Observation of Rapid Exciton–Exciton Annihilation in Monolayer Molybdenum Disulfide
Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron–hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton–exciton annihilation, a four-body interaction, in this material. Exciton–exciton ann...
Uložené v:
| Vydané v: | Nano letters Ročník 14; číslo 10; s. 5625 - 5629 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Washington, DC
American Chemical Society
08.10.2014
|
| Predmet: | |
| ISSN: | 1530-6984, 1530-6992, 1530-6992 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron–hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton–exciton annihilation, a four-body interaction, in this material. Exciton–exciton annihilation was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density. The rate of exciton–exciton annihilation was determined to be (4.3 ± 1.1) × 10–2 cm2/s at room temperature. |
|---|---|
| AbstractList | Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron-hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton-exciton annihilation, a four-body interaction, in this material. Exciton-exciton annihilation was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density. The rate of exciton-exciton annihilation was determined to be (4.3 ± 1.1) × 10(-2) cm(2)/s at room temperature. Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron-hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton-exciton annihilation, a four-body interaction, in this material. Exciton-exciton annihilation was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density. The rate of exciton-exciton annihilation was determined to be (4.3 ± 1.1) × 10(-2) cm(2)/s at room temperature.Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron-hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton-exciton annihilation, a four-body interaction, in this material. Exciton-exciton annihilation was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density. The rate of exciton-exciton annihilation was determined to be (4.3 ± 1.1) × 10(-2) cm(2)/s at room temperature. Monolayer MoS sub(2) is a direct-gap two-dimensional semiconductor that exhibits strong electron-hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton-exciton annihilation, a four-body interaction, in this material. Exciton-exciton annihilation was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density. The rate of exciton-exciton annihilation was determined to be (4.3 plus or minus 1.1) 10 super(-2) cm super(2)/s at room temperature. Keywords: MoS sub(2); transient absorption spectroscopy; exciton dynamics; exciton-exciton annihilation Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron–hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton–exciton annihilation, a four-body interaction, in this material. Exciton–exciton annihilation was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density. The rate of exciton–exciton annihilation was determined to be (4.3 ± 1.1) × 10–2 cm2/s at room temperature. |
| Author | Sun, Dezheng Rao, Yi Harutyunyan, Avetik R Heinz, Tony F Brézin, Louis Reider, Georg A Chen, Gugang You, Yumeng |
| AuthorAffiliation | Department of Chemistry Columbia University Laboratoire d’Optique Appliquée, ENSTA, CNRS Departments of Physics and Electrical Engineering TU Wien Temple University Honda Research Institute USA, Inc Ecole Polytechnique Photonics Institute |
