Development and Validation of Risk Models to Select Ever-Smokers for CT Lung Cancer Screening
The US Preventive Services Task Force (USPSTF) recommends computed tomography (CT) lung cancer screening for ever-smokers aged 55 to 80 years who have smoked at least 30 pack-years with no more than 15 years since quitting. However, selecting ever-smokers for screening using individualized lung canc...
Saved in:
| Published in: | JAMA : the journal of the American Medical Association Vol. 315; no. 21; p. 2300 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
07.06.2016
|
| Subjects: | |
| ISSN: | 1538-3598, 1538-3598 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The US Preventive Services Task Force (USPSTF) recommends computed tomography (CT) lung cancer screening for ever-smokers aged 55 to 80 years who have smoked at least 30 pack-years with no more than 15 years since quitting. However, selecting ever-smokers for screening using individualized lung cancer risk calculations may be more effective and efficient than current USPSTF recommendations.
Comparison of modeled outcomes from risk-based CT lung-screening strategies vs USPSTF recommendations.
Empirical risk models for lung cancer incidence and death in the absence of CT screening using data on ever-smokers from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO; 1993-2009) control group. Covariates included age; education; sex; race; smoking intensity, duration, and quit-years; body mass index; family history of lung cancer; and self-reported emphysema. Model validation in the chest radiography groups of the PLCO and the National Lung Screening Trial (NLST; 2002-2009), with additional validation of the death model in the National Health Interview Survey (NHIS; 1997-2001), a representative sample of the United States. Models were applied to US ever-smokers aged 50 to 80 years (NHIS 2010-2012) to estimate outcomes of risk-based selection for CT lung screening, assuming screening for all ever-smokers, yield the percent changes in lung cancer detection and death observed in the NLST.
Annual CT lung screening for 3 years beginning at age 50 years.
For model validity: calibration (number of model-predicted cases divided by number of observed cases [estimated/observed]) and discrimination (area under curve [AUC]). For modeled screening outcomes: estimated number of screen-avertable lung cancer deaths and estimated screening effectiveness (number needed to screen [NNS] to prevent 1 lung cancer death).
Lung cancer incidence and death risk models were well calibrated in PLCO and NLST. The lung cancer death model calibrated and discriminated well for US ever-smokers aged 50 to 80 years (NHIS 1997-2001: estimated/observed = 0.94 [95%CI, 0.84-1.05]; AUC, 0.78 [95%CI, 0.76-0.80]). Under USPSTF recommendations, the models estimated 9.0 million US ever-smokers would qualify for lung cancer screening and 46,488 (95% CI, 43,924-49,053) lung cancer deaths were estimated as screen-avertable over 5 years (estimated NNS, 194 [95% CI, 187-201]). In contrast, risk-based selection screening of the same number of ever-smokers (9.0 million) at highest 5-year lung cancer risk (≥1.9%) was estimated to avert 20% more deaths (55,717 [95% CI, 53,033-58,400]) and was estimated to reduce the estimated NNS by 17% (NNS, 162 [95% CI, 157-166]).
Among a cohort of US ever-smokers aged 50 to 80 years, application of a risk-based model for CT screening for lung cancer compared with a model based on USPSTF recommendations was estimated to be associated with a greater number of lung cancer deaths prevented over 5 years, along with a lower NNS to prevent 1 lung cancer death. |
|---|---|
| AbstractList | The US Preventive Services Task Force (USPSTF) recommends computed tomography (CT) lung cancer screening for ever-smokers aged 55 to 80 years who have smoked at least 30 pack-years with no more than 15 years since quitting. However, selecting ever-smokers for screening using individualized lung cancer risk calculations may be more effective and efficient than current USPSTF recommendations.
Comparison of modeled outcomes from risk-based CT lung-screening strategies vs USPSTF recommendations.
