Development and Validation of Risk Models to Select Ever-Smokers for CT Lung Cancer Screening

The US Preventive Services Task Force (USPSTF) recommends computed tomography (CT) lung cancer screening for ever-smokers aged 55 to 80 years who have smoked at least 30 pack-years with no more than 15 years since quitting. However, selecting ever-smokers for screening using individualized lung canc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:JAMA : the journal of the American Medical Association Ročník 315; číslo 21; s. 2300
Hlavní autoři: Katki, Hormuzd A, Kovalchik, Stephanie A, Berg, Christine D, Cheung, Li C, Chaturvedi, Anil K
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 07.06.2016
Témata:
ISSN:1538-3598, 1538-3598
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The US Preventive Services Task Force (USPSTF) recommends computed tomography (CT) lung cancer screening for ever-smokers aged 55 to 80 years who have smoked at least 30 pack-years with no more than 15 years since quitting. However, selecting ever-smokers for screening using individualized lung cancer risk calculations may be more effective and efficient than current USPSTF recommendations. Comparison of modeled outcomes from risk-based CT lung-screening strategies vs USPSTF recommendations. Empirical risk models for lung cancer incidence and death in the absence of CT screening using data on ever-smokers from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO; 1993-2009) control group. Covariates included age; education; sex; race; smoking intensity, duration, and quit-years; body mass index; family history of lung cancer; and self-reported emphysema. Model validation in the chest radiography groups of the PLCO and the National Lung Screening Trial (NLST; 2002-2009), with additional validation of the death model in the National Health Interview Survey (NHIS; 1997-2001), a representative sample of the United States. Models were applied to US ever-smokers aged 50 to 80 years (NHIS 2010-2012) to estimate outcomes of risk-based selection for CT lung screening, assuming screening for all ever-smokers, yield the percent changes in lung cancer detection and death observed in the NLST. Annual CT lung screening for 3 years beginning at age 50 years. For model validity: calibration (number of model-predicted cases divided by number of observed cases [estimated/observed]) and discrimination (area under curve [AUC]). For modeled screening outcomes: estimated number of screen-avertable lung cancer deaths and estimated screening effectiveness (number needed to screen [NNS] to prevent 1 lung cancer death). Lung cancer incidence and death risk models were well calibrated in PLCO and NLST. The lung cancer death model calibrated and discriminated well for US ever-smokers aged 50 to 80 years (NHIS 1997-2001: estimated/observed = 0.94 [95%CI, 0.84-1.05]; AUC, 0.78 [95%CI, 0.76-0.80]). Under USPSTF recommendations, the models estimated 9.0 million US ever-smokers would qualify for lung cancer screening and 46,488 (95% CI, 43,924-49,053) lung cancer deaths were estimated as screen-avertable over 5 years (estimated NNS, 194 [95% CI, 187-201]). In contrast, risk-based selection screening of the same number of ever-smokers (9.0 million) at highest 5-year lung cancer risk (≥1.9%) was estimated to avert 20% more deaths (55,717 [95% CI, 53,033-58,400]) and was estimated to reduce the estimated NNS by 17% (NNS, 162 [95% CI, 157-166]). Among a cohort of US ever-smokers aged 50 to 80 years, application of a risk-based model for CT screening for lung cancer compared with a model based on USPSTF recommendations was estimated to be associated with a greater number of lung cancer deaths prevented over 5 years, along with a lower NNS to prevent 1 lung cancer death.
