Observation of Rapid Exciton–Exciton Annihilation in Monolayer Molybdenum Disulfide

Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron–hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton–exciton annihilation, a four-body interaction, in this material. Exciton–exciton ann...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nano letters Ročník 14; číslo 10; s. 5625 - 5629
Hlavní autori: Sun, Dezheng, Rao, Yi, Reider, Georg A, Chen, Gugang, You, Yumeng, Brézin, Louis, Harutyunyan, Avetik R, Heinz, Tony F
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Washington, DC American Chemical Society 08.10.2014
Predmet:
ISSN:1530-6984, 1530-6992, 1530-6992
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron–hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton–exciton annihilation, a four-body interaction, in this material. Exciton–exciton annihilation was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density. The rate of exciton–exciton annihilation was determined to be (4.3 ± 1.1) × 10–2 cm2/s at room temperature.
AbstractList Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron-hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton-exciton annihilation, a four-body interaction, in this material. Exciton-exciton annihilation was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density. The rate of exciton-exciton annihilation was determined to be (4.3 ± 1.1) × 10(-2) cm(2)/s at room temperature.
Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron-hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton-exciton annihilation, a four-body interaction, in this material. Exciton-exciton annihilation was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density. The rate of exciton-exciton annihilation was determined to be (4.3 ± 1.1) × 10(-2) cm(2)/s at room temperature.Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron-hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton-exciton annihilation, a four-body interaction, in this material. Exciton-exciton annihilation was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density. The rate of exciton-exciton annihilation was determined to be (4.3 ± 1.1) × 10(-2) cm(2)/s at room temperature.
Monolayer MoS sub(2) is a direct-gap two-dimensional semiconductor that exhibits strong electron-hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton-exciton annihilation, a four-body interaction, in this material. Exciton-exciton annihilation was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density. The rate of exciton-exciton annihilation was determined to be (4.3 plus or minus 1.1) 10 super(-2) cm super(2)/s at room temperature. Keywords: MoS sub(2); transient absorption spectroscopy; exciton dynamics; exciton-exciton annihilation
Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron–hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton–exciton annihilation, a four-body interaction, in this material. Exciton–exciton annihilation was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density. The rate of exciton–exciton annihilation was determined to be (4.3 ± 1.1) × 10–2 cm2/s at room temperature.
Author Sun, Dezheng
Rao, Yi
Harutyunyan, Avetik R
Heinz, Tony F
Brézin, Louis
Reider, Georg A
Chen, Gugang
You, Yumeng
AuthorAffiliation Department of Chemistry
Columbia University
Laboratoire d’Optique Appliquée, ENSTA, CNRS
Departments of Physics and Electrical Engineering
TU Wien
Temple University
Honda Research Institute USA, Inc
Ecole Polytechnique
Photonics Institute
AuthorAffiliation_xml – name: Departments of Physics and Electrical Engineering
– name: Department of Chemistry
– name: Honda Research Institute USA, Inc
– name: Columbia University
– name: Laboratoire d’Optique Appliquée, ENSTA, CNRS
– name: TU Wien
– name: Ecole Polytechnique
– name: Photonics Institute
– name: Temple University
Author_xml – sequence: 1
  givenname: Dezheng
  surname: Sun
  fullname: Sun, Dezheng
– sequence: 2
  givenname: Yi
  surname: Rao
  fullname: Rao, Yi
– sequence: 3
  givenname: Georg A
  surname: Reider
  fullname: Reider, Georg A
– sequence: 4
  givenname: Gugang
  surname: Chen
  fullname: Chen, Gugang
– sequence: 5
  givenname: Yumeng
  surname: You
  fullname: You, Yumeng
– sequence: 6
  givenname: Louis
  surname: Brézin
  fullname: Brézin, Louis
– sequence: 7
  givenname: Avetik R
  surname: Harutyunyan
  fullname: Harutyunyan, Avetik R
– sequence: 8
  givenname: Tony F
  surname: Heinz
  fullname: Heinz, Tony F
  email: tony.heinz@columbia.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28986395$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/25171389$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1370382$$D View this record in Osti.gov
BookMark eNqF0c1qFTEYBuAgFftjF96ADIJgF8fmZzJJlqWtrVApSLsOXzIZmpKTHJOZ4tn1HrxDr8TYMx5BCq6-d_EkfMm7j3Ziig6hNwR_JJiS4xh4HUrwF2iPcIYXnVJ0Z5tlu4v2S7nHGCvG8Su0SzkRhEm1h26vTXH5AUafYpOG5iusfN-cf7d-TPHn4485NScx-jsfNs7H5kuKKcDa5ZrC2vQuTsvmzJcpDL53r9HLAUJxh_M8QLefzm9OLxdX1xefT0-uFtAKMi6MY4RR3LUt7yVtpRywINBy3gvGekPN0AkAEMYQN1hrpXKScmipVIYq4tgBere5N5XR61JXdfbOphidHTVhAjNJK_qwQaucvk2ujHrpi3UhQHRpKpqIjmJOCWH_px1WHAvJZaVvZzqZpev1Kvsl5LX-87UVvJ8BFAthyBCtL3-dVLJjild3tHE2p1KyG7aEYP27Xr2tt9rjf2x98lMnYwYfnj0xbwG26Ps05Vj7eMb9AtICsUY
CitedBy_id crossref_primary_10_1021_acsnano_5c12402
crossref_primary_10_1021_acs_nanolett_5c01871
crossref_primary_10_1002_pssb_201900223
crossref_primary_10_1038_ncomms9063
crossref_primary_10_1038_s41467_019_13501_x
crossref_primary_10_1088_1361_648X_ac9d7e
crossref_primary_10_1007_s40042_022_00401_5
crossref_primary_10_1038_s41566_019_0349_y
crossref_primary_10_3390_nano13182520
crossref_primary_10_1002_advs_202417209
crossref_primary_10_1103_PhysRevX_8_031073
crossref_primary_10_1038_s41467_024_52341_2
crossref_primary_10_1038_s41699_022_00345_1
crossref_primary_10_3367_UFNe_2017_07_038172
crossref_primary_10_1038_nphys3324
crossref_primary_10_1039_C8NR10110H
crossref_primary_10_3788_COL202422_111901
crossref_primary_10_1038_ncomms11010
crossref_primary_10_1103_PhysRevResearch_2_023322
crossref_primary_10_1039_C8NR04568B
crossref_primary_10_1002_adom_201800420
crossref_primary_10_1002_aelm_202200893
crossref_primary_10_1002_advs_202201875
crossref_primary_10_1038_s41467_021_27418_x
crossref_primary_10_1002_adom_201900398
crossref_primary_10_1039_D2NR00195K
crossref_primary_10_1039_C9RA03769A
crossref_primary_10_1088_1361_6528_abcfec
crossref_primary_10_1038_nnano_2015_227
crossref_primary_10_1088_2053_1583_aae872
crossref_primary_10_1038_s41467_024_53083_x
crossref_primary_10_1088_1674_1056_26_3_034202
crossref_primary_10_1088_2053_1583_3_1_015005
crossref_primary_10_1002_adfm_201604509
crossref_primary_10_1039_D1NR07698A
crossref_primary_10_1039_C6CP07208A
crossref_primary_10_1002_lpor_201800270
crossref_primary_10_1038_s41467_019_09097_x
crossref_primary_10_1088_2053_1583_ab1fb4
crossref_primary_10_1039_D1NR00384D
crossref_primary_10_1007_s12274_022_4087_y