Empirical risk models for lung cancer incidence and death in the absence of CT screening using data on ever-smokers from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO; 1993-2009) control group. Covariates included age; education; sex; race; smoking intensity, duration, and quit-years; body mass index; family history of lung cancer; and self-reported emphysema. Model validation in the chest radiography groups of the PLCO and the National Lung Screening Trial (NLST; 2002-2009), with additional validation of the death model in the National Health Interview Survey (NHIS; 1997-2001), a representative sample of the United States. Models were applied to US ever-smokers aged 50 to 80 years (NHIS 2010-2012) to estimate outcomes of risk-based selection for CT lung screening, assuming screening for all ever-smokers, yield the percent changes in lung cancer detection and death observed in the NLST.
Annual CT lung screening for 3 years beginning at age 50 years.
For model validity: calibration (number of model-predicted cases divided by number of observed cases [estimated/observed]) and discrimination (area under curve [AUC]). For modeled screening outcomes: estimated number of screen-avertable lung cancer deaths and estimated screening effectiveness (number needed to screen [NNS] to prevent 1 lung cancer death).
Lung cancer incidence and death risk models were well calibrated in PLCO and NLST. The lung cancer death model calibrated and discriminated well for US ever-smokers aged 50 to 80 years (NHIS 1997-2001: estimated/observed = 0.94 [95%CI, 0.84-1.05]; AUC, 0.78 [95%CI, 0.76-0.80]). Under USPSTF recommendations, the models estimated 9.0 million US ever-smokers would qualify for lung cancer screening and 46,488 (95% CI, 43,924-49,053) lung cancer deaths were estimated as screen-avertable over 5 years (estimated NNS, 194 [95% CI, 187-201]). In contrast, risk-based selection screening of the same number of ever-smokers (9.0 million) at highest 5-year lung cancer risk (≥1.9%) was estimated to avert 20% more deaths (55,717 [95% CI, 53,033-58,400]) and was estimated to reduce the estimated NNS by 17% (NNS, 162 [95% CI, 157-166]).
Among a cohort of US ever-smokers aged 50 to 80 years, application of a risk-based model for CT screening for lung cancer compared with a model based on USPSTF recommendations was estimated to be associated with a greater number of lung cancer deaths prevented over 5 years, along with a lower NNS to prevent 1 lung cancer death. The US Preventive Services Task Force (USPSTF) recommends computed tomography (CT) lung cancer screening for ever-smokers aged 55 to 80 years who have smoked at least 30 pack-years with no more than 15 years since quitting. However, selecting ever-smokers for screening using individualized lung cancer risk calculations may be more effective and efficient than current USPSTF recommendations.IMPORTANCEThe US Preventive Services Task Force (USPSTF) recommends computed tomography (CT) lung cancer screening for ever-smokers aged 55 to 80 years who have smoked at least 30 pack-years with no more than 15 years since quitting. However, selecting ever-smokers for screening using individualized lung cancer risk calculations may be more effective and efficient than current USPSTF recommendations.Comparison of modeled outcomes from risk-based CT lung-screening strategies vs USPSTF