ParFit: A Python-Based Object-Oriented Program for Fitting Molecular Mechanics Parameters to ab Initio Data

A newly created object-oriented program for automating the process of fitting molecular-mechanics parameters to ab initio data, termed ParFit, is presented. ParFit uses a hybrid of deterministic and stochastic genetic algorithms. ParFit can simultaneously handle several molecular-mechanics parameter...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of chemical information and modeling Ročník 57; číslo 3; s. 391 - 396
Hlavní autori: Zahariev, Federico, De Silva, Nuwan, Gordon, Mark S, Windus, Theresa L, Pérez García, Marilú
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 27.03.2017
Predmet:
ISSN:1549-960X
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A newly created object-oriented program for automating the process of fitting molecular-mechanics parameters to ab initio data, termed ParFit, is presented. ParFit uses a hybrid of deterministic and stochastic genetic algorithms. ParFit can simultaneously handle several molecular-mechanics parameters in multiple molecules and can also apply symmetric and antisymmetric constraints on the optimized parameters. The simultaneous handling of several molecules enhances the transferability of the fitted parameters. ParFit is written in Python, uses a rich set of standard and nonstandard Python libraries, and can be run in parallel on multicore computer systems. As an example, a series of phosphine oxides, important for metal extraction chemistry, are parametrized using ParFit. ParFit is in an open source program available for free on GitHub ( https://github.com/fzahari/ParFit ).
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1549-960X
DOI:10.1021/acs.jcim.6b00654