AbstractList The US Preventive Services Task Force (USPSTF) recommends computed tomography (CT) lung cancer screening for ever-smokers aged 55 to 80 years who have smoked at least 30 pack-years with no more than 15 years since quitting. However, selecting ever-smokers for screening using individualized lung cancer risk calculations may be more effective and efficient than current USPSTF recommendations. Comparison of modeled outcomes from risk-based CT lung-screening strategies vs USPSTF recommendations. Empirical risk models for lung cancer incidence and death in the absence of CT screening using data on ever-smokers from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO; 1993-2009) control group. Covariates included age; education; sex; race; smoking intensity, duration, and quit-years; body mass index; family history of lung cancer; and self-reported emphysema. Model validation in the chest radiography groups of the PLCO and the National Lung Screening Trial (NLST; 2002-2009), with additional validation of the death model in the National Health Interview Survey (NHIS; 1997-2001), a representative sample of the United States. Models were applied to US ever-smokers aged 50 to 80 years (NHIS 2010-2012) to estimate outcomes of risk-based selection for CT lung screening, assuming screening for all ever-smokers, yield the percent changes in lung cancer detection and death observed in the NLST. Annual CT lung screening for 3 years beginning at age 50 years. For model validity: calibration (number of model-predicted cases divided by number of observed cases [estimated/observed]) and discrimination (area under curve [AUC]). For modeled screening outcomes: estimated number of screen-avertable lung cancer deaths and estimated screening effectiveness (number needed to screen [NNS] to prevent 1 lung cancer death). Lung cancer incidence and death risk models were well calibrated in PLCO and NLST. The lung cancer death model calibrated and discriminated well for US ever-smokers aged 50 to 80 years (NHIS 1997-2001: estimated/observed = 0.94 [95%CI, 0.84-1.05]; AUC, 0.78 [95%CI, 0.76-0.80]). Under USPSTF recommendations, the models estimated 9.0 million US ever-smokers would qualify for lung cancer screening and 46,488 (95% CI, 43,924-49,053) lung cancer deaths were estimated as screen-avertable over 5 years (estimated NNS, 194 [95% CI, 187-201]). In contrast, risk-based selection screening of the same number of ever-smokers (9.0 million) at highest 5-year lung cancer risk (≥1.9%) was estimated to avert 20% more deaths (55,717 [95% CI, 53,033-58,400]) and was estimated to reduce the estimated NNS by 17% (NNS, 162 [95% CI, 157-166]). Among a cohort of US ever-smokers aged 50 to 80 years, application of a risk-based model for CT screening for lung cancer compared with a model based on USPSTF recommendations was estimated to be associated with a greater number of lung cancer deaths prevented over 5 years, along with a lower NNS to prevent 1 lung cancer death.
The US Preventive Services Task Force (USPSTF) recommends computed tomography (CT) lung cancer screening for ever-smokers aged 55 to 80 years who have smoked at least 30 pack-years with no more than 15 years since quitting. However, selecting ever-smokers for screening using individualized lung cancer risk calculations may be more effective and efficient than current USPSTF recommendations.IMPORTANCEThe US Preventive Services Task Force (USPSTF) recommends computed tomography (CT) lung cancer screening for ever-smokers aged 55 to 80 years who have smoked at least 30 pack-years with no more than 15 years since quitting. However, selecting ever-smokers for screening using individualized lung cancer risk calculations may be more effective and efficient than current USPSTF recommendations.Comparison of modeled outcomes from risk-based CT lung-screening strategies vs USPSTF recommendations.OBJECTIVEComparison of modeled outcomes from risk-based CT lung-screening strategies vs USPSTF recommendations.Empirical risk models for lung cancer incidence and death in the absence of CT screening using data on ever-smokers from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO; 1993-2009) control group. Covariates included age; education; sex; race; smoking intensity, duration, and quit-years; body mass index; family history of lung cancer; and self-reported emphysema. Model validation in the chest radiography groups of the PLCO and the National Lung Screening Trial (NLST; 2002-2009), with additional validation of the death model in the National Health Interview Survey (NHIS; 1997-2001), a representative sample of the United States. Models were applied to US ever-smokers aged 50 to 80 years (NHIS 2010-2012) to estimate outcomes of risk-based selection for CT lung screening, assuming screening for all ever-smokers, yield the percent changes in lung cancer detection and death observed in the NLST.DESIGN, SETTING, AND PARTICIPANTSEmpirical risk models for lung cancer incidence and death in the absence of CT screening using data on ever-smokers from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO; 1993-2009) control group. Covariates included age; education; sex; race; smoking intensity, duration, and quit-years; body mass index; family history of lung cancer; and self-reported emphysema. Model validation in the chest radiography groups of the PLCO and the National Lung Screening Trial (NLST; 2002-2009), with additional validation of the death model in the National Health Interview Survey (NHIS; 1997-2001), a representative sample of the United States. Models were applied to US ever-smokers aged 50 to 80 years (NHIS 2010-2012) to estimate outcomes of risk-based selection for CT lung screening, assuming screening for all ever-smokers, yield the percent changes in lung cancer detection and death observed in the NLST.Annual CT lung screening for 3 years beginning at age 50 years.EXPOSURESAnnual CT lung screening for 3 years beginning at age 50 years.For model validity: calibration (number of model-predicted cases divided by number of observed cases [estimated/observed]) and discrimination (area under curve [AUC]). For modeled screening outcomes: estimated number of screen-avertable lung cancer deaths and estimated screening effectiveness (number needed to screen [NNS] to prevent 1 lung cancer death).MAIN OUTCOMES AND MEASURESFor model validity: calibration (number of model-predicted cases divided by number of observed cases [estimated/observed]) and discrimination (area under curve [AUC]). For modeled screening outcomes: estimated number of screen-avertable lung cancer deaths and estimated screening effectiveness (number needed to screen [NNS] to prevent 1 lung cancer death).Lung cancer incidence and death risk models were well calibrated in PLCO and NLST. The lung cancer death model calibrated and discriminated well for US ever-smokers aged 50 to 80 years (NHIS 1997-2001: estimated/observed = 0.94 [95%CI, 0.84-1.05]; AUC, 0.78 [95%CI, 0.76-0.80]). Under USPSTF recommendations, the models estimated 9.0 million US ever-smokers would qualify for lung cancer screening and 46,488 (95% CI, 43,924-49,053) lung cancer deaths were estimated as screen-avertable over 5 years (estimated NNS, 194 [95% CI, 187-201]). In contrast, risk-based selection screening of the same number of ever-smokers (9.0 million) at highest 5-year lung cancer risk (≥1.9%) was estimated to avert 20% more deaths (55,717 [95% CI, 53,033-58,400]) and was estimated to reduce the estimated NNS by 17% (NNS, 162 [95% CI, 157-166]).RESULTSLung cancer incidence and death risk models were well calibrated in PLCO and NLST. The lung cancer death model calibrated and discriminated well for US ever-smokers aged 50 to 80 years (NHIS 1997-2001: estimated/observed = 0.94 [95%CI, 0.84-1.05]; AUC, 0.78 [95%CI, 0.76-0.80]). Under USPSTF recommendations, the models estimated 9.0 million US ever-smokers would qualify for lung cancer screening and 46,488 (95% CI, 43,924-49,053) lung cancer deaths were estimated as screen-avertable over 5 years (estimated NNS, 194 [95% CI, 187-201]). In contrast, risk-based selection screening of the same number of ever-smokers (9.0 million) at highest 5-year lung cancer risk (≥1.9%) was estimated to avert 20% more deaths (55,717 [95% CI, 53,033-58,400]) and was estimated to reduce the estimated NNS by 17% (NNS, 162 [95% CI, 157-166]).Among a cohort of US ever-smokers aged 50 to 80 years, application of a risk-based model for CT screening for lung cancer compared with a model based on USPSTF recommendations was estimated to be associated with a greater number of lung cancer deaths prevented over 5 years, along with a lower NNS to prevent 1 lung cancer death.CONCLUSIONS AND RELEVANCEAmong a cohort of US ever-smokers aged 50 to 80 years, application of a risk-based model for CT screening for lung cancer compared with a model based on USPSTF recommendations was estimated to be associated with a greater number of lung cancer deaths prevented over 5 years, along with a lower NNS to prevent 1 lung cancer death.
Author Katki, Hormuzd A
Berg, Christine D
Chaturvedi, Anil K
Cheung, Li C
Kovalchik, Stephanie A
Author_xml – sequence: 1
  givenname: Hormuzd A
  surname: Katki
  fullname: Katki, Hormuzd A
  organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
– sequence: 2
  givenname: Stephanie A
  surname: Kovalchik
  fullname: Kovalchik, Stephanie A
  organization: Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia
– sequence: 3
  givenname: Christine D
  surname: Berg
  fullname: Berg, Christine D
  organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland3Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine
– sequence: 4
  givenname: Li C
  surname: Cheung
  fullname: Cheung, Li C
  organization: Information Management Services Inc, Calverton, Maryland
– sequence: 5
  givenname: Anil K
  surname: Chaturvedi
  fullname: Chaturvedi, Anil K
  organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27179989$$D View this record in MEDLINE/PubMed
BookMark eNpNkM9LwzAcxYNM3A-9epQcvXTmR9MkR6mbChPBTW9SsvTb0a1NZtIO_O8dOMF3ee_w4cF7YzRw3gFC15RMKSH0bmtaM2WEZtOMCXGGRlRwlXCh1eBfHqJxjFtyFOXyAg2ZpFJrpUfo8wEO0Ph9C67DxpX4wzR1abraO-wr_FbHHX7xJTQRdx4voQHb4dkBQrJs_Q5CxJUPOF_hRe82ODfOQsBLGwBc7TaX6LwyTYSrk0_Q-3y2yp-Sxevjc36_SEwqSZcoyqTM1hqosimxRGkJVrPSVFwIRSRPBWWpTplhUnMjSqa0IpSxKl1DZQ2boNvf3n3wXz3ErmjraKFpjAPfx-K4VqiMU8qP6M0J7dctlMU-1K0J38XfJewH3G5jQg
CitedBy_id crossref_primary_10_1016_j_jtho_2019_03_014
crossref_primary_10_1038_s41395_018_0069_9
crossref_primary_10_1038_s41467_023_38196_z
crossref_primary_10_1097_MCP_0000000000000974
crossref_primary_10_1002_ajim_23572
crossref_primary_10_1097_CEJ_0000000000000652
crossref_primary_10_1001_jama_2024_22537
crossref_primary_10_1093_jrsssa_qnae059
crossref_primary_10_1016_j_canep_2023_102354
crossref_primary_10_1371_journal_pmed_1002277
crossref_primary_10_1016_j_jbi_2023_104525
crossref_primary_10_1016_j_jacr_2018_12_018
crossref_primary_10_1002_ijc_33578
crossref_primary_10_1093_jnci_djac176
crossref_primary_10_1097_QAD_0000000000001819
crossref_primary_10_1183_13993003_00506_2019
crossref_primary_10_1016_j_ejso_2020_02_015
crossref_primary_10_1007_s40471_017_0126_8
crossref_primary_10_20935_AcadMed7509
crossref_primary_10_7326_M19_1263
crossref_primary_10_1016_j_ypmed_2021_106503
crossref_primary_10_1111_biom_13190
crossref_primary_10_1016_j_mcna_2022_07_007
crossref_primary_10_1016_j_jtho_2025_05_022
crossref_primary_10_7326_M23_3166
crossref_primary_10_1007_s10654_023_00975_9
crossref_primary_10_1016_j_jtho_2020_10_127
crossref_primary_10_17650_1726_9784_2025_24_1_34_45
crossref_primary_10_1016_j_mcna_2020_08_002
crossref_primary_10_1038_s41416_021_01278_0
crossref_primary_10_1080_00325481_2023_2265987
crossref_primary_10_1016_j_chest_2024_07_147
crossref_primary_10_1093_jnci_djae148
crossref_primary_10_1016_j_cger_2017_06_008
crossref_primary_10_1001_jamanetworkopen_2020_0409
crossref_primary_10_1097_ot9_0000000000000091
crossref_primary_10_1177_0272989X221082083
crossref_primary_10_1016_j_ccell_2023_03_019
crossref_primary_10_1177_00220345211014795
crossref_primary_10_3390_cancers13215449
crossref_primary_10_1016_S1470_2045_17_30861_6
crossref_primary_10_1016_j_lungcan_2022_07_017
crossref_primary_10_1016_j_cmpb_2022_106660
crossref_primary_10_1093_jnci_djaa211
crossref_primary_10_1371_journal_pone_0179749
crossref_primary_10_1016_j_jtho_2025_05_009
crossref_primary_10_1016_j_amepre_2020_10_014
crossref_primary_10_1093_jncics_pkaf030
crossref_primary_10_1002_cac2_12463
crossref_primary_10_7326_M17_2701
crossref_primary_10_1016_j_diii_2021_01_012
crossref_primary_10_1016_j_jtho_2020_09_010
crossref_primary_10_1183_20734735_0190_2023
crossref_primary_10_1164_rccm_202008_3053ST
crossref_primary_10_1097_PPO_0000000000000274
crossref_primary_10_1001_jamanetworkopen_2023_46295
crossref_primary_10_3322_caac_21811
crossref_primary_10_3390_app12041926
crossref_primary_10_1186_s12890_022_01826_1
crossref_primary_10_1093_ntr_ntaa192
crossref_primary_10_1038_s41416_022_01904_5
crossref_primary_10_1016_j_annepidem_2022_10_014
crossref_primary_10_1186_s12885_025_13562_w
crossref_primary_10_1093_biomtc_ujad038
crossref_primary_10_7326_M22_2216
crossref_primary_10_1016_S2213_2600_23_00050_4
crossref_primary_10_1016_j_chest_2018_03_021
crossref_primary_10_1136_bmjresp_2020_000811
crossref_primary_10_1038_nrclinonc_2016_101
crossref_primary_10_1016_j_eclinm_2025_103152
crossref_primary_10_1371_journal_pone_0305035
crossref_primary_10_1158_1940_6207_CAPR_18_0500
crossref_primary_10_1016_j_mcna_2017_03_008
crossref_primary_10_1111_eci_13062
crossref_primary_10_1177_0272989X18806497
crossref_primary_10_1093_carcin_bgy047
crossref_primary_10_1136_bmjonc_2024_000560
crossref_primary_10_1183_16000617_0232_2023
crossref_primary_10_1371_journal_pmed_1004287
crossref_primary_10_1016_j_ccm_2020_08_016
crossref_primary_10_1016_j_lungcan_2020_07_007
crossref_primary_10_1007_s00330_020_06727_7
crossref_primary_10_1002_cncr_30409
crossref_primary_10_1038_s41467_024_55035_x
crossref_primary_10_3390_cancers12061672
crossref_primary_10_1136_bmjresp_2019_000512
crossref_primary_10_1016_j_jtho_2021_02_003
crossref_primary_10_1007_s10654_020_00657_w
crossref_primary_10_1001_jamanetworkopen_2023_46994
crossref_primary_10_1093_jncics_pkz014
crossref_primary_10_1371_journal_pone_0205264
crossref_primary_10_1007_s13187_021_01977_5
crossref_primary_10_1016_j_chest_2020_12_046
crossref_primary_10_1038_ejcn_2017_70
crossref_primary_10_1016_j_ebiom_2018_03_027
crossref_primary_10_1016_j_chest_2019_11_033
crossref_primary_10_1038_s41698_024_00785_6
crossref_primary_10_1158_1940_6207_CAPR_23_0359
crossref_primary_10_1016_j_lungcan_2021_04_005
crossref_primary_10_1007_s10552_018_1092_2
crossref_primary_10_1136_bmjopen_2022_068271
crossref_primary_10_1016_j_jtho_2023_11_002
crossref_primary_10_1016_j_jhazmat_2021_125839
crossref_primary_10_1186_s12885_025_13475_8
crossref_primary_10_3390_cancers14092146
crossref_primary_10_1016_j_bulcan_2022_11_006
crossref_primary_10_1016_j_chest_2021_07_003
crossref_primary_10_1164_rccm_202204_0727OC
crossref_primary_10_1002_cncr_70008
crossref_primary_10_1183_16000617_0288_2020
crossref_primary_10_1016_j_thorsurg_2023_03_002
crossref_primary_10_1016_j_chest_2020_05_592
crossref_primary_10_1016_j_jtho_2020_08_006
crossref_primary_10_1055_a_1290_7926
crossref_primary_10_1146_annurev_publhealth_071823_112058
crossref_primary_10_1177_23814683241252786
crossref_primary_10_1038_s41598_024_83875_6
crossref_primary_10_1164_rccm_201708_1678ST
crossref_primary_10_1016_j_lanepe_2025_101221
crossref_primary_10_1001_jamanetworkopen_2023_31155
crossref_primary_10_1093_pcmedi_pbz002
crossref_primary_10_1016_j_ccm_2019_10_001
crossref_primary_10_1016_j_ebiom_2023_104443
crossref_primary_10_1016_j_chest_2021_01_070
crossref_primary_10_1164_rccm_201702_0433CI
crossref_primary_10_1001_jamanetworkopen_2025_2172
crossref_primary_10_1007_s11912_020_00968_x
crossref_primary_10_2105_AJPH_2018_304518
crossref_primary_10_1186_s12885_024_13356_6
crossref_primary_10_1002_cncr_34947
crossref_primary_10_1002_pds_5359
crossref_primary_10_3390_ijerph17238817
crossref_primary_10_1038_s43018_020_00142_z
crossref_primary_10_1016_j_canep_2018_10_007
crossref_primary_10_1183_23120541_00221_2019
crossref_primary_10_1016_j_annonc_2022_01_008
crossref_primary_10_1177_0272989X19875966
crossref_primary_10_1513_AnnalsATS_201909_659OC
crossref_primary_10_1038_s41395_018_0402_3
crossref_primary_10_3390_healthcare11142085
crossref_primary_10_1183_13993003_03386_2020
crossref_primary_10_1002_ijc_33502
crossref_primary_10_1259_bjr_20170401
crossref_primary_10_1038_s41467_020_17347_6
crossref_primary_10_3390_cancers15174344
crossref_primary_10_1016_j_ccm_2019_10_004
crossref_primary_10_1016_j_jtho_2017_08_001
crossref_primary_10_1136_bmjresp_2016_000166
crossref_primary_10_1016_j_chest_2020_08_2112
crossref_primary_10_1016_S2468_2667_24_00278_0
crossref_primary_10_1016_j_chest_2018_01_016
crossref_primary_10_1016_j_ejca_2025_115570
crossref_primary_10_1002_cncr_34925
crossref_primary_10_1002_cncr_33835
crossref_primary_10_2196_13260
crossref_primary_10_1136_thoraxjnl_2018_212263
crossref_primary_10_1186_s13148_020_00872_y
crossref_primary_10_3390_cancers11020212
crossref_primary_10_1038_s41467_025_63471_6
crossref_primary_10_1001_jamanetworkopen_2023_3273
crossref_primary_10_3390_cancers17101651
crossref_primary_10_1186_s40880_018_0305_0
crossref_primary_10_1111_bjd_18524
crossref_primary_10_1183_13993003_01613_2021
crossref_primary_10_1186_s12885_017_3287_4
crossref_primary_10_1002_cncr_34758
crossref_primary_10_1002_cncr_34999
crossref_primary_10_1002_advs_202303753
crossref_primary_10_1002_cam4_71104
crossref_primary_10_1001_jamanetworkopen_2019_0204
crossref_primary_10_1093_aje_kwy227
crossref_primary_10_1146_annurev_med_020917_053556
crossref_primary_10_1109_JBHI_2023_3324191
crossref_primary_10_1371_journal_pone_0195441
crossref_primary_10_1038_s41571_020_00432_6
crossref_primary_10_1513_AnnalsATS_201907_556CME
crossref_primary_10_1136_bmjopen_2017_018884
crossref_primary_10_1016_j_ypmed_2016_06_006
crossref_primary_10_1016_j_jtho_2025_01_003
crossref_primary_10_1016_j_jtho_2023_07_019
crossref_primary_10_1093_bjr_tqae234
crossref_primary_10_1158_1078_0432_CCR_24_0637
crossref_primary_10_1002_cncr_35382
crossref_primary_10_1093_jnci_djz041
crossref_primary_10_1002_cam4_5638
crossref_primary_10_1016_j_ctrv_2023_102544
crossref_primary_10_1136_thoraxjnl_2018_212457
crossref_primary_10_1016_j_chest_2021_06_063
crossref_primary_10_1016_j_chest_2021_01_040
crossref_primary_10_3390_ijerph21060781
crossref_primary_10_7326_M17_2561
crossref_primary_10_1080_17476348_2019_1638766
crossref_primary_10_1002_sim_8157
crossref_primary_10_1186_s12890_020_01344_y
crossref_primary_10_1016_j_gastha_2025_100737
crossref_primary_10_1016_S1470_2045_19_30411_5
crossref_primary_10_1093_jnci_djw328
crossref_primary_10_1200_JCO_2016_71_3214
crossref_primary_10_2196_26256
crossref_primary_10_1016_j_lanwpc_2025_101575
crossref_primary_10_1093_jnci_djy083
crossref_primary_10_7326_M23_3250
crossref_primary_10_1016_j_rmr_2021_02_003
crossref_primary_10_1093_jamia_ocab174
crossref_primary_10_1161_JAHA_124_037780
crossref_primary_10_1016_j_pmrj_2017_06_005
crossref_primary_10_1016_j_jtcvs_2019_11_141
crossref_primary_10_1093_jnci_djaa013
crossref_primary_10_7326_M18_3617
crossref_primary_10_1001_jamanetworkopen_2021_4509
crossref_primary_10_1097_00130404_201707000_00010
crossref_primary_10_1016_j_lungcan_2022_10_011
crossref_primary_10_1007_s11938_021_00350_1
crossref_primary_10_1016_j_chest_2021_06_066
crossref_primary_10_1016_j_jtho_2021_10_001
crossref_primary_10_1093_jnci_djz164
crossref_primary_10_1093_jnci_djz165
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1001/jama.2016.6255
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1538-3598
ExternalDocumentID 27179989
Genre Validation Study
Journal Article
Research Support, N.I.H., Intramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z99 CA999999
GroupedDBID ---
-ET
-~X
.55
.XZ
0R~
0WA
186
18M
29J
2CT
2FS
2KS
2WC
354
39C
4.4
53G
5GY
5RE
6TJ
85S
AAIKC
AAMNW
AAQOH
AAQQT
AAWTL
ABBLC
ABCQX
ABEHJ
ABIVO
ABOCM
ABPMR
ABPPZ
ABRSH
ABWJO
ACAHW
ACGFS
ACNCT
ACPRK
ADBBV
ADUKH
ADXHL
AETEA
AFCHL
AFFNX
AFRAH
AGHSJ
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AMJDE
ANMPU
ARBJA
BKOMP
BRYMA
C45
CGR
CJ0
CS3
CUY
CVF
EAM
EBD
EBS
ECM
EIF
EJD
EMOBN
EX3
F5P
H13
HF~
KOO
KQ8
L7B
MVM
N4W
N9A
NEJ
NPM
OBH
OCB
OGEVE
OHH
OMK
OVD
P2P
PQQKQ
QJJ
RAJ
RNS
S10
SJN
SV3
TEORI
TN5
UHB
UKR
UPT
VVN
WH7
WOW
X7M
XHN
XSW
XZL
YFH
YOC
YPV
YQT
YQY
YR2
YR5
YSK
YYM
YZZ
ZCA
~H1
7X8
ID FETCH-LOGICAL-a470t-812776b9e18c40c0897ec92daf355807345124942a2793a5d28980122f4befca2
IEDL.DBID 7X8
ISICitedReferencesCount 265
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377183100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1538-3598
IngestDate Fri Sep 05 06:11:40 EDT 2025
Mon Jul 21 06:03:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a470t-812776b9e18c40c0897ec92daf355807345124942a2793a5d28980122f4befca2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://jamanetwork.com/journals/jama/articlepdf/2522553/joi160054.pdf
PMID 27179989
PQID 1795863113
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1795863113
pubmed_primary_27179989
PublicationCentury 2000
PublicationDate 2016-06-07
PublicationDateYYYYMMDD 2016-06-07
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle JAMA : the journal of the American Medical Association
PublicationTitleAlternate JAMA
PublicationYear 2016
References 27179674 - JAMA. 2016 Jun 7;315(21):2279-81. doi: 10.1001/jama.2016.5986.
References_xml – reference: 27179674 - JAMA. 2016 Jun 7;315(21):2279-81. doi: 10.1001/jama.2016.5986.
SSID ssj0000137
Score 2.6143556
Snippet The US Preventive Services Task Force (USPSTF) recommends computed tomography (CT) lung cancer screening for ever-smokers aged 55 to 80 years who have smoked...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2300
SubjectTerms Advisory Committees
Age Distribution
Aged
Area Under Curve
Cohort Studies
Female
Humans
Lung Neoplasms - diagnosis
Lung Neoplasms - mortality
Lung Neoplasms - prevention & control
Male
Mass Screening - statistics & numerical data
Middle Aged
Models, Statistical
Preventive Health Services
Risk
Sex Distribution
Smoking - adverse effects
Smoking - epidemiology
Time Factors
United States - epidemiology
Title Development and Validation of Risk Models to Select Ever-Smokers for CT Lung Cancer Screening
URI https://www.ncbi.nlm.nih.gov/pubmed/27179989
https://www.proquest.com/docview/1795863113
Volume 315
WOSCitedRecordID wos000377183100019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qRHzxfpk3Ivga7SVp0ieRseHDNoabYy9S0jSFMW3nWv39nqQd24sg-NK3QDn5zjlfksP3IXQXQ42TWiREQLshVKY-ianwidEqcxTTsWPV-cdd3u-LySQc1BduRT1WuayJtlAnuTJ35A8AHCYC33X9x_knMa5R5nW1ttDYRA0fqIxBNZ-INfkoq5lpk9oo1S1FG1eqQ25wDwcA9ju9tG2ms__fHzxAezXBxE8VIg7Rhs6O0E6vfkI_Rm9rY0JYZgkeAxOvjJVwnuKXaTHDxiDtvcBljofWJge3AfBk-JHPgCxioLm4NcJdKBO4ZUCzwENlxnegC56g10571HomtccCkZQ7JYH-znkQh9oVijrKESHXKvQS2DTGBOQ_ZcaemnrSg0yWLIEDmmlqXkpjnSrpnaKtLM_0OcIJ156kTAWBkHDopmGqHZW6RjFMKuBlTXS7DFwEGDYPEzLT-VcRrULXRGdV9KN5JbYRedxo1onw4g-rL9Gu2VI7ycWvUCOFDNbXaFt9l9NicWPBAd_-oPcDMUzB1A
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+Validation+of+Risk+Models+to+Select+Ever-Smokers+for+CT+Lung+Cancer+Screening&rft.jtitle=JAMA+%3A+the+journal+of+the+American+Medical+Association&rft.au=Katki%2C+Hormuzd+A&rft.au=Kovalchik%2C+Stephanie+A&rft.au=Berg%2C+Christine+D&rft.au=Cheung%2C+Li+C&rft.date=2016-06-07&rft.eissn=1538-3598&rft.volume=315&rft.issue=21&rft.spage=2300&rft_id=info:doi/10.1001%2Fjama.2016.6255&rft_id=info%3Apmid%2F27179989&rft_id=info%3Apmid%2F27179989&rft.externalDocID=27179989
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-3598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-3598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-3598&client=summon