recommendations.OBJECTIVEComparison of modeled outcomes from risk-based CT lung-screening strategies vs USPSTF recommendations.Empirical risk models for lung cancer incidence and death in the absence of CT screening using data on ever-smokers from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO; 1993-2009) control group. Covariates included age; education; sex; race; smoking intensity, duration, and quit-years; body mass index; family history of lung cancer; and self-reported emphysema. Model validation in the chest radiography groups of the PLCO and the National Lung Screening Trial (NLST; 2002-2009), with additional validation of the death model in the National Health Interview Survey (NHIS; 1997-2001), a representative sample of the United States. Models were applied to US ever-smokers aged 50 to 80 years (NHIS 2010-2012) to estimate outcomes of risk-based selection for CT lung screening, assuming screening for all ever-smokers, yield the percent changes in lung cancer detection and death observed in the NLST.DESIGN, SETTING, AND PARTICIPANTSEmpirical risk models for lung cancer incidence and death in the absence of CT screening using data on ever-smokers from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO; 1993-2009) control group. Covariates included age; education; sex; race; smoking intensity, duration, and quit-years; body mass index; family history of lung cancer; and self-reported emphysema. Model validation in the chest radiography groups of the PLCO and the National Lung Screening Trial (NLST; 2002-2009), with additional validation of the death model in the National Health Interview Survey (NHIS; 1997-2001), a representative sample of the United States. Models were applied to US ever-smokers aged 50 to 80 years (NHIS 2010-2012) to estimate outcomes of risk-based selection for CT lung screening, assuming screening for all ever-smokers, yield the percent changes in lung cancer detection and death observed in the NLST.Annual CT lung screening for 3 years beginning at age 50 years.EXPOSURESAnnual CT lung screening for 3 years beginning at age 50 years.For model validity: calibration (number of model-predicted cases divided by number of observed cases [estimated/observed]) and discrimination (area under curve [AUC]). For modeled screening outcomes: estimated number of screen-avertable lung cancer deaths and estimated screening effectiveness (number needed to screen [NNS] to prevent 1 lung cancer death).MAIN OUTCOMES AND MEASURESFor model validity: calibration (number of model-predicted cases divided by number of observed cases [estimated/observed]) and discrimination (area under curve [AUC]). For modeled screening outcomes: estimated number of screen-avertable lung cancer deaths and estimated screening effectiveness (number needed to screen [NNS] to prevent 1 lung cancer death).Lung cancer incidence and death risk models were well calibrated in PLCO and NLST. The lung cancer death model calibrated and discriminated well for US ever-smokers aged 50 to 80 years (NHIS 1997-2001: estimated/observed = 0.94 [95%CI, 0.84-1.05]; AUC, 0.78 [95%CI, 0.76-0.80]). Under USPSTF recommendations, the models estimated 9.0 million US ever-smokers would qualify for lung cancer screening and 46,488 (95% CI, 43,924-49,053) lung cancer deaths were estimated as screen-avertable over 5 years (estimated NNS, 194 [95% CI, 187-201]). In contrast, risk-based selection screening of the same number of ever-smokers (9.0 million) at highest 5-year lung cancer risk (≥1.9%) was estimated to avert 20% more deaths (55,717 [95% CI, 53,033-58,400]) and was estimated to reduce the estimated NNS by 17% (NNS, 162 [95% CI, 157-166]).RESULTSLung cancer incidence and death risk models were well calibrated in PLCO and NLST. The lung cancer death model calibrated and discriminated well for US ever-smokers aged 50 to 80 years (NHIS 1997-2001: estimated/observed = 0.94 [95%CI, 0.84-1.05]; AUC, 0.78 [95%CI, 0.76-0.80]). Under USPSTF recommendations, the models estimated 9.0 million US ever-smokers would qualify for lung cancer screening and 46,488 (95% CI, 43,924-49,053) lung cancer deaths were estimated as screen-avertable over 5 years (estimated NNS, 194 [95% CI, 187-201]). In contrast, risk-based selection screening of the same number of ever-smokers (9.0 million) at highest 5-year lung cancer risk (≥1.9%) was estimated to avert 20% more deaths (55,717 [95% CI, 53,033-58,400]) and was estimated to reduce the estimated NNS by 17% (NNS, 162 [95% CI, 157-166]).Among a cohort of US ever-smokers aged 50 to 80 years, application of a risk-based model for CT screening for lung cancer compared with a model based on USPSTF recommendations was estimated to be associated with a greater number of lung cancer deaths prevented over 5 years, along with a lower NNS to prevent 1 lung cancer death.CONCLUSIONS AND RELEVANCEAmong a cohort of US ever-smokers aged 50 to 80 years, application of a risk-based model for CT screening for lung cancer compared with a model based on USPSTF recommendations was estimated to be associated with a greater number of lung cancer deaths prevented over 5 years, along with a lower NNS to prevent 1 lung cancer death. |
| Author | Katki, Hormuzd A Berg, Christine D Chaturvedi, Anil K Cheung, Li C Kovalchik, Stephanie A |
| Author_xml | – sequence: 1 givenname: Hormuzd A surname: Katki fullname: Katki, Hormuzd A organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland – sequence: 2 givenname: Stephanie A surname: Kovalchik fullname: Kovalchik, Stephanie A organization: Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia – sequence: 3 givenname: Christine D surname: Berg fullname: Berg, Christine D organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland3Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine – sequence: 4 givenname: Li C surname: Cheung fullname: Cheung, Li C organization: Information Management Services Inc, Calverton, Maryland – sequence: 5 givenname: Anil K surname: Chaturvedi fullname: Chaturvedi, Anil K organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27179989$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkM9LwzAcxYNM3A-9epQcvXTmR9MkR6mbChPBTW9SsvTb0a1NZtIO_O8dOMF3ee_w4cF7YzRw3gFC15RMKSH0bmtaM2WEZtOMCXGGRlRwlXCh1eBfHqJxjFtyFOXyAg2ZpFJrpUfo8wEO0Ph9C67DxpX4wzR1abraO-wr_FbHHX7xJTQRdx4voQHb4dkBQrJs_Q5CxJUPOF_hRe82ODfOQsBLGwBc7TaX6LwyTYSrk0_Q-3y2yp-Sxevjc36_SEwqSZcoyqTM1hqosimxRGkJVrPSVFwIRSRPBWWpTplhUnMjSqa0IpSxKl1DZQ2boNvf3n3wXz3ErmjraKFpjAPfx-K4VqiMU8qP6M0J7dctlMU-1K0J38XfJewH3G5jQg |