crossref_primary_10_1002_lpor_202000587
crossref_primary_10_1021_acs_jpcc_5c01992
crossref_primary_10_1002_adma_202311568
crossref_primary_10_1063_5_0101951
crossref_primary_10_1515_nanoph_2018_0185
crossref_primary_10_1002_admi_202200431
crossref_primary_10_1088_1361_6528_acb947
crossref_primary_10_1039_C9NR06374A
crossref_primary_10_1063_1_5116263
crossref_primary_10_1039_D4NR00281D
crossref_primary_10_1002_wcms_1441
crossref_primary_10_1038_s41586_023_05846_7
crossref_primary_10_1038_s41566_024_01460_9
crossref_primary_10_1515_nanoph_2020_0034
crossref_primary_10_1088_1361_6528_ab3dc2
crossref_primary_10_1088_1361_6528_ab79ad
crossref_primary_10_1103_PhysRevB_111_075410
crossref_primary_10_1088_1674_1056_acc1d3
crossref_primary_10_1002_smll_202103400
crossref_primary_10_1002_adma_202110568
crossref_primary_10_1246_bcsj_20200026
crossref_primary_10_1063_5_0064795
crossref_primary_10_1002_admt_202200032
crossref_primary_10_1016_j_jcat_2020_12_030
crossref_primary_10_1002_lpor_202200008
crossref_primary_10_1364_JOSAB_33_000C39
crossref_primary_10_1038_natrevmats_2016_55
crossref_primary_10_1038_s41377_020_00347_y
crossref_primary_10_1002_sia_7209
crossref_primary_10_1016_j_mser_2018_04_002
crossref_primary_10_1038_ncomms13906
crossref_primary_10_1038_s41467_021_25164_8
crossref_primary_10_1016_j_optmat_2022_112363
crossref_primary_10_1038_s41377_023_01249_5
crossref_primary_10_1039_C8CC01745J
crossref_primary_10_1134_S0021364020220063
crossref_primary_10_3390_nano10010023
crossref_primary_10_1002_lpor_202000482
crossref_primary_10_1021_jacs_1c08900
crossref_primary_10_1002_adma_201802687
crossref_primary_10_1038_s41598_020_59457_7
crossref_primary_10_1039_C9NH00802K
crossref_primary_10_1039_D2NR00216G
crossref_primary_10_1063_5_0223772
crossref_primary_10_1103_PhysRevB_103_075416
crossref_primary_10_1016_j_micrna_2022_207205
crossref_primary_10_1063_1_5010060
crossref_primary_10_1038_ncomms9831
crossref_primary_10_1088_1361_648X_aba946
crossref_primary_10_3390_nano11030770
crossref_primary_10_1088_2053_1583_aa6ca6
crossref_primary_10_1002_adfm_202107551
crossref_primary_10_1002_lpor_202000233
crossref_primary_10_1016_j_cap_2016_03_023
crossref_primary_10_1103_PhysRevB_103_014309
crossref_primary_10_1088_2053_1583_aa6432
crossref_primary_10_1002_adom_201901567
crossref_primary_10_1021_acs_nanolett_5c01706
crossref_primary_10_1016_j_optmat_2022_111969
crossref_primary_10_1038_s41699_019_0135_1
crossref_primary_10_7566_JPSJ_84_121009
crossref_primary_10_1088_2516_1075_abaaf1
crossref_primary_10_1039_D0NR05897A
crossref_primary_10_1103_PhysRevB_101_041405
crossref_primary_10_1002_lpor_202100594
crossref_primary_10_1038_s41598_018_20810_6
crossref_primary_10_1016_j_apmt_2022_101379
crossref_primary_10_1088_2632_959X_ac87c2
crossref_primary_10_3390_nano12183133
crossref_primary_10_1038_s41467_018_03864_y
crossref_primary_10_1002_lpor_202000029
crossref_primary_10_1016_j_mattod_2019_01_015
crossref_primary_10_1021_acsnano_4c17354
crossref_primary_10_1039_D0NR07954E
crossref_primary_10_1038_s41467_019_14084_3
crossref_primary_10_1038_s41699_022_00299_4
crossref_primary_10_1039_C7CP02510F
crossref_primary_10_1088_2053_1583_aa676f
crossref_primary_10_1103_PhysRevResearch_4_L022042
crossref_primary_10_1016_j_materresbull_2025_113382
crossref_primary_10_1088_1361_6633_adefef
crossref_primary_10_1109_JPROC_2019_2936424
crossref_primary_10_1088_1674_1056_adf61d
crossref_primary_10_1063_1_4995984
crossref_primary_10_1002_smll_201700157
crossref_primary_10_1002_adom_202201874
crossref_primary_10_1016_j_physe_2024_116166
crossref_primary_10_1038_s41467_020_18835_5
crossref_primary_10_1039_D1NR04290D
crossref_primary_10_1364_PRJ_430172
crossref_primary_10_1021_nn505736z
crossref_primary_10_1088_1361_6463_ad30ae
crossref_primary_10_1002_aelm_201700373
crossref_primary_10_1038_ncomms14927
crossref_primary_10_1088_2053_1583_aabea3
crossref_primary_10_1063_1_5088512
crossref_primary_10_1039_C7CP08605A
crossref_primary_10_1038_s41699_017_0019_1
crossref_primary_10_1021_acsanm_5c01100
crossref_primary_10_1038_s41563_023_01678_y
crossref_primary_10_1088_1361_6463_aa9267
crossref_primary_10_1016_j_jlumin_2021_118538
crossref_primary_10_1038_s41467_017_01844_2
crossref_primary_10_1002_adom_202402606
crossref_primary_10_1088_2053_1583_3_4_045008
crossref_primary_10_1038_s41467_024_45554_y
crossref_primary_10_1002_adom_201600352
crossref_primary_10_1039_C5CS00553A
crossref_primary_10_1515_nanoph_2025_0163
crossref_primary_10_1038_s41567_018_0384_5
crossref_primary_10_1134_S1063782618050275
crossref_primary_10_1063_5_0251771
crossref_primary_10_1016_j_pmatsci_2017_06_002
crossref_primary_10_1002_smll_202103938
crossref_primary_10_1038_s41586_021_04360_y
crossref_primary_10_1088_2053_1583_3_3_035011
crossref_primary_10_1016_j_optmat_2022_112224
crossref_primary_10_1039_D0NR01924K
crossref_primary_10_1002_smll_202204317
crossref_primary_10_1039_C9NR03688A
crossref_primary_10_1002_pssb_202400547
crossref_primary_10_1088_1361_648X_ac4dbf
crossref_primary_10_1038_s41377_018_0100_3
crossref_primary_10_1002_adom_202403137
crossref_primary_10_1063_5_0011815
crossref_primary_10_1088_0256_307X_35_12_127801
crossref_primary_10_1103_PhysRevB_111_155111
crossref_primary_10_1038_s41699_025_00557_1
crossref_primary_10_1080_23746149_2022_2120416
crossref_primary_10_1063_1_5037026
crossref_primary_10_1088_2053_1583_aa56f1
crossref_primary_10_1063_1_4975360
crossref_primary_10_1063_5_0060587
crossref_primary_10_1088_2053_1583_4_1_015033
crossref_primary_10_1109_TED_2020_2975623
crossref_primary_10_1002_adfm_201605554
crossref_primary_10_1002_adom_202501955
crossref_primary_10_1063_5_0107665
crossref_primary_10_1002_adma_202309644
crossref_primary_10_1002_smll_201701232
crossref_primary_10_1063_5_0012116
crossref_primary_10_1088_2053_1583_acc342
crossref_primary_10_1002_advs_202102128
crossref_primary_10_1007_s10910_016_0669_9
crossref_primary_10_1364_PRJ_7_000711
crossref_primary_10_1002_smtd_202500435
crossref_primary_10_1016_j_apsusc_2024_159705
crossref_primary_10_1002_adom_201700206
crossref_primary_10_1002_adom_202200103
crossref_primary_10_1007_s40544_022_0639_0
crossref_primary_10_1039_D1NR05590A
crossref_primary_10_1038_s41699_018_0074_2
crossref_primary_10_1103_PhysRevB_104_L201404
crossref_primary_10_1002_lpor_202100654
crossref_primary_10_1038_s41566_022_01080_1
crossref_primary_10_1080_23746149_2020_1734083
crossref_primary_10_1007_s12274_020_2652_9
crossref_primary_10_1039_C9NR00967A
crossref_primary_10_1155_2017_2565703
crossref_primary_10_1016_j_apsusc_2022_154209
crossref_primary_10_1038_s41567_018_0123_y
crossref_primary_10_1103_PhysRevResearch_5_043130
crossref_primary_10_1038_s41467_019_10323_9
crossref_primary_10_1109_JSTQE_2016_2616839
crossref_primary_10_1088_2053_1583_aa8d42
crossref_primary_10_3938_jkps_73_1735
crossref_primary_10_3389_fphy_2021_764122
crossref_primary_10_1002_adma_202204120
crossref_primary_10_1002_admi_201901307
crossref_primary_10_1038_nphoton_2015_104
crossref_primary_10_1002_adma_202107738
crossref_primary_10_1063_1_4948662
crossref_primary_10_1016_j_trechm_2019_07_007
crossref_primary_10_1038_s41467_017_01298_6
crossref_primary_10_1063_1_4947447
crossref_primary_10_1002_adom_202400859
crossref_primary_10_1016_j_mtphys_2021_100506
crossref_primary_10_1021_acsaem_5c00501
crossref_primary_10_1016_j_infrared_2021_103752
crossref_primary_10_1039_D2NR01504H
crossref_primary_10_3390_ma15010389
crossref_primary_10_1039_C9RA07924F
crossref_primary_10_1002_smll_201801483
crossref_primary_10_1103_PhysRevResearch_2_043051
crossref_primary_10_1002_qute_202500413
crossref_primary_10_1002_adma_202204227
crossref_primary_10_1038_s41598_025_92188_1
crossref_primary_10_1093_nsr_nwu078
crossref_primary_10_26599_NR_2025_94907074
crossref_primary_10_1002_pssb_201700259
crossref_primary_10_1007_s40843_021_2032_4
crossref_primary_10_1038_s41467_025_57991_4
crossref_primary_10_1126_science_aar7883
crossref_primary_10_1016_j_jpowsour_2022_232208
crossref_primary_10_1002_adom_201900533
Cites_doi 10.1021/nl403742j
10.1063/1.3614557
10.1021/nn500277y
10.1103/PhysRevLett.112.047401
10.1088/0268-1242/7/11/008
10.1021/nn1003937
10.1103/PhysRevB.86.115409
10.1109/JQE.1986.1073035
10.1103/PhysRevB.85.205302
10.1021/nl903868w
10.1038/nmat3505
10.1038/ncomms2498
10.1103/PhysRevLett.105.136805
10.1103/PhysRevB.88.045318
10.1063/1.108941
10.1103/PhysRevB.89.125427
10.1103/PhysRevB.88.075434
10.1038/nnano.2013.151
10.1038/nnano.2012.96
10.1021/nn405419h
10.1039/C3NR06863C
10.1038/nphys1149
10.1103/PhysRevLett.101.196405
10.1038/nphys2942
10.1038/nnano.2012.193
10.1021/nn303973r
10.1103/PhysRevLett.96.057407
10.1103/PhysRevB.73.115432
10.1103/PhysRevLett.108.196802
10.1103/PhysRevB.86.241201
10.1126/science.287.5455.1011
10.1063/1.3636402
10.1038/nchem.1589
10.1103/PhysRevLett.111.216805
10.1038/ncomms1882
10.1038/nnano.2012.95
10.1021/nn400280c
10.1103/PhysRevB.70.241403
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2014 American Chemical Society
– notice: 2015 INIST-CNRS
CorporateAuthor Energy Frontier Research Centers (EFRC) (United States). Re-Defining Photovoltaic Efficiency Through Molecule Scale Control (RPEMSC)
CorporateAuthor_xml – name: Energy Frontier Research Centers (EFRC) (United States). Re-Defining Photovoltaic Efficiency Through Molecule Scale Control (RPEMSC)
DBID AAYXX
CITATION
IQODW
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
OTOTI
DOI 10.1021/nl5021975
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList PubMed
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1530-6992
EndPage 5629
ExternalDocumentID 1370382
25171389
28986395
10_1021_nl5021975
h20392991
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
4.4
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
53G
AAYOK
AFFNX
IQODW
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ABFRP
OTOTI
ID FETCH-LOGICAL-a471t-be313206445d82488f071a455d733db2bf67aaa7bb1efccc89e825a4289b291e3
IEDL.DBID ACS
ISICitedReferencesCount 501
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343016400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-6984
1530-6992
IngestDate Thu May 18 22:29:03 EDT 2023
Fri Jul 11 07:13:51 EDT 2025
Wed Oct 01 13:54:08 EDT 2025
Mon Jul 21 06:06:34 EDT 2025
Wed Apr 02 07:08:13 EDT 2025
Sat Nov 29 01:49:25 EST 2025
Tue Nov 18 22:31:31 EST 2025
Thu Aug 27 13:42:33 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords MoS2
transient absorption spectroscopy
exciton dynamics
exciton−exciton annihilation
Excitons
Semiconductor materials
Strong interactions
Monolayers
Electron interaction
Molybdenum
Trion
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a471t-be313206445d82488f071a455d733db2bf67aaa7bb1efccc89e825a4289b291e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
SC0001085
PMID 25171389
PQID 1609507858
PQPubID 23479
PageCount 5
ParticipantIDs osti_scitechconnect_1370382
proquest_miscellaneous_1762052113
proquest_miscellaneous_1609507858
pubmed_primary_25171389
pascalfrancis_primary_28986395
crossref_primary_10_1021_nl5021975
crossref_citationtrail_10_1021_nl5021975
acs_journals_10_1021_nl5021975
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2014-10-08
PublicationDateYYYYMMDD 2014-10-08
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-08
  day: 08
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Kumar N. (ref31/cit31) 2014; 6
Cao T. (ref8/cit8) 2012; 3
Haug A. (ref21/cit21) 1992; 7
Jones A. M. (ref11/cit11) 2013; 8
Kumar N. (ref27/cit27) 2014; 89
Mai C. (ref33/cit33) 2013; 14
Qiu D. Y. (ref13/cit13) 2013; 111
Mak K. F. (ref9/cit9) 2012; 7
Lee C. (ref28/cit28) 2010; 4
Xu X. (ref4/cit4) 2014; 10
Klimov V. I. (ref22/cit22) 2000; 287
Cui Q. (ref32/cit32) 2014; 8
Ramasubramaniam A. (ref15/cit15) 2012; 86
Wang Q. (ref34/cit34) 2013; 7
Valkunas L. (ref25/cit25) 2006; 73
Lagarde D. (ref37/cit37) 2014; 112
Butler S. Z. (ref3/cit3) 2013; 7
Fuchs G. (ref19/cit19) 1993; 62
Zeng H. (ref10/cit10) 2012; 7
Cheiwchanchamnangij T. (ref14/cit14) 2012; 85
Sim S. (ref35/cit35) 2013; 88
Lueer L. (ref24/cit24) 2009; 5
Huang L. B. (ref26/cit26) 2006; 96
Berkelbach T. C. (ref12/cit12) 2013; 88
Wang Q. H. (ref1/cit1) 2012; 7
Ross J. S. (ref18/cit18) 2013; 4
Shi H. (ref30/cit30) 2013; 7
Mak K. F. (ref6/cit6) 2010; 105
Korn T. (ref36/cit36) 2011; 99
Mak K. F. (ref29/cit29) 2008; 101
Chhowalla M. (ref2/cit2) 2013; 5
Komsa H.-P. (ref16/cit16) 2012; 86
Splendiani A. (ref5/cit5) 2010; 10
Mak K. F. (ref17/cit17) 2013; 12
Sermage B. (ref20/cit20) 1986; 22
Wang F. (ref23/cit23) 2004; 70
Zhang X. (ref38/cit38) 2014; 1
Brendel M. (ref39/cit39) 2011; 99
Xiao D. (ref7/cit7) 2012; 108
References_xml – volume: 14
  start-page: 202
  year: 2013
  ident: ref33/cit33
  publication-title: Nano Lett.
  doi: 10.1021/nl403742j
– volume: 99
  start-page: 031106
  year: 2011
  ident: ref39/cit39
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3614557
– volume: 8
  start-page: 2970
  year: 2014
  ident: ref32/cit32
  publication-title: ACS Nano
  doi: 10.1021/nn500277y
– volume: 112
  start-page: 047401
  year: 2014
  ident: ref37/cit37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.047401
– volume: 7
  start-page: 1337
  year: 1992
  ident: ref21/cit21
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/7/11/008
– volume: 4
  start-page: 2695
  year: 2010
  ident: ref28/cit28
  publication-title: ACS Nano
  doi: 10.1021/nn1003937
– volume: 86
  start-page: 115409
  year: 2012
  ident: ref15/cit15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.115409
– volume: 22
  start-page: 774
  year: 1986
  ident: ref20/cit20
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.1986.1073035
– volume: 85
  start-page: 205302
  year: 2012
  ident: ref14/cit14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.205302
– volume: 10
  start-page: 1271
  year: 2010
  ident: ref5/cit5
  publication-title: Nano Lett.
  doi: 10.1021/nl903868w
– volume: 12
  start-page: 207
  year: 2013
  ident: ref17/cit17
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3505
– volume: 4
  start-page: 1474
  year: 2013
  ident: ref18/cit18
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2498
– volume: 105
  start-page: 136805
  year: 2010
  ident: ref6/cit6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
– volume: 88
  start-page: 045318
  year: 2013
  ident: ref12/cit12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.045318
– volume: 62
  start-page: 396
  year: 1993
  ident: ref19/cit19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.108941
– volume: 89
  start-page: 125427
  year: 2014
  ident: ref27/cit27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.125427
– volume: 88
  start-page: 075434
  year: 2013
  ident: ref35/cit35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.075434
– volume: 8
  start-page: 634
  year: 2013
  ident: ref11/cit11
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.151
– volume: 7
  start-page: 494
  year: 2012
  ident: ref9/cit9
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.96
– volume: 7
  start-page: 11087
  year: 2013
  ident: ref34/cit34
  publication-title: ACS Nano
  doi: 10.1021/nn405419h
– volume: 6
  start-page: 4915
  year: 2014
  ident: ref31/cit31
  publication-title: Nanoscale
  doi: 10.1039/C3NR06863C
– volume: 5
  start-page: 54
  year: 2009
  ident: ref24/cit24
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1149
– volume: 101
  start-page: 196405
  year: 2008
  ident: ref29/cit29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.196405
– volume: 10
  start-page: 343
  year: 2014
  ident: ref4/cit4
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2942
– volume: 7
  start-page: 699
  year: 2012
  ident: ref1/cit1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 7
  start-page: 1072
  year: 2013
  ident: ref30/cit30
  publication-title: ACS Nano
  doi: 10.1021/nn303973r
– volume: 96
  start-page: 057407
  year: 2006
  ident: ref26/cit26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.057407
– volume: 73
  start-page: 115432
  year: 2006
  ident: ref25/cit25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.115432
– volume: 108
  start-page: 196802
  year: 2012
  ident: ref7/cit7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.196802
– volume: 86
  start-page: 241201
  year: 2012
  ident: ref16/cit16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.241201
– volume: 287
  start-page: 1011
  year: 2000
  ident: ref22/cit22
  publication-title: Science
  doi: 10.1126/science.287.5455.1011
– volume: 99
  start-page: 102109
  year: 2011
  ident: ref36/cit36
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3636402
– volume: 5
  start-page: 263
  year: 2013
  ident: ref2/cit2
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1589
– volume: 1
  start-page: 168
  year: 2014
  ident: ref38/cit38
  publication-title: Bull. Am. Phys. Soc.
– volume: 111
  start-page: 216805
  year: 2013
  ident: ref13/cit13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.216805
– volume: 3
  start-page: 887
  year: 2012
  ident: ref8/cit8
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1882
– volume: 7
  start-page: 490
  year: 2012
  ident: ref10/cit10
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.95
– volume: 7
  start-page: 2898
  year: 2013
  ident: ref3/cit3
  publication-title: ACS Nano
  doi: 10.1021/nn400280c
– volume: 70
  start-page: 241403
  year: 2004
  ident: ref23/cit23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.241403
SSID ssj0009350
Score 2.6329806
Snippet Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron–hole interactions, leading to the formation of stable excitons and...
Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron-hole interactions, leading to the formation of stable excitons and...
Monolayer MoS sub(2) is a direct-gap two-dimensional semiconductor that exhibits strong electron-hole interactions, leading to the formation of stable excitons...
SourceID osti
proquest
pubmed
pascalfrancis
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5625
SubjectTerms Condensed matter: electronic structure, electrical, magnetic, and optical properties
Density
Electron states
Electron-hole interaction
Exact sciences and technology
Excitation
Excitons
Excitons and related phenomena
Molybdenum disulfide
Monolayers
Physics
Semiconductors
Trions
Title Observation of Rapid Exciton–Exciton Annihilation in Monolayer Molybdenum Disulfide
URI http://dx.doi.org/10.1021/nl5021975
https://www.ncbi.nlm.nih.gov/pubmed/25171389
https://www.proquest.com/docview/1609507858
https://www.proquest.com/docview/1762052113
https://www.osti.gov/biblio/1370382
Volume 14
WOSCitedRecordID wos000343016400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: ACS_美国化学学会期刊(与NSTL共建)
  customDbUrl:
  eissn: 1530-6992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009350
  issn: 1530-6984
  databaseCode: ACS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCbabIftsPcjbRd4j8MuxipLjqVj0LXYqRu2FcjN0MuogUAp6qTobvsP-4f7Jf1kO2kLtN1OlgHKlknR_GjSJNGHXHLDlFPprrYyFUL4VFlhUgZbhDPLRSXaZhPF4aGcTtW3DXp_SwQ_Y5_CLMdBFfkm3csAb-M2nuz9uKysy9s2rNBc-EFKilX5oKtTo-mxzTXTM5hDhWImpG7AjKrrYnE7zGzNzcHj_1roE3rUo8lk0on_KW348IweXqkx-JyOvpr1h9dkXiXf9Untkv1zC1UOf3__6UfJJIT6uO4y45I6JFB2eL0A5BjNfhkXU-aTz3WznFW18y_o6GD_596XtO-lkGqYn0VqfKzRCPwhciczaG0FbKFFnruCc2cyU40LrXVhDPOVtVYqD99RwzlRJlPM85c0CPPgX1PixrrwnBuHKwnDPfxQt-v12DM75hDvkEZgdtnrQlO2Ye6MlWv-DOnjSg6l7SuRx4YYs5tI361JT7ryGzcRbUdhlsAMsfCtjRlCdlEyjreZzLCcazJeXwePJoHPMP3tSugldCsGTHTw8yVWHqvxAUPl8g4aWJP4AzTjQ3rV7ZjLO-SsiIHgrX9xZJseAIiJLrdwhwaL06V_Q_ft2aJuTke0WUzlqN31F7Ew990
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZgQaIc-KcshWIQBy4RdWxv7OOqtCqiLAhaqbfIfxGRVt6q2UVw4x14Q56Ez0l2t5UKiFMcyXacGU9mJjP-hpCXUnHLtNfZjnEqE0KETDthMwZdhDvHRSXaYhPFZKJOTvTHHiYnnYXBIhrM1LRB_DW6AHsdpxIXXcir5JqEWk17erz7eQ2wy9tqrBBguENaiSWK0PmhSQO55oIGGswgSSkh0jSgSdUVs_iztdlqnf3b_7PeO-RWb1vScbcZ7pIrId4jN88hDt4nxx_s6jcsnVX0kzmtPd375iDY8dePn32LjmOsv9RdnhytI4XowweGeY7W9Lv1KYGevqmbxbSqfXhAjvf3jnYPsr6yQmagjOaZDQmxEdaIkF7lkOEKloYRUvqCc29zW40KY0xhLQuVc07pAE_SwFXRNtcs8IdkEGcxPCLUj0wROLceMwnLA7xSvxPMKDA34mD2kGyDPGUvGU3ZBr1zVq7oMySvluwoXY9LnspjTC_r-mLV9bQD47is01biaQkLIsHgupQv5OYl4_i2qRzLucDq1Tx4NYVtheHPl7wvIWkpfGJimC2w8oTNB4tKqr_0gW5Jx6EZH5LNbuOsnyBZkcLCj_9FkWfkxsHR-8Py8O3k3RbZgIkmuqzDJ2QwP1uEp-S6-zqvm7PtVgR-AxaU_1s
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVgQagc-KYshWIQBy4RdWxv7OOq7QoEWiqgUm-RvyIirbyrZhfBjf_AP-SX8Jxkt61UQJziSLbjeDyZN_H4DSEvpeKWaa-zPeNUJoQImXbCZgy2CHeOi0q0ySaK6VSdnOij3lFMZ2EwiAY9Ne0mftLqha96hgH2Os4kLrqQV8k1CUOe1vV4_9MZyS5vM7JCieESaSXWTELnmyYr5JoLVmgwhzaloEjTYF6qLqHFnxFna3kmt_93zHfIrR5j0nG3KO6SKyHeIzfPMQ_eJ8cf7OZ3LJ1X9KNZ1J4efnNQ8Pjrx8--RMcx1l_qLl6O1pHiEwBfGDAdpdl361MgPT2om9Wsqn14QI4nh5_332R9hoXMwCgtMxsScyNQiZBe5dDlCojDCCl9wbm3ua1GhTGmsJaFyjmndIBHaeCyaJtrFvhDMojzGB4R6kemCJxbj56E5QHeqd8LZhSYG3EIfUh2MUVlryFN2W5-56zczM-QvFqLpHQ9P3lKkzG7rOqLTdVFR8pxWaWdJNcSSCLR4boUN-SWJeP4xqkcw7kg7k0_eDUF1Ibmz9fyL6FxaRvFxDBfYeSJow_ISqq_1IGNSceiGR-S7W7xnD1BsiJtDz_-14w8IzeODibl-7fTdztkC0hNdMGHT8hgeboKT8l193VZN6e7rRb8BlhhAeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observation+of+Rapid+Exciton%E2%80%93Exciton+Annihilation+in+Monolayer+Molybdenum+Disulfide&rft.jtitle=Nano+letters&rft.au=Sun%2C+Dezheng&rft.au=Rao%2C+Yi&rft.au=Reider%2C+Georg+A&rft.au=Chen%2C+Gugang&rft.date=2014-10-08&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=14&rft.issue=10&rft.spage=5625&rft.epage=5629&rft_id=info:doi/10.1021%2Fnl5021975&rft.externalDocID=h20392991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon