Automatic decision support system based on SAR data for oil spill detection
Global trade is mainly supported by maritime transport, which generates important pollution problems. Thus, effective surveillance and intervention means are necessary to ensure proper response to environmental emergencies. Synthetic Aperture Radar (SAR) has been established as a useful tool for det...
Uloženo v:
| Vydáno v: | Computers & geosciences Ročník 72; s. 184 - 191 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.11.2014
|
| Témata: | |
| ISSN: | 0098-3004, 1873-7803 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Global trade is mainly supported by maritime transport, which generates important pollution problems. Thus, effective surveillance and intervention means are necessary to ensure proper response to environmental emergencies. Synthetic Aperture Radar (SAR) has been established as a useful tool for detecting hydrocarbon spillages on the oceans surface. Several decision support systems have been based on this technology. This paper presents an automatic oil spill detection system based on SAR data which was developed on the basis of confirmed spillages and it was adapted to an important international shipping route off the Galician coast (northwest Iberian Peninsula). The system was supported by an adaptive segmentation process based on wind data as well as a shape oriented characterization algorithm. Moreover, two classifiers were developed and compared. Thus, image testing revealed up to 95.1% candidate labeling accuracy. Shared-memory parallel programming techniques were used to develop algorithms in order to improve above 25% of the system processing time.
•An automatic oil spill detection system based on SAR images was developed.•A database with confirmed oil spills was used to develop the system.•Image testing revealed up to 95.1% candidate labeling accuracy.•Two classifiers were compared from the labeling accuracy viewpoint.•The processing time was optimized via shared memory parallelization techniques. |
|---|---|
| AbstractList | Global trade is mainly supported by maritime transport, which generates important pollution problems. Thus, effective surveillance and intervention means are necessary to ensure proper response to environmental emergencies. Synthetic Aperture Radar (SAR) has been established as a useful tool for detecting hydrocarbon spillages on the oceans surface. Several decision support systems have been based on this technology. This paper presents an automatic oil spill detection system based on SAR data which was developed on the basis of confirmed spillages and it was adapted to an important international shipping route off the Galician coast (northwest Iberian Peninsula). The system was supported by an adaptive segmentation process based on wind data as well as a shape oriented characterization algorithm. Moreover, two classifiers were developed and compared. Thus, image testing revealed up to 95.1% candidate labeling accuracy. Shared-memory parallel programming techniques were used to develop algorithms in order to improve above 25% of the system processing time. Global trade is mainly supported by maritime transport, which generates important pollution problems. Thus, effective surveillance and intervention means are necessary to ensure proper response to environmental emergencies. Synthetic Aperture Radar (SAR) has been established as a useful tool for detecting hydrocarbon spillages on the oceans surface. Several decision support systems have been based on this technology. This paper presents an automatic oil spill detection system based on SAR data which was developed on the basis of confirmed spillages and it was adapted to an important international shipping route off the Galician coast (northwest Iberian Peninsula). The system was supported by an adaptive segmentation process based on wind data as well as a shape oriented characterization algorithm. Moreover, two classifiers were developed and compared. Thus, image testing revealed up to 95.1% candidate labeling accuracy. Shared-memory parallel programming techniques were used to develop algorithms in order to improve above 25% of the system processing time. •An automatic oil spill detection system based on SAR images was developed.