| CitedBy_id | crossref_primary_10_1016_j_jtho_2019_03_014 crossref_primary_10_1038_s41395_018_0069_9 crossref_primary_10_1038_s41467_023_38196_z crossref_primary_10_1097_MCP_0000000000000974 crossref_primary_10_1002_ajim_23572 crossref_primary_10_1097_CEJ_0000000000000652 crossref_primary_10_1001_jama_2024_22537 crossref_primary_10_1093_jrsssa_qnae059 crossref_primary_10_1016_j_canep_2023_102354 crossref_primary_10_1371_journal_pmed_1002277 crossref_primary_10_1016_j_jbi_2023_104525 crossref_primary_10_1016_j_jacr_2018_12_018 crossref_primary_10_1002_ijc_33578 crossref_primary_10_1093_jnci_djac176 crossref_primary_10_1097_QAD_0000000000001819 crossref_primary_10_1183_13993003_00506_2019 crossref_primary_10_1016_j_ejso_2020_02_015 crossref_primary_10_1007_s40471_017_0126_8 crossref_primary_10_20935_AcadMed7509 crossref_primary_10_7326_M19_1263 crossref_primary_10_1016_j_ypmed_2021_106503 crossref_primary_10_1111_biom_13190 crossref_primary_10_1016_j_mcna_2022_07_007 crossref_primary_10_1016_j_jtho_2025_05_022 crossref_primary_10_7326_M23_3166 crossref_primary_10_1007_s10654_023_00975_9 crossref_primary_10_1016_j_jtho_2020_10_127 crossref_primary_10_17650_1726_9784_2025_24_1_34_45 crossref_primary_10_1016_j_mcna_2020_08_002 crossref_primary_10_1038_s41416_021_01278_0 crossref_primary_10_1080_00325481_2023_2265987 crossref_primary_10_1016_j_chest_2024_07_147 crossref_primary_10_1093_jnci_djae148 crossref_primary_10_1016_j_cger_2017_06_008 crossref_primary_10_1001_jamanetworkopen_2020_0409 crossref_primary_10_1097_ot9_0000000000000091 crossref_primary_10_1177_0272989X221082083 crossref_primary_10_1016_j_ccell_2023_03_019 crossref_primary_10_1177_00220345211014795 crossref_primary_10_3390_cancers13215449 crossref_primary_10_1016_S1470_2045_17_30861_6 crossref_primary_10_1016_j_lungcan_2022_07_017 crossref_primary_10_1016_j_cmpb_2022_106660 crossref_primary_10_1093_jnci_djaa211 crossref_primary_10_1371_journal_pone_0179749 crossref_primary_10_1016_j_jtho_2025_05_009 crossref_primary_10_1016_j_amepre_2020_10_014 crossref_primary_10_1093_jncics_pkaf030 crossref_primary_10_1002_cac2_12463 crossref_primary_10_7326_M17_2701 crossref_primary_10_1016_j_diii_2021_01_012 crossref_primary_10_1016_j_jtho_2020_09_010 crossref_primary_10_1183_20734735_0190_2023 crossref_primary_10_1164_rccm_202008_3053ST crossref_primary_10_1097_PPO_0000000000000274 crossref_primary_10_1001_jamanetworkopen_2023_46295 crossref_primary_10_3322_caac_21811 crossref_primary_10_3390_app12041926 crossref_primary_10_1186_s12890_022_01826_1 crossref_primary_10_1093_ntr_ntaa192 crossref_primary_10_1038_s41416_022_01904_5 crossref_primary_10_1016_j_annepidem_2022_10_014 crossref_primary_10_1186_s12885_025_13562_w crossref_primary_10_1093_biomtc_ujad038 crossref_primary_10_7326_M22_2216 crossref_primary_10_1016_S2213_2600_23_00050_4 crossref_primary_10_1016_j_chest_2018_03_021 crossref_primary_10_1136_bmjresp_2020_000811 crossref_primary_10_1038_nrclinonc_2016_101 crossref_primary_10_1016_j_eclinm_2025_103152 crossref_primary_10_1371_journal_pone_0305035 crossref_primary_10_1158_1940_6207_CAPR_18_0500 crossref_primary_10_1016_j_mcna_2017_03_008 crossref_primary_10_1111_eci_13062 crossref_primary_10_1177_0272989X18806497 crossref_primary_10_1093_carcin_bgy047 crossref_primary_10_1136_bmjonc_2024_000560 crossref_primary_10_1183_16000617_0232_2023 crossref_primary_10_1371_journal_pmed_1004287 crossref_primary_10_1016_j_ccm_2020_08_016 crossref_primary_10_1016_j_lungcan_2020_07_007 crossref_primary_10_1007_s00330_020_06727_7 crossref_primary_10_1002_cncr_30409 