| AuthorAffiliation_xml | – name: Departments of Physics and Electrical Engineering – name: Department of Chemistry – name: Honda Research Institute USA, Inc – name: Columbia University – name: Laboratoire d’Optique Appliquée, ENSTA, CNRS – name: TU Wien – name: Ecole Polytechnique – name: Photonics Institute – name: Temple University |
| Author_xml | – sequence: 1 givenname: Dezheng surname: Sun fullname: Sun, Dezheng – sequence: 2 givenname: Yi surname: Rao fullname: Rao, Yi – sequence: 3 givenname: Georg A surname: Reider fullname: Reider, Georg A – sequence: 4 givenname: Gugang surname: Chen fullname: Chen, Gugang – sequence: 5 givenname: Yumeng surname: You fullname: You, Yumeng – sequence: 6 givenname: Louis surname: Brézin fullname: Brézin, Louis – sequence: 7 givenname: Avetik R surname: Harutyunyan fullname: Harutyunyan, Avetik R – sequence: 8 givenname: Tony F surname: Heinz fullname: Heinz, Tony F email: tony.heinz@columbia.edu |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28986395$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/25171389$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1370382$$D View this record in Osti.gov |
| BookMark | eNqF0c1qFTEYBuAgFftjF96ADIJgF8fmZzJJlqWtrVApSLsOXzIZmpKTHJOZ4tn1HrxDr8TYMx5BCq6-d_EkfMm7j3Ziig6hNwR_JJiS4xh4HUrwF2iPcIYXnVJ0Z5tlu4v2S7nHGCvG8Su0SzkRhEm1h26vTXH5AUafYpOG5iusfN-cf7d-TPHn4485NScx-jsfNs7H5kuKKcDa5ZrC2vQuTsvmzJcpDL53r9HLAUJxh_M8QLefzm9OLxdX1xefT0-uFtAKMi6MY4RR3LUt7yVtpRywINBy3gvGekPN0AkAEMYQN1hrpXKScmipVIYq4tgBere5N5XR61JXdfbOphidHTVhAjNJK_qwQaucvk2ujHrpi3UhQHRpKpqIjmJOCWH_px1WHAvJZaVvZzqZpev1Kvsl5LX-87UVvJ8BFAthyBCtL3-dVLJjild3tHE2p1KyG7aEYP27Xr2tt9rjf2x98lMnYwYfnj0xbwG26Ps05Vj7eMb9AtICsUY |
| CitedBy_id | crossref_primary_10_1021_acsnano_5c12402 crossref_primary_10_1021_acs_nanolett_5c01871 crossref_primary_10_1002_pssb_201900223 crossref_primary_10_1038_ncomms9063 crossref_primary_10_1038_s41467_019_13501_x crossref_primary_10_1088_1361_648X_ac9d7e crossref_primary_10_1007_s40042_022_00401_5 crossref_primary_10_1038_s41566_019_0349_y crossref_primary_10_3390_nano13182520 crossref_primary_10_1002_advs_202417209 crossref_primary_10_1103_PhysRevX_8_031073 crossref_primary_10_1038_s41467_024_52341_2 crossref_primary_10_1038_s41699_022_00345_1 crossref_primary_10_3367_UFNe_2017_07_038172 crossref_primary_10_1038_nphys3324 crossref_primary_10_1039_C8NR10110H crossref_primary_10_3788_COL202422_111901 crossref_primary_10_1038_ncomms11010 crossref_primary_10_1103_PhysRevResearch_2_023322 crossref_primary_10_1039_C8NR04568B crossref_primary_10_1002_adom_201800420 crossref_primary_10_1002_aelm_202200893 crossref_primary_10_1002_advs_202201875 crossref_primary_10_1038_s41467_021_27418_x crossref_primary_10_1002_adom_201900398 crossref_primary_10_1039_D2NR00195K crossref_primary_10_1039_C9RA03769A crossref_primary_10_1088_1361_6528_abcfec crossref_primary_10_1038_nnano_2015_227 crossref_primary_10_1088_2053_1583_aae872 crossref_primary_10_1038_s41467_024_53083_x crossref_primary_10_1088_1674_1056_26_3_034202 crossref_primary_10_1088_2053_1583_3_1_015005 crossref_primary_10_1002_adfm_201604509 crossref_primary_10_1039_D1NR07698A crossref_primary_10_1039_C6CP07208A crossref_primary_10_1002_lpor_201800270 crossref_primary_10_1038_s41467_019_09097_x crossref_primary_10_1088_2053_1583_ab1fb4 crossref_primary_10_1039_D1NR00384D crossref_primary_10_1007_s12274_022_4087_y crossref_primary_10_1002_lpor_202000587 crossref_primary_10_1021_acs_jpcc_5c01992 crossref_primary_10_1002_adma_202311568 crossref_primary_10_1063_5_0101951 crossref_primary_10_1515_nanoph_2018_0185 crossref_primary_10_1002_admi_202200431 crossref_primary_10_1088_1361_6528_acb947 crossref_primary_10_1039_C9NR06374A