016_j_jnucmat_2024_155016
crossref_primary_10_3390_nano13222938
crossref_primary_10_1038_s41524_024_01390_8
crossref_primary_10_1038_s43588_023_00561_9
crossref_primary_10_1016_j_matdes_2023_112012
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/acs.jpca.9b08723
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5215
ExternalDocumentID 31916773
Genre Journal Article
GroupedDBID ---
-~X
.DC
.K2
123
29L
4.4
53G
55A
5VS
7~N
85S
AABXI
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
NPM
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
~02
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a471t-d890645a3a1708c8f1693bc73737f8fea2fcb410d621c7ccabb07bcdaf0e0f502
IEDL.DBID 7X8
ISICitedReferencesCount 667
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510531200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-5215
IngestDate Fri Jul 11 10:26:34 EDT 2025
Thu Jan 02 22:59:07 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a471t-d890645a3a1708c8f1693bc73737f8fea2fcb410d621c7ccabb07bcdaf0e0f502
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2734-7720
0000-0001-5726-2587
0000-0002-1501-5550
0000-0002-1220-1542
0000-0001-8008-7043
OpenAccessLink https://resolver.sub.uni-goettingen.de/purl?gro-2/73507
PMID 31916773
PQID 2335175600
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2335175600
pubmed_primary_31916773
PublicationCentury 2000
PublicationDate 2020-01-30
PublicationDateYYYYMMDD 2020-01-30
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-30
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
PublicationTitleAlternate J Phys Chem A
PublicationYear 2020
SSID ssj0001324
Score 2.72623
Snippet Machine learning of the quantitative relationship between local environment descriptors and the potential energy surface of a system of atoms has emerged as a...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 731
Title Performance and Cost Assessment of Machine Learning Interatomic Potentials
URI https://www.ncbi.nlm.nih.gov/pubmed/31916773
https://www.proquest.com/docview/2335175600
Volume 124
WOSCitedRecordID wos000510531200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UCnrx_agvVvC67SbZzW5OUopFhJYcFHor-xQFk2qiv9_ZNLUnQZBAboHs7jDffDOz8yF0Qzl1CTWacKM0YYxakgmfEi8zJzNqnWSqEZsQk4mcTrO8TbhVbVvl0ic2jtqWJuTI-3GScIA6wOfb-TsJqlGhutpKaKyjTgKhTLBqMV1NCwem1VSVOVAkgCnelikB1vrKVL3XuVG9TFMpgljRbwFmAzSj3f_-4h7aaUNMPFjYxD5ac8UB2hould0O0UO-ui2AVWHxsKxqPPiZ0YlLj8dNk6XD7fzVZ9ykDoGhv70YnJd1aDICyz1CT6O7x-E9aTUViAIYqomFA0gZV4mKBJVG-jCMRRuRwOOldyr2RrOI2jSOjIDj1ZoKbazy1FHPaXyMNoqycKcIAzPUPNDJTGvmMqZjK6g22mvOQvNcF10vt2kGCwyFCFW48rOarTaqi04Wez2bL4ZrzMAlRKkQydkfvj5H23GgvzSk0C5Qx8O63SXaNF_1S_Vx1RgDvCf5-BuwM7_D
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+and+Cost+Assessment+of+Machine+Learning+Interatomic+Potentials&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Zuo%2C+Yunxing&rft.au=Chen%2C+Chi&rft.au=Li%2C+Xiangguo&rft.au=Deng%2C+Zhi&rft.date=2020-01-30&rft.eissn=1520-5215&rft.volume=124&rft.issue=4&rft.spage=731&rft_id=info:doi/10.1021%2Facs.jpca.9b08723&rft_id=info%3Apmid%2F31916773&rft_id=info%3Apmid%2F31916773&rft.externalDocID=31916773
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-5215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-5215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-5215&client=summon