crossref_primary_10_1038_s41467_024_55035_x crossref_primary_10_3390_cancers12061672 crossref_primary_10_1136_bmjresp_2019_000512 crossref_primary_10_1016_j_jtho_2021_02_003 crossref_primary_10_1007_s10654_020_00657_w crossref_primary_10_1001_jamanetworkopen_2023_46994 crossref_primary_10_1093_jncics_pkz014 crossref_primary_10_1371_journal_pone_0205264 crossref_primary_10_1007_s13187_021_01977_5 crossref_primary_10_1016_j_chest_2020_12_046 crossref_primary_10_1038_ejcn_2017_70 crossref_primary_10_1016_j_ebiom_2018_03_027 crossref_primary_10_1016_j_chest_2019_11_033 crossref_primary_10_1038_s41698_024_00785_6 crossref_primary_10_1158_1940_6207_CAPR_23_0359 crossref_primary_10_1016_j_lungcan_2021_04_005 crossref_primary_10_1007_s10552_018_1092_2 crossref_primary_10_1136_bmjopen_2022_068271 crossref_primary_10_1016_j_jtho_2023_11_002 crossref_primary_10_1016_j_jhazmat_2021_125839 crossref_primary_10_1186_s12885_025_13475_8 crossref_primary_10_3390_cancers14092146 crossref_primary_10_1016_j_bulcan_2022_11_006 crossref_primary_10_1016_j_chest_2021_07_003 crossref_primary_10_1164_rccm_202204_0727OC crossref_primary_10_1002_cncr_70008 crossref_primary_10_1183_16000617_0288_2020 crossref_primary_10_1016_j_thorsurg_2023_03_002 crossref_primary_10_1016_j_chest_2020_05_592 crossref_primary_10_1016_j_jtho_2020_08_006 crossref_primary_10_1055_a_1290_7926 crossref_primary_10_1146_annurev_publhealth_071823_112058 crossref_primary_10_1177_23814683241252786 crossref_primary_10_1038_s41598_024_83875_6 crossref_primary_10_1164_rccm_201708_1678ST crossref_primary_10_1016_j_lanepe_2025_101221 crossref_primary_10_1001_jamanetworkopen_2023_31155 crossref_primary_10_1093_pcmedi_pbz002 crossref_primary_10_1016_j_ccm_2019_10_001 crossref_primary_10_1016_j_ebiom_2023_104443 crossref_primary_10_1016_j_chest_2021_01_070 crossref_primary_10_1164_rccm_201702_0433CI crossref_primary_10_1001_jamanetworkopen_2025_2172 crossref_primary_10_1007_s11912_020_00968_x crossref_primary_10_2105_AJPH_2018_304518 crossref_primary_10_1186_s12885_024_13356_6 crossref_primary_10_1002_cncr_34947 crossref_primary_10_1002_pds_5359 crossref_primary_10_3390_ijerph17238817 crossref_primary_10_1038_s43018_020_00142_z crossref_primary_10_1016_j_canep_2018_10_007 crossref_primary_10_1183_23120541_00221_2019 crossref_primary_10_1016_j_annonc_2022_01_008 crossref_primary_10_1177_0272989X19875966 crossref_primary_10_1513_AnnalsATS_201909_659OC crossref_primary_10_1038_s41395_018_0402_3 crossref_primary_10_3390_healthcare11142085 crossref_primary_10_1183_13993003_03386_2020 crossref_primary_10_1002_ijc_33502 crossref_primary_10_1259_bjr_20170401 crossref_primary_10_1038_s41467_020_17347_6 crossref_primary_10_3390_cancers15174344 crossref_primary_10_1016_j_ccm_2019_10_004 crossref_primary_10_1016_j_jtho_2017_08_001 crossref_primary_10_1136_bmjresp_2016_000166 crossref_primary_10_1016_j_chest_2020_08_2112 crossref_primary_10_1016_S2468_2667_24_00278_0 crossref_primary_10_1016_j_chest_2018_01_016 crossref_primary_10_1016_j_ejca_2025_115570 crossref_primary_10_1002_cncr_34925 crossref_primary_10_1002_cncr_33835 crossref_primary_10_2196_13260 crossref_primary_10_1136_thoraxjnl_2018_212263 crossref_primary_10_1186_s13148_020_00872_y crossref_primary_10_3390_cancers11020212 crossref_primary_10_1038_s41467_025_63471_6 crossref_primary_10_1001_jamanetworkopen_2023_3273 crossref_primary_10_3390_cancers17101651 crossref_primary_10_1186_s40880_018_0305_0 crossref_primary_10_1111_bjd_18524 crossref_primary_10_1183_13993003_01613_2021 crossref_primary_10_1186_s12885_017_3287_4 crossref_primary_10_1002_cncr_34758 crossref_primary_10_1002_cncr_34999 crossref_primary_10_1002_advs_202303753 crossref_primary_10_1002_cam4_71104 crossref_primary_10_1001_jamanetworkopen_2019_0204 crossref_primary_10_1093_aje_kwy227 crossref_primary_10_1146_annurev_med_020917_053556 crossref_primary_10_1109_JBHI_2023_3324191 crossref_primary_10_1371_journal_pone_0195441 crossref_primary_10_1038_s41571_020_00432_6 crossref_primary_10_1513_AnnalsATS_201907_556CME crossref_primary_10_1136_bmjopen_2017_018884 crossref_primary_10_1016_j_ypmed_2016_06_006 crossref_primary_10_1016_j_jtho_2025_01_003 crossref_primary_10_1016_j_jtho_2023_07_019 crossref_primary_10_1093_bjr_tqae234 crossref_primary_10_1158_1078_0432_CCR_24_0637 crossref_primary_10_1002_cncr_35382 crossref_primary_10_1093_jnci_djz041 crossref_primary_10_1002_cam4_5638 crossref_primary_10_1016_j_ctrv_2023_102544 crossref_primary_10_1136_thoraxjnl_2018_212457 crossref_primary_10_1016_j_chest_2021_06_063 crossref_primary_10_1016_j_chest_2021_01_040 crossref_primary_10_3390_ijerph21060781 crossref_primary_10_7326_M17_2561 crossref_primary_10_1080_17476348_2019_1638766 crossref_primary_10_1002_sim_8157 crossref_primary_10_1186_s12890_020_01344_y crossref_primary_10_1016_j_gastha_2025_100737 crossref_primary_10_1016_S1470_2045_19_30411_5 crossref_primary_10_1093_jnci_djw328 crossref_primary_10_1200_JCO_2016_71_3214 crossref_primary_10_2196_26256 crossref_primary_10_1016_j_lanwpc_2025_101575 crossref_primary_10_1093_jnci_djy083 crossref_primary_10_7326_M23_3250 crossref_primary_10_1016_j_rmr_2021_02_003 crossref_primary_10_1093_jamia_ocab174 crossref_primary_10_1161_JAHA_124_037780 crossref_primary_10_1016_j_pmrj_2017_06_005 crossref_primary_10_1016_j_jtcvs_2019_11_141 crossref_primary_10_1093_jnci_djaa013 crossref_primary_10_7326_M18_3617 crossref_primary_10_1001_jamanetworkopen_2021_4509 crossref_primary_10_1097_00130404_201707000_00010 crossref_primary_10_1016_j_lungcan_2022_10_011 crossref_primary_10_1007_s11938_021_00350_1 crossref_primary_10_1016_j_chest_2021_06_066 crossref_primary_10_1016_j_jtho_2021_10_001 crossref_primary_10_1093_jnci_djz164 crossref_primary_10_1093_jnci_djz165 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1001/jama.2016.6255 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1538-3598 |
| ExternalDocumentID | 27179989 |
| Genre | Validation Study Journal Article Research Support, N.I.H., Intramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z99 CA999999 |
| GroupedDBID | --- -ET -~X .55 .XZ 0R~ 0WA 186 18M 29J 2CT 2FS 2KS 2WC 354 39C 4.4 53G 5GY 5RE 6TJ 85S AAIKC AAMNW AAQOH AAQQT AAWTL ABBLC ABCQX ABEHJ ABIVO ABOCM ABPMR ABPPZ ABRSH ABWJO ACAHW ACGFS ACNCT ACPRK ADBBV ADUKH ADXHL AETEA AFCHL AFFNX AFRAH AGHSJ AHMBA ALMA_UNASSIGNED_HOLDINGS AMJDE ANMPU ARBJA BKOMP BRYMA C45 CGR CJ0 CS3 CUY CVF EAM EBD EBS ECM EIF EJD EMOBN EX3 F5P H13 HF~ KOO KQ8 L7B MVM N4W N9A NEJ NPM OBH OCB OGEVE OHH OMK OVD P2P PQQKQ QJJ RAJ RNS S10 SJN SV3 TEORI TN5 UHB UKR UPT VVN WH7 WOW X7M XHN XSW XZL YFH YOC YPV YQT YQY YR2 YR5 YSK YYM YZZ ZCA ~H1 7X8 |
| ID | FETCH-LOGICAL-a470t-812776b9e18c40c0897ec92daf355807345124942a2793a5d28980122f4befca2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 265 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377183100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1538-3598 |
| IngestDate | Fri Sep 05 06:11:40 EDT 2025 Mon Jul 21 06:03:55 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a470t-812776b9e18c40c0897ec92daf355807345124942a2793a5d28980122f4befca2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| OpenAccessLink | https://jamanetwork.com/journals/jama/articlepdf/2522553/joi160054.pdf |
| PMID | 27179989 |
| PQID | 1795863113 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1795863113 pubmed_primary_27179989 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-06-07 |
| PublicationDateYYYYMMDD | 2016-06-07 |
| PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-07 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | JAMA : the journal of the American Medical Association |
| PublicationTitleAlternate | JAMA |
| PublicationYear | 2016 |
| References | 27179674 - JAMA. 2016 Jun 7;315(21):2279-81. doi: 10.1001/jama.2016.5986. |
| References_xml | – reference: 27179674 - JAMA. 2016 Jun 7;315(21):2279-81. doi: 10.1001/jama.2016.5986. |
| SSID | ssj0000137 |
| Score | 2.6143556 |
| Snippet | The US Preventive Services Task Force (USPSTF) recommends computed tomography (CT) lung cancer screening for ever-smokers aged 55 to 80 years who have smoked... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2300 |
| SubjectTerms | Advisory Committees Age Distribution Aged Area Under Curve Cohort Studies Female Humans Lung Neoplasms - diagnosis Lung Neoplasms - mortality Lung Neoplasms - prevention & control Male Mass Screening - statistics & numerical data Middle Aged Models, Statistical Preventive Health Services Risk Sex Distribution Smoking - adverse effects Smoking - epidemiology Time Factors United States - epidemiology |
| Title | Development and Validation of Risk Models to Select Ever-Smokers for CT Lung Cancer Screening |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27179989 https://www.proquest.com/docview/1795863113 |
| Volume | 315 |
| WOSCitedRecordID | wos000377183100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Uinjx_agvVvC6muwm2c1JpLR4sKXYKr1I2OwDSjWpTfX3O5uktBdB8JJbIEy-mfl2Z_g-hG60Mr4vpSDARSUJYuaT1KYBoTbSKdPAYZUuzSZ4rydGo7hfX7gV9VrloiaWhVrnyt2R3wFwQhEx32f300_iXKPcdLW20FhHDQZUxqGaj8SKfFSpmVkmtVOqW4g2LlWH_OgWDgDh7_SybDOd3f9-4B7aqQkmfqgQsY_WTHaAtrr1CP0Qva2sCWGZafwKTLwyVsK5xc_jYoKdQdp7gec5HpQ2ObgNgCeDj3wCZBEDzcWtIX6CMoFbDjQzPFBufQe64BF66bSHrUdSeywQGXBvTqC_cx6lsfGFCjzliZgbFVMtrdNdh_wPQmdPHVBJIZNlqOGA5poatUFqrJL0GG1keWZOEVZUaslsKI0fB5FmaRQzgIjwIhl6jNomul4ELgEMu8GEzEz-VSTL0DXRSRX9ZFqJbSSUO806EZ_94e1ztO1-abnJxS9Qw0IGm0u0qb7n42J2VYIDnr1-9wfD3cM1 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+Validation+of+Risk+Models+to+Select+Ever-Smokers+for+CT+Lung+Cancer+Screening&rft.jtitle=JAMA+%3A+the+journal+of+the+American+Medical+Association&rft.au=Katki%2C+Hormuzd+A&rft.au=Kovalchik%2C+Stephanie+A&rft.au=Berg%2C+Christine+D&rft.au=Cheung%2C+Li+C&rft.date=2016-06-07&rft.issn=1538-3598&rft.eissn=1538-3598&rft.volume=315&rft.issue=21&rft.spage=2300&rft_id=info:doi/10.1001%2Fjama.2016.6255&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-3598&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-3598&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-3598&client=summon |