crossref_primary_10_1063_1_5116263 crossref_primary_10_1039_D4NR00281D crossref_primary_10_1002_wcms_1441 crossref_primary_10_1038_s41586_023_05846_7 crossref_primary_10_1038_s41566_024_01460_9 crossref_primary_10_1515_nanoph_2020_0034 crossref_primary_10_1088_1361_6528_ab3dc2 crossref_primary_10_1088_1361_6528_ab79ad crossref_primary_10_1103_PhysRevB_111_075410 crossref_primary_10_1088_1674_1056_acc1d3 crossref_primary_10_1002_smll_202103400 crossref_primary_10_1002_adma_202110568 crossref_primary_10_1246_bcsj_20200026 crossref_primary_10_1063_5_0064795 crossref_primary_10_1002_admt_202200032 crossref_primary_10_1016_j_jcat_2020_12_030 crossref_primary_10_1002_lpor_202200008 crossref_primary_10_1364_JOSAB_33_000C39 crossref_primary_10_1038_natrevmats_2016_55 crossref_primary_10_1038_s41377_020_00347_y crossref_primary_10_1002_sia_7209 crossref_primary_10_1016_j_mser_2018_04_002 crossref_primary_10_1038_ncomms13906 crossref_primary_10_1038_s41467_021_25164_8 crossref_primary_10_1016_j_optmat_2022_112363 crossref_primary_10_1038_s41377_023_01249_5 crossref_primary_10_1039_C8CC01745J crossref_primary_10_1134_S0021364020220063 crossref_primary_10_3390_nano10010023 crossref_primary_10_1002_lpor_202000482 crossref_primary_10_1021_jacs_1c08900 crossref_primary_10_1002_adma_201802687 crossref_primary_10_1038_s41598_020_59457_7 crossref_primary_10_1039_C9NH00802K crossref_primary_10_1039_D2NR00216G crossref_primary_10_1063_5_0223772 crossref_primary_10_1103_PhysRevB_103_075416 crossref_primary_10_1016_j_micrna_2022_207205 crossref_primary_10_1063_1_5010060 crossref_primary_10_1038_ncomms9831 crossref_primary_10_1088_1361_648X_aba946 crossref_primary_10_3390_nano11030770 crossref_primary_10_1088_2053_1583_aa6ca6 crossref_primary_10_1002_adfm_202107551 crossref_primary_10_1002_lpor_202000233 crossref_primary_10_1016_j_cap_2016_03_023 crossref_primary_10_1103_PhysRevB_103_014309 crossref_primary_10_1088_2053_1583_aa6432 crossref_primary_10_1002_adom_201901567 crossref_primary_10_1021_acs_nanolett_5c01706 crossref_primary_10_1016_j_optmat_2022_111969 crossref_primary_10_1038_s41699_019_0135_1 crossref_primary_10_7566_JPSJ_84_121009 crossref_primary_10_1088_2516_1075_abaaf1 crossref_primary_10_1039_D0NR05897A crossref_primary_10_1103_PhysRevB_101_041405 crossref_primary_10_1002_lpor_202100594 crossref_primary_10_1038_s41598_018_20810_6 crossref_primary_10_1016_j_apmt_2022_101379 crossref_primary_10_1088_2632_959X_ac87c2 crossref_primary_10_3390_nano12183133 crossref_primary_10_1038_s41467_018_03864_y crossref_primary_10_1002_lpor_202000029 crossref_primary_10_1016_j_mattod_2019_01_015 crossref_primary_10_1021_acsnano_4c17354 crossref_primary_10_1039_D0NR07954E crossref_primary_10_1038_s41467_019_14084_3 crossref_primary_10_1038_s41699_022_00299_4 crossref_primary_10_1039_C7CP02510F crossref_primary_10_1088_2053_1583_aa676f crossref_primary_10_1103_PhysRevResearch_4_L022042 crossref_primary_10_1016_j_materresbull_2025_113382 crossref_primary_10_1088_1361_6633_adefef crossref_primary_10_1109_JPROC_2019_2936424 crossref_primary_10_1088_1674_1056_adf61d crossref_primary_10_1063_1_4995984 crossref_primary_10_1002_smll_201700157 crossref_primary_10_1002_adom_202201874 crossref_primary_10_1016_j_physe_2024_116166 crossref_primary_10_1038_s41467_020_18835_5 crossref_primary_10_1039_D1NR04290D crossref_primary_10_1364_PRJ_430172 crossref_primary_10_1021_nn505736z crossref_primary_10_1088_1361_6463_ad30ae crossref_primary_10_1002_aelm_201700373 crossref_primary_10_1038_ncomms14927 crossref_primary_10_1088_2053_1583_aabea3 crossref_primary_10_1063_1_5088512 crossref_primary_10_1039_C7CP08605A crossref_primary_10_1038_s41699_017_0019_1 crossref_primary_10_1021_acsanm_5c01100 crossref_primary_10_1038_s41563_023_01678_y crossref_primary_10_1088_1361_6463_aa9267 crossref_primary_10_1016_j_jlumin_2021_118538 crossref_primary_10_1038_s41467_017_01844_2 crossref_primary_10_1002_adom_202402606 crossref_primary_10_1088_2053_1583_3_4_045008 crossref_primary_10_1038_s41467_024_45554_y crossref_primary_10_1002_adom_201600352 crossref_primary_10_1039_C5CS00553A crossref_primary_10_1515_nanoph_2025_0163 crossref_primary_10_1038_s41567_018_0384_5 crossref_primary_10_1134_S1063782618050275 crossref_primary_10_1063_5_0251771 crossref_primary_10_1016_j_pmatsci_2017_06_002 crossref_primary_10_1002_smll_202103938 crossref_primary_10_1038_s41586_021_04360_y crossref_primary_10_1088_2053_1583_3_3_035011 crossref_primary_10_1016_j_optmat_2022_112224 crossref_primary_10_1039_D0NR01924K crossref_primary_10_1002_smll_202204317 crossref_primary_10_1039_C9NR03688A crossref_primary_10_1002_pssb_202400547 crossref_primary_10_1088_1361_648X_ac4dbf crossref_primary_10_1038_s41377_018_0100_3 crossref_primary_10_1002_adom_202403137 crossref_primary_10_1063_5_0011815 crossref_primary_10_1088_0256_307X_35_12_127801 crossref_primary_10_1103_PhysRevB_111_155111 crossref_primary_10_1038_s41699_025_00557_1 crossref_primary_10_1080_23746149_2022_2120416 crossref_primary_10_1063_1_5037026 crossref_primary_10_1088_2053_1583_aa56f1 crossref_primary_10_1063_1_4975360 crossref_primary_10_1063_5_0060587 crossref_primary_10_1088_2053_1583_4_1_015033 crossref_primary_10_1109_TED_2020_2975623 crossref_primary_10_1002_adfm_201605554 crossref_primary_10_1002_adom_202501955 crossref_primary_10_1063_5_0107665 crossref_primary_10_1002_adma_202309644 crossref_primary_10_1002_smll_201701232 crossref_primary_10_1063_5_0012116 crossref_primary_10_1088_2053_1583_acc342 crossref_primary_10_1002_advs_202102128 crossref_primary_10_1007_s10910_016_0669_9 crossref_primary_10_1364_PRJ_7_000711 crossref_primary_10_1002_smtd_202500435 crossref_primary_10_1016_j_apsusc_2024_159705 crossref_primary_10_1002_adom_201700206 crossref_primary_10_1002_adom_202200103 crossref_primary_10_1007_s40544_022_0639_0 crossref_primary_10_1039_D1NR05590A crossref_primary_10_1038_s41699_018_0074_2 crossref_primary_10_1103_PhysRevB_104_L201404 crossref_primary_10_1002_lpor_202100654 crossref_primary_10_1038_s41566_022_01080_1 crossref_primary_10_1080_23746149_2020_1734083 crossref_primary_10_1007_s12274_020_2652_9 crossref_primary_10_1039_C9NR00967A crossref_primary_10_1155_2017_2565703 crossref_primary_10_1016_j_apsusc_2022_154209 crossref_primary_10_1038_s41567_018_0123_y crossref_primary_10_1103_PhysRevResearch_5_043130 crossref_primary_10_1038_s41467_019_10323_9 crossref_primary_10_1109_JSTQE_2016_2616839 crossref_primary_10_1088_2053_1583_aa8d42 crossref_primary_10_3938_jkps_73_1735 crossref_primary_10_3389_fphy_2021_764122 crossref_primary_10_1002_adma_202204120 crossref_primary_10_1002_admi_201901307 crossref_primary_10_1038_nphoton_2015_104 crossref_primary_10_1002_adma_202107738 crossref_primary_10_1063_1_4948662 crossref_primary_10_1016_j_trechm_2019_07_007 crossref_primary_10_1038_s41467_017_01298_6 crossref_primary_10_1063_1_4947447 crossref_primary_10_1002_adom_202400859 crossref_primary_10_1016_j_mtphys_2021_100506 crossref_primary_10_1021_acsaem_5c00501 crossref_primary_10_1016_j_infrared_2021_103752 crossref_primary_10_1039_D2NR01504H crossref_primary_10_3390_ma15010389 crossref_primary_10_1039_C9RA07924F crossref_primary_10_1002_smll_201801483 crossref_primary_10_1103_PhysRevResearch_2_043051 crossref_primary_10_1002_qute_202500413 crossref_primary_10_1002_adma_202204227 crossref_primary_10_1038_s41598_025_92188_1 crossref_primary_10_1093_nsr_nwu078 crossref_primary_10_26599_NR_2025_94907074 crossref_primary_10_1002_pssb_201700259 crossref_primary_10_1007_s40843_021_2032_4 crossref_primary_10_1038_s41467_025_57991_4 crossref_primary_10_1126_science_aar7883 crossref_primary_10_1016_j_jpowsour_2022_232208 crossref_primary_10_1002_adom_201900533 |
| Cites_doi | 10.1021/nl403742j 10.1063/1.3614557 10.1021/nn500277y 10.1103/PhysRevLett.112.047401 10.1088/0268-1242/7/11/008 10.1021/nn1003937 10.1103/PhysRevB.86.115409 10.1109/JQE.1986.1073035 10.1103/PhysRevB.85.205302 10.1021/nl903868w 10.1038/nmat3505 10.1038/ncomms2498 10.1103/PhysRevLett.105.136805 10.1103/PhysRevB.88.045318 10.1063/1.108941 10.1103/PhysRevB.89.125427 10.1103/PhysRevB.88.075434 10.1038/nnano.2013.151 10.1038/nnano.2012.96 10.1021/nn405419h 10.1039/C3NR06863C 10.1038/nphys1149 10.1103/PhysRevLett.101.196405 10.1038/nphys2942 10.1038/nnano.2012.193 10.1021/nn303973r 10.1103/PhysRevLett.96.057407 10.1103/PhysRevB.73.115432 10.1103/PhysRevLett.108.196802 10.1103/PhysRevB.86.241201 10.1126/science.287.5455.1011 10.1063/1.3636402 10.1038/nchem.1589 10.1103/PhysRevLett.111.216805 10.1038/ncomms1882 10.1038/nnano.2012.95 10.1021/nn400280c 10.1103/PhysRevB.70.241403 |
| ContentType | Journal Article |
| Copyright | Copyright © 2014 American Chemical Society 2015 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2014 American Chemical Society – notice: 2015 INIST-CNRS |
| CorporateAuthor | Energy Frontier Research Centers (EFRC) (United States). Re-Defining Photovoltaic Efficiency Through Molecule Scale Control (RPEMSC) |
| CorporateAuthor_xml | – name: Energy Frontier Research Centers (EFRC) (United States). Re-Defining Photovoltaic Efficiency Through Molecule Scale Control (RPEMSC) |
| DBID | AAYXX CITATION IQODW NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M OTOTI |
| DOI | 10.1021/nl5021975 |
| DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1530-6992 |
| EndPage | 5629 |
| ExternalDocumentID | 1370382 25171389 28986395 10_1021_nl5021975 h20392991 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | - .K2 123 4.4 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 53G AAYOK AFFNX IQODW NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M ABFRP OTOTI |
| ID | FETCH-LOGICAL-a471t-be313206445d82488f071a455d733db2bf67aaa7bb1efccc89e825a4289b291e3 |
| IEDL.DBID | ACS |
| ISICitedReferencesCount | 501 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343016400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-6984 1530-6992 |
| IngestDate | Thu May 18 22:29:03 EDT 2023 Fri Jul 11 07:13:51 EDT 2025 Wed Oct 01 13:54:08 EDT 2025 Mon Jul 21 06:06:34 EDT 2025 Wed Apr 02 07:08:13 EDT 2025 Sat Nov 29 01:49:25 EST 2025 Tue Nov 18 22:31:31 EST 2025 Thu Aug 27 13:42:33 EDT 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | MoS2 transient absorption spectroscopy exciton dynamics exciton−exciton annihilation Excitons Semiconductor materials Strong interactions Monolayers Electron interaction Molybdenum Trion |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a471t-be313206445d82488f071a455d733db2bf67aaa7bb1efccc89e825a4289b291e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) SC0001085 |
| PMID | 25171389 |
| PQID | 1609507858 |
| PQPubID | 23479 |
| PageCount | 5 |