•A database with confirmed oil spills was used to develop the system.•Image testing revealed up to 95.1% candidate labeling accuracy.•Two classifiers were compared from the labeling accuracy viewpoint.•The processing time was optimized via shared memory parallelization techniques. |
| Author | Mera, David G. Rodríguez, Pablo Caro, Andrés Cotos, José M. Varela-Pet, José |
| Author_xml | – sequence: 1 givenname: David orcidid: 0000-0002-0639-6574 surname: Mera fullname: Mera, David email: davidmeraperez@gmail.com organization: Laboratory of Data Intensive Systems and Applications, Faculty of Informatics, Masaryk University, Brno, Czech Republic – sequence: 2 givenname: José M. surname: Cotos fullname: Cotos, José M. email: manel.cotos@usc.es organization: Computer Graphics and Data Engineering, Centro de Investigación en Tecnoloxías da Información, University of Santiago de Compostela, Santiago de Compostela, Spain – sequence: 3 givenname: José surname: Varela-Pet fullname: Varela-Pet, José email: jose.varela.pet@usc.es organization: Systems Laboratory, Technological Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain – sequence: 4 givenname: Pablo surname: G. Rodríguez fullname: G. Rodríguez, Pablo email: pablogr@unex.es organization: Media Engineering Group, Polytechnic School, University of Extremadura, Cáceres, Spain – sequence: 5 givenname: Andrés surname: Caro fullname: Caro, Andrés email: andresc@unex.es organization: Media Engineering Group, Polytechnic School, University of Extremadura, Cáceres, Spain |
| BookMark | eNqNkT9vFDEQRy0UJC6BT0DjkmY3M7b3X0FxikKCEgkpQG15Z2eRT3vrje1DyrfPHkdFkVBZst6b4v3OxdkcZhbiI0KJgPXlriT3i0OpAE0JTQlYvREbbBtdNC3oM7EB6NpCA5h34jylHQAo1VYbcbc95LB32ZMcmHzyYZbpsCwhZpmeUua97F3iQa7_37cPcnDZyTFEGfwk0-KnafUyU17F9-Lt6KbEH_6-F-Lnl-sfV7fF_bebr1fb-8KZBnKhVO8UtI2pmNtuJALTG677DpQbgbFHRTiO9dCghgo66KkmrXokMmTcoC_Ep9PdJYbHA6ds9z4RT5ObORySVWsTjUpj9yqKdYUGOg36P1CjalR1e0S7E0oxpBR5tOSzOybI0fnJItjjLHZn_8xij7NYaOw6y-rqf9wl-r2LT69Yn08Wr11_e442keeZePBxjW-H4F_0nwEoN6i9 |
| CitedBy_id | crossref_primary_10_1080_01431161_2022_2106163 crossref_primary_10_1016_j_isprsjprs_2016_04_006 crossref_primary_10_1016_j_marpolbul_2021_112313 crossref_primary_10_1029_2023RG000821 crossref_primary_10_1109_JSTARS_2016_2577597 crossref_primary_10_1109_JSTARS_2023_3314899 crossref_primary_10_1007_s10586_025_05221_3 crossref_primary_10_1016_j_cageo_2016_12_013 crossref_primary_10_3390_jmse12071181 crossref_primary_10_3390_rs15061496 crossref_primary_10_3390_rs12203338 crossref_primary_10_1109_TGRS_2018_2812619 crossref_primary_10_1007_s00521_016_2415_4 crossref_primary_10_1007_s12524_016_0553_x crossref_primary_10_1016_j_scitotenv_2022_159741 crossref_primary_10_3390_rs9101041 crossref_primary_10_1007_s12517_022_09689_w crossref_primary_10_1016_j_asoc_2019_105716 crossref_primary_10_1016_j_eswa_2017_03_037 crossref_primary_10_3390_s18010151 crossref_primary_10_3390_photonics10050588 crossref_primary_10_1109_JSTARS_2022_3191122 crossref_primary_10_3390_rs13122378 |
| Cites_doi | 10.1109/JSTARS.2012.2186630 10.1109/JOE.2005.857518 10.1016/j.jag.2014.01.011 10.1029/2006JC003743 10.1080/014311600750037589 10.1016/j.isprsjprs.2012.01.005 10.1109/LGRS.2007.907174 10.1109/IGARSS.1994.399647 10.1109/JSTARS.2013.2251864 10.1080/01431160802339456 10.1109/IGARSS.1997.606466 10.1016/j.cageo.2007.02.002 10.1109/IGARSS.1999.773452 10.1109/TGRS.2006.887019 10.1109/36.774704 10.1109/36.868885 10.1109/TIT.1962.1057692 10.1016/j.marpolbul.2012.07.018 10.1016/j.rse.2004.11.015 10.1109/IGARSS.2003.1294698 10.1016/j.isprsjprs.2007.05.003 10.1016/j.cageo.2010.02.008 10.1016/j.eswa.2005.04.008 10.1109/99.660313 10.1016/j.cageo.2013.10.008 10.1016/S1364-8152(03)00162-2 10.1007/BF02995563 10.1080/01431160512331314038 10.3390/s8106642 10.5589/m09-035 10.3390/s91109011 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd |
| Copyright_xml | – notice: 2014 Elsevier Ltd |
| DBID | AAYXX CITATION 7ST 7TN 7TV 7U6 C1K F1W H96 L.G 7SC 8FD FR3 H8D JQ2 KR7 L7M L~C L~D 7S9 L.6 |
| DOI | 10.1016/j.cageo.2014.07.015 |
| DatabaseName | CrossRef Environment Abstracts Oceanic Abstracts Pollution Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Computer and Information Systems Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Pollution Abstracts Environment Abstracts Environmental Sciences and Pollution Management Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1873-7803 |
| EndPage | 191 |
| ExternalDocumentID | 10_1016_j_cageo_2014_07_015 S0098300414001812 |
| GeographicLocations | ANE, Europe, Iberian Peninsula ANE, Spain, Galicia Iberian Peninsula |
| GeographicLocations_xml | – name: ANE, Europe, Iberian Peninsula – name: ANE, Spain, Galicia – name: Iberian Peninsula |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMA HVGLF HZ~ IHE IMUCA J1W KOM LG9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSV SSZ T5K TN5 WUQ ZCA ZMT ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7ST 7TN 7TV 7U6 C1K F1W H96 L.G 7SC 8FD FR3 H8D JQ2 KR7 L7M L~C L~D 7S9 L.6 |
| ID | FETCH-LOGICAL-a470t-22ba208745ee89fcc04b4e6b902af0e1b12c1ff6d71305090bc6c32b1cc4c4ad3 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343631600016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-3004 |
| IngestDate | Sun Sep 28 00:02:02 EDT 2025 Sun Sep 28 07:45:40 EDT 2025 Tue Oct 07 09:36:39 EDT 2025 Sat Nov 29 08:01:10 EST 2025 Tue Nov 18 22:13:59 EST 2025 Fri Feb 23 02:34:00 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Adaptive threshold Decision support system SAR Shape characterization Oil spills |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a470t-22ba208745ee89fcc04b4e6b902af0e1b12c1ff6d71305090bc6c32b1cc4c4ad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0639-6574 |
| OpenAccessLink | http://hdl.handle.net/10347/16827 |
| PQID | 1642612683 |
| PQPubID | 23462 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2101312319 proquest_miscellaneous_1651409303 proquest_miscellaneous_1642612683 crossref_citationtrail_10_1016_j_cageo_2014_07_015 crossref_primary_10_1016_j_cageo_2014_07_015 elsevier_sciencedirect_doi_10_1016_j_cageo_2014_07_015 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-11-01 |
| PublicationDateYYYYMMDD | 2014-11-01 |
| PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Computers & geosciences |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Benelli, G., Garzelli, A., 1999. Oil-spills detection in SAR images by fractal dimension estimation, in: IEEE 1999 International IGARSS Proceedings of the Geoscience and Remote Sensing Symposium, vol. 1, 1999, IEEE, pp. 218–220. Asariotis, R., Benamara, H., Finkenbrink, H., Hoffmann, J., Jalmurzina, A., Premti, A., Valentine, V., Youssef, F., 2012. Review of Maritime Transport, 2012. Technical Report. Topouzelis, Stathakis, Karathanassi (bib37) 2009; 30 Garcia-Pineda, Zimmer, Howard, Pichel, XiaoFeng, MacDonald (bib14) 2009; 35 Hersbach, Stoffelen, de Haan (bib16) 2007; 112 Iglesias Nuno, Arcay, Cotos, Varela (bib19) 2005; 29 Solberg, Storvik, Solberg, Volden (bib31) 1999; 37 Marghany (bib22) 2004; 19 Dagum, Menon (bib9) 1998; 5 Palenzuela, Vilas, Cuadrado (bib26) 2006; 27 Migliaccio, Tranfaglia, Ermakov (bib24) 2005; 30 (Retrieved July 2014). Brekke, Solberg (bib5) 2008; 5 Flusser, Zitova, Suk (bib13) 2009 Kulawiak, Prospathopoulos, Perivoliotis, luba, Kioroglou, Stepnowski (bib21) 2010; 36 Guo, Zhang (bib15) 2014; 30 Quirós, Felicísimo, Cuartero (bib29) 2009; 9 Topouzelis (bib34) 2008; 8 Chen, C.F., Chen, K.S., Chang, L.Y., Chen, A.J., 1997. The use of satellite imagery for monitoring coastal environment in Taiwan. In: 1997 IEEE International Conference on Geoscience and Remote Sensing. Remote Sensing—A Scientific Vision for Sustainable Development (IGARSS׳97), vol. 3, IEEE, pp. 1424–1426. Brekke, Solberg (bib4) 2005; 95 Breiman, Friedman, Olshen, Stone (bib3) 1984 Cracknell, Reading (bib8) 2014; 63 Periáñez, Pascual-Granged (bib28) 2008; 34 Hu (bib18) 1962; 8 Topouzelis, Karathanassi, Pavlakis, Rokos (bib36) 2007; 62 Hovland, H.A., Johannessen, J.A., Digranes, G., 1994. Slick detection in SAR images. In: Proceedings of 1994 IEEE International Geoscience and Remote Sensing Symposium (IGARSS׳94), IEEE, pp. 2038–2040. Solberg, Brekke, Husoy (bib32) 2007; 45 Pavlakis, Tarchi, Sieber (bib27) 2001; 56 Singha, Bellerby, Trieschmann (bib30) 2013; 6 Fiscella, Giancaspro, Nirchio, Pavese, Trivero (bib12) 2000; 21 Swingler (bib33) 1996 Del Frate, Petrocchi, Lichtenegger, Calabresi (bib10) 2000; 38 Mera, Cotos, Varela-Pet, Garcia-Pineda (bib23) 2012; 64 Topouzelis, Psyllos (bib35) 2012; 68 Jackson, C., Apel, J. (Eds.), 2014. Synthetic Aperture Radar Marine User׳s Manual, 1st Edition, U.S. Department of Commerce: National Oceanic and Atmospheric Administration, 2005. Available online Olsen, R.B., Wahl, T., 2003. The ship detection capability of ENVISAT׳s ASAR. In: Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2003) (IEEE Cat. No.03CH37477), IEEE, pp. 3108–3110. Chaudhuri, Samal, Agrawal, Mishra, Gohri, Agarwal (bib6) 2012; 5 Esa, 1998. Oil Pollution Monitoring, in ERS and its Applications: Marine. Technical Report. 10.1016/j.cageo.2014.07.015_bib11 Flusser (10.1016/j.cageo.2014.07.015_bib13) 2009 Topouzelis (10.1016/j.cageo.2014.07.015_bib36) 2007; 62 Breiman (10.1016/j.cageo.2014.07.015_bib3) 1984 Hu (10.1016/j.cageo.2014.07.015_bib18) 1962; 8 Migliaccio (10.1016/j.cageo.2014.07.015_bib24) 2005; 30 Fiscella (10.1016/j.cageo.2014.07.015_bib12) 2000; 21 Dagum (10.1016/j.cageo.2014.07.015_bib9) 1998; 5 Swingler (10.1016/j.cageo.2014.07.015_bib33) 1996 Solberg (10.1016/j.cageo.2014.07.015_bib31) 1999; 37 Hersbach (10.1016/j.cageo.2014.07.015_bib16) 2007; 112 Solberg (10.1016/j.cageo.2014.07.015_bib32) 2007; 45 Palenzuela (10.1016/j.cageo.2014.07.015_bib26) 2006; 27 Singha (10.1016/j.cageo.2014.07.015_bib30) 2013; 6 Brekke (10.1016/j.cageo.2014.07.015_bib4) 2005; 95 Quirós (10.1016/j.cageo.2014.07.015_bib29) 2009; 9 Guo (10.1016/j.cageo.2014.07.015_bib15) 2014; 30 Mera (10.1016/j.cageo.2014.07.015_bib23) 2012; 64 10.1016/j.cageo.2014.07.015_bib25 Periáñez (10.1016/j.cageo.2014.07.015_bib28) 2008; 34 Topouzelis (10.1016/j.cageo.2014.07.015_bib37) 2009; 30 Kulawiak (10.1016/j.cageo.2014.07.015_bib21) 2010; 36 10.1016/j.cageo.2014.07.015_bib20 Garcia-Pineda (10.1016/j.cageo.2014.07.015_bib14) 2009; 35 Topouzelis (10.1016/j.cageo.2014.07.015_bib35) 2012; 68 10.1016/j.cageo.2014.07.015_bib7 Iglesias Nuno (10.1016/j.cageo.2014.07.015_bib19) 2005; 29 Marghany (10.1016/j.cageo.2014.07.015_bib22) 2004; 19 Pavlakis (10.1016/j.cageo.2014.07.015_bib27) 2001; 56 Topouzelis (10.1016/j.cageo.2014.07.015_bib34) 2008; 8 10.1016/j.cageo.2014.07.015_bib1 10.1016/j.cageo.2014.07.015_bib2 Brekke (10.1016/j.cageo.2014.07.015_bib5) 2008; 5 Chaudhuri (10.1016/j.cageo.2014.07.015_bib6) 2012; 5 10.1016/j.cageo.2014.07.015_bib17 Cracknell (10.1016/j.cageo.2014.07.015_bib8) 2014; 63 Del Frate (10.1016/j.cageo.2014.07.015_bib10) 2000; 38 |
| References_xml | – reference: Asariotis, R., Benamara, H., Finkenbrink, H., Hoffmann, J., Jalmurzina, A., Premti, A., Valentine, V., Youssef, F., 2012. Review of Maritime Transport, 2012. Technical Report. – volume: 21 start-page: 3561 year: 2000 end-page: 3566 ident: bib12 article-title: Oil spill detection using marine SAR images publication-title: Int. J. Remote Sens. – year: 1984 ident: bib3 article-title: Classification and Regression Trees – volume: 64 start-page: 2090 year: 2012 end-page: 2096 ident: bib23 article-title: Adaptive thresholding algorithm based on SAR images and wind data to segment oil spills along the northwest coast of the Iberian Peninsula publication-title: Mar. Pollut. Bull. – reference: Hovland, H.A., Johannessen, J.A., Digranes, G., 1994. Slick detection in SAR images. In: Proceedings of 1994 IEEE International Geoscience and Remote Sensing Symposium (IGARSS׳94), IEEE, pp. 2038–2040. – volume: 5 start-page: 1231 year: 2012 end-page: 1242 ident: bib6 article-title: A statistical approach for automatic detection of ocean disturbance features from sar images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 29 start-page: 356 year: 2005 end-page: 363 ident: bib19 article-title: Optimisation of fishing predictions by means of artificial neural networks, anfis, functional networks and remote sensing images publication-title: Expert Syst. Appl. – volume: 112 start-page: C03006 year: 2007 ident: bib16 article-title: An improved C-band scatterometer ocean geophysical model function publication-title: J. Geophys. Res. – volume: 19 start-page: 473 year: 2004 end-page: 483 ident: bib22 article-title: RADARSAT for oil spill trajectory model publication-title: Environ. Model. Softw. – volume: 37 start-page: 1916 year: 1999 end-page: 1924 ident: bib31 article-title: Automatic detection of oil spills in ERS SAR images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 5 start-page: 65 year: 2008 end-page: 69 ident: bib5 article-title: Classifiers and confidence estimation for oil spill detection in ENVISAT ASAR images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 68 start-page: 135 year: 2012 end-page: 143 ident: bib35 article-title: Oil spill feature selection and classification using decision tree forest on SAR image data publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Olsen, R.B., Wahl, T., 2003. The ship detection capability of ENVISAT׳s ASAR. In: Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2003) (IEEE Cat. No.03CH37477), IEEE, pp. 3108–3110. – reference: 〉 (Retrieved July 2014). – reference: Chen, C.F., Chen, K.S., Chang, L.Y., Chen, A.J., 1997. The use of satellite imagery for monitoring coastal environment in Taiwan. In: 1997 IEEE International Conference on Geoscience and Remote Sensing. Remote Sensing—A Scientific Vision for Sustainable Development (IGARSS׳97), vol. 3, IEEE, pp. 1424–1426. – volume: 45 start-page: 746 year: 2007 end-page: 755 ident: bib32 article-title: Oil spill detection in radarsat and envisat SAR images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 34 start-page: 163 year: 2008 end-page: 180 ident: bib28 article-title: Modelling surface radioactive, chemical and oil spills in the strait of gibraltar publication-title: Comput. Geosci. – volume: 62 start-page: 264 year: 2007 end-page: 270 ident: bib36 article-title: Detection and discrimination between oil spills and look-alike phenomena through neural networks publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 9 start-page: 9011 year: 2009 end-page: 9028 ident: bib29 article-title: Testing multivariate adaptive regression splines (MARS) as a method of land cover classification of TERRA-ASTER satellite images publication-title: Sensors – volume: 5 start-page: 46 year: 1998 end-page: 55 ident: bib9 article-title: OpenMP publication-title: IEEE Comput. Sci. Eng. – year: 2009 ident: bib13 article-title: Moments and Moment Invariants in Pattern Recognition – reference: Benelli, G., Garzelli, A., 1999. Oil-spills detection in SAR images by fractal dimension estimation, in: IEEE 1999 International IGARSS Proceedings of the Geoscience and Remote Sensing Symposium, vol. 1, 1999, IEEE, pp. 218–220. – volume: 63 start-page: 22 year: 2014 end-page: 33 ident: bib8 article-title: Geological mapping using remote sensing data publication-title: Comput. Geosci. – volume: 6 start-page: 2355 year: 2013 end-page: 2363 ident: bib30 article-title: Satellite oil spill detection using artificial neural networks publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – start-page: 53 year: 1996 end-page: 56 ident: bib33 article-title: Applying Neural Networks: A Practical Guide – volume: 36 start-page: 1069 year: 2010 end-page: 1080 ident: bib21 article-title: Interactive visualization of marine pollution monitoring and forecasting data via a web-based {GIS} publication-title: Comput. Geosci. – volume: 27 start-page: 1931 year: 2006 end-page: 1950 ident: bib26 article-title: Use of ASAR images to study the evolution of the Prestige oil spill off the Galician coast publication-title: Int. J. Remote Sens. – volume: 35 start-page: 411 year: 2009 end-page: 421 ident: bib14 article-title: Using SAR images to delineate ocean oil slicks with a texture-classifying neural network algorithm (TCNNA) publication-title: Can. J. Remote Sens. – volume: 38 start-page: 2282 year: 2000 end-page: 2287 ident: bib10 article-title: Neural networks for oil spill detection using ERS-SAR data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 30 start-page: 146 year: 2014 end-page: 157 ident: bib15 article-title: Oil spill detection using synthetic aperture radar images and feature selection in shape space publication-title: Int. J. Appl. Earth Obs. Geoinf. – reference: Jackson, C., Apel, J. (Eds.), 2014. Synthetic Aperture Radar Marine User׳s Manual, 1st Edition, U.S. Department of Commerce: National Oceanic and Atmospheric Administration, 2005. Available online: 〈 – reference: Esa, 1998. Oil Pollution Monitoring, in ERS and its Applications: Marine. Technical Report. – volume: 8 start-page: 6642 year: 2008 end-page: 6659 ident: bib34 article-title: Oil spill detection by SAR images publication-title: Sensors – volume: 30 start-page: 611 year: 2009 end-page: 625 ident: bib37 article-title: Investigation of genetic algorithms contribution to feature selection for oil spill detection publication-title: Int. J. Remote Sens. – volume: 56 start-page: 700 year: 2001 end-page: 718 ident: bib27 article-title: On the monitoring of illicit vessel discharges using spaceborne sar remote sensing—a reconnaissance study in the Mediterranean sea publication-title: Ann. Telecommun. – volume: 30 start-page: 496 year: 2005 end-page: 507 ident: bib24 article-title: A physical approach for the observation of oil spills in SAR images publication-title: IEEE J. Ocean. Eng. – volume: 8 start-page: 179 year: 1962 end-page: 187 ident: bib18 article-title: Visual pattern recognition by moment invariants publication-title: IRE Trans. Inf. Theory – volume: 95 start-page: 1 year: 2005 end-page: 13 ident: bib4 article-title: Oil spill detection by satellite remote sensing publication-title: Remote Sens. Environ. – volume: 5 start-page: 1231 issue: 4 year: 2012 ident: 10.1016/j.cageo.2014.07.015_bib6 article-title: A statistical approach for automatic detection of ocean disturbance features from sar images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2012.2186630 – volume: 30 start-page: 496 issue: 3 year: 2005 ident: 10.1016/j.cageo.2014.07.015_bib24 article-title: A physical approach for the observation of oil spills in SAR images publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2005.857518 – volume: 30 start-page: 146 issue: 0 year: 2014 ident: 10.1016/j.cageo.2014.07.015_bib15 article-title: Oil spill detection using synthetic aperture radar images and feature selection in shape space publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2014.01.011 – volume: 112 start-page: C03006 issue: C3 year: 2007 ident: 10.1016/j.cageo.2014.07.015_bib16 article-title: An improved C-band scatterometer ocean geophysical model function publication-title: J. Geophys. Res. doi: 10.1