| ParticipantIDs | osti_scitechconnect_1370382 proquest_miscellaneous_1762052113 proquest_miscellaneous_1609507858 pubmed_primary_25171389 pascalfrancis_primary_28986395 crossref_primary_10_1021_nl5021975 crossref_citationtrail_10_1021_nl5021975 acs_journals_10_1021_nl5021975 |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-10-08 |
| PublicationDateYYYYMMDD | 2014-10-08 |
| PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-08 day: 08 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington, DC |
| PublicationPlace_xml | – name: Washington, DC – name: United States |
| PublicationTitle | Nano letters |
| PublicationTitleAlternate | Nano Lett |
| PublicationYear | 2014 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | Kumar N. (ref31/cit31) 2014; 6 Cao T. (ref8/cit8) 2012; 3 Haug A. (ref21/cit21) 1992; 7 Jones A. M. (ref11/cit11) 2013; 8 Kumar N. (ref27/cit27) 2014; 89 Mai C. (ref33/cit33) 2013; 14 Qiu D. Y. (ref13/cit13) 2013; 111 Mak K. F. (ref9/cit9) 2012; 7 Lee C. (ref28/cit28) 2010; 4 Xu X. (ref4/cit4) 2014; 10 Klimov V. I. (ref22/cit22) 2000; 287 Cui Q. (ref32/cit32) 2014; 8 Ramasubramaniam A. (ref15/cit15) 2012; 86 Wang Q. (ref34/cit34) 2013; 7 Valkunas L. (ref25/cit25) 2006; 73 Lagarde D. (ref37/cit37) 2014; 112 Butler S. Z. (ref3/cit3) 2013; 7 Fuchs G. (ref19/cit19) 1993; 62 Zeng H. (ref10/cit10) 2012; 7 Cheiwchanchamnangij T. (ref14/cit14) 2012; 85 Sim S. (ref35/cit35) 2013; 88 Lueer L. (ref24/cit24) 2009; 5 Huang L. B. (ref26/cit26) 2006; 96 Berkelbach T. C. (ref12/cit12) 2013; 88 Wang Q. H. (ref1/cit1) 2012; 7 Ross J. S. (ref18/cit18) 2013; 4 Shi H. (ref30/cit30) 2013; 7 Mak K. F. (ref6/cit6) 2010; 105 Korn T. (ref36/cit36) 2011; 99 Mak K. F. (ref29/cit29) 2008; 101 Chhowalla M. (ref2/cit2) 2013; 5 Komsa H.-P. (ref16/cit16) 2012; 86 Splendiani A. (ref5/cit5) 2010; 10 Mak K. F. (ref17/cit17) 2013; 12 Sermage B. (ref20/cit20) 1986; 22 Wang F. (ref23/cit23) 2004; 70 Zhang X. (ref38/cit38) 2014; 1 Brendel M. (ref39/cit39) 2011; 99 Xiao D. (ref7/cit7) 2012; 108 |
| References_xml | – volume: 14 start-page: 202 year: 2013 ident: ref33/cit33 publication-title: Nano Lett. doi: 10.1021/nl403742j – volume: 99 start-page: 031106 year: 2011 ident: ref39/cit39 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3614557 – volume: 8 start-page: 2970 year: 2014 ident: ref32/cit32 publication-title: ACS Nano doi: 10.1021/nn500277y – volume: 112 start-page: 047401 year: 2014 ident: ref37/cit37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.047401 – volume: 7 start-page: 1337 year: 1992 ident: ref21/cit21 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/7/11/008 – volume: 4 start-page: 2695 year: 2010 ident: ref28/cit28 publication-title: ACS Nano doi: 10.1021/nn1003937 – volume: 86 start-page: 115409 year: 2012 ident: ref15/cit15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.115409 – volume: 22 start-page: 774 year: 1986 ident: ref20/cit20 publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.1986.1073035 – volume: 85 start-page: 205302 year: 2012 ident: ref14/cit14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.205302 – volume: 10 start-page: 1271 year: 2010 ident: ref5/cit5 publication-title: Nano Lett. doi: 10.1021/nl903868w – volume: 12 start-page: 207 year: 2013 ident: ref17/cit17 publication-title: Nat. Mater. doi: 10.1038/nmat3505 – volume: 4 start-page: 1474 year: 2013 ident: ref18/cit18 publication-title: Nat. Commun. doi: 10.1038/ncomms2498 – volume: 105 start-page: 136805 year: 2010 ident: ref6/cit6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 88 start-page: 045318 year: 2013 ident: ref12/cit12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.045318 – volume: 62 start-page: 396 year: 1993 ident: ref19/cit19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.108941 – volume: 89 start-page: 125427 year: 2014 ident: ref27/cit27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.125427 – volume: 88 start-page: 075434 year: 2013 ident: ref35/cit35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.075434 – volume: 8 start-page: 634 year: 2013 ident: ref11/cit11 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.151 – volume: 7 start-page: 494 year: 2012 ident: ref9/cit9 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.96 – volume: 7 start-page: 11087 year: 2013 ident: ref34/cit34 publication-title: ACS Nano doi: 10.1021/nn405419h – volume: 6 start-page: 4915 year: 2014 ident: ref31/cit31 publication-title: Nanoscale doi: 10.1039/C3NR06863C – volume: 5 start-page: 54 year: 2009 ident: ref24/cit24 publication-title: Nat. Phys. doi: 10.1038/nphys1149 – volume: 101 start-page: 196405 year: 2008 ident: ref29/cit29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.196405 – volume: 10 start-page: 343 year: 2014 ident: ref4/cit4 publication-title: Nat. Phys. doi: 10.1038/nphys2942 – volume: 7 start-page: 699 year: 2012 ident: ref1/cit1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 7 start-page: 1072 year: 2013 ident: ref30/cit30 publication-title: ACS Nano doi: 10.1021/nn303973r – volume: 96 start-page: 057407 year: 2006 ident: ref26/cit26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.057407 – volume: 73 start-page: 115432 year: 2006 ident: ref25/cit25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.115432 – volume: 108 start-page: 196802 year: 2012 ident: ref7/cit7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.196802 – volume: 86 start-page: 241201 year: 2012 ident: ref16/cit16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.241201 – volume: 287 start-page: 1011 year: 2000 ident: ref22/cit22 publication-title: Science doi: 10.1126/science.287.5455.1011 – volume: 99 start-page: 102109 year: 2011 ident: ref36/cit36 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3636402 – volume: 5 start-page: 263 year: 2013 ident: ref2/cit2 publication-title: Nat. Chem. doi: 10.1038/nchem.1589 – volume: 1 start-page: 168 year: 2014 ident: ref38/cit38 publication-title: Bull. Am. Phys. Soc. – volume: 111 start-page: 216805 year: 2013 ident: ref13/cit13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.216805 – volume: 3 start-page: 887 year: 2012 ident: ref8/cit8 publication-title: Nat. Commun. doi: 10.1038/ncomms1882 – volume: 7 start-page: 490 year: 2012 ident: ref10/cit10 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.95 – volume: 7 start-page: 2898 year: 2013 ident: ref3/cit3 publication-title: ACS Nano doi: 10.1021/nn400280c – volume: 70 start-page: 241403 year: 2004 ident: ref23/cit23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.241403 |
| SSID | ssj0009350 |
| Score | 2.6329806 |
| Snippet | Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron–hole interactions, leading to the formation of stable excitons and... Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron-hole interactions, leading to the formation of stable excitons and... Monolayer MoS sub(2) is a direct-gap two-dimensional semiconductor that exhibits strong electron-hole interactions, leading to the formation of stable excitons... |
| SourceID | osti proquest pubmed pascalfrancis crossref acs |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5625 |
| SubjectTerms | Condensed matter: electronic structure, electrical, magnetic, and optical properties Density Electron states Electron-hole interaction Exact sciences and technology Excitation Excitons Excitons and related phenomena Molybdenum disulfide Monolayers Physics Semiconductors Trions |
| Title | Observation of Rapid Exciton–Exciton Annihilation in Monolayer Molybdenum Disulfide |
| URI | http://dx.doi.org/10.1021/nl5021975 https://www.ncbi.nlm.nih.gov/pubmed/25171389 https://www.proquest.com/docview/1609507858 https://www.proquest.com/docview/1762052113 https://www.osti.gov/biblio/1370382 |
| Volume | 14 |
| WOSCitedRecordID | wos000343016400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: ACS_美国化学学会期刊(与NSTL共建) customDbUrl: eissn: 1530-6992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009350 issn: 1530-6984 databaseCode: ACS dateStart: 20010101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCbabIftsPcjbRd4j8MuxipLjqVj0LXYqRu2FcjN0MuogUAp6qTobvsP-4f7Jf1kO2kLtN1OlgHKlknR_GjSJNGHXHLDlFPprrYyFUL4VFlhUgZbhDPLRSXaZhPF4aGcTtW3DXp_SwQ_Y5_CLMdBFfkm3csAb-M2nuz9uKysy9s2rNBc-EFKilX5oKtTo-mxzTXTM5hDhWImpG7AjKrrYnE7zGzNzcHj_1roE3rUo8lk0on_KW348IweXqkx-JyOvpr1h9dkXiXf9Untkv1zC1UOf3__6UfJJIT6uO4y45I6JFB2eL0A5BjNfhkXU-aTz3WznFW18y_o6GD_596XtO-lkGqYn0VqfKzRCPwhciczaG0FbKFFnruCc2cyU40LrXVhDPOVtVYqD99RwzlRJlPM85c0CPPgX1PixrrwnBuHKwnDPfxQt-v12DM75hDvkEZgdtnrQlO2Ye6MlWv-DOnjSg6l7SuRx4YYs5tI361JT7ryGzcRbUdhlsAMsfCtjRlCdlEyjreZzLCcazJeXwePJoHPMP3tSugldCsGTHTw8yVWHqvxAUPl8g4aWJP4AzTjQ3rV7ZjLO-SsiIHgrX9xZJseAIiJLrdwhwaL06V_Q_ft2aJuTke0WUzlqN31F7Ew990 |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZgQaIc-KcshWIQBy4RdWxv7OOqtCqiLAhaqbfIfxGRVt6q2UVw4x14Q56Ez0l2t5UKiFMcyXacGU9mJjP-hpCXUnHLtNfZjnEqE0KETDthMwZdhDvHRSXaYhPFZKJOTvTHHiYnnYXBIhrM1LRB_DW6AHsdpxIXXcir5JqEWk17erz7eQ2wy9tqrBBguENaiSWK0PmhSQO55oIGGswgSSkh0jSgSdUVs_iztdlqnf3b_7PeO-RWb1vScbcZ7pIrId4jN88hDt4nxx_s6jcsnVX0kzmtPd375iDY8dePn32LjmOsv9RdnhytI4XowweGeY7W9Lv1KYGevqmbxbSqfXhAjvf3jnYPsr6yQmagjOaZDQmxEdaIkF7lkOEKloYRUvqCc29zW40KY0xhLQuVc07pAE_SwFXRNtcs8IdkEGcxPCLUj0wROLceMwnLA7xSvxPMKDA34mD2kGyDPGUvGU3ZBr1zVq7oMySvluwoXY9LnspjTC_r-mLV9bQD47is01biaQkLIsHgupQv5OYl4_i2qRzLucDq1Tx4NYVtheHPl7wvIWkpfGJimC2w8oTNB4tKqr_0gW5Jx6EZH5LNbuOsnyBZkcLCj_9FkWfkxsHR-8Py8O3k3RbZgIkmuqzDJ2QwP1uEp-S6-zqvm7PtVgR-AxaU_1s |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVgQagc-KYshWIQBy4RdWxv7OOq7QoEWiqgUm-RvyIirbyrZhfBjf_AP-SX8Jxkt61UQJziSLbjeDyZN_H4DSEvpeKWaa-zPeNUJoQImXbCZgy2CHeOi0q0ySaK6VSdnOij3lFMZ2EwiAY9Ne0mftLqha96hgH2Os4kLrqQV8k1CUOe1vV4_9MZyS5vM7JCieESaSXWTELnmyYr5JoLVmgwhzaloEjTYF6qLqHFnxFna3kmt_93zHfIrR5j0nG3KO6SKyHeIzfPMQ_eJ8cf7OZ3LJ1X9KNZ1J4efnNQ8Pjrx8--RMcx1l_qLl6O1pHiEwBfGDAdpdl361MgPT2om9Wsqn14QI4nh5_332R9hoXMwCgtMxsScyNQiZBe5dDlCojDCCl9wbm3ua1GhTGmsJaFyjmndIBHaeCyaJtrFvhDMojzGB4R6kemCJxbj56E5QHeqd8LZhSYG3EIfUh2MUVlryFN2W5-56zczM-QvFqLpHQ9P3lKkzG7rOqLTdVFR8pxWaWdJNcSSCLR4boUN-SWJeP4xqkcw7kg7k0_eDUF1Ibmz9fyL6FxaRvFxDBfYeSJow_ISqq_1IGNSceiGR-S7W7xnD1BsiJtDz_-14w8IzeODibl-7fTdztkC0hNdMGHT8hgeboKT8l193VZN6e7rRb8BlhhAeQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observation+of+Rapid+Exciton%E2%80%93Exciton+Annihilation+in+Monolayer+Molybdenum+Disulfide&rft.jtitle=Nano+letters&rft.au=Sun%2C+Dezheng&rft.au=Rao%2C+Yi&rft.au=Reider%2C+Georg+A&rft.au=Chen%2C+Gugang&rft.date=2014-10-08&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=14&rft.issue=10&rft.spage=5625&rft.epage=5629&rft_id=info:doi/10.1021%2Fnl5021975&rft.externalDocID=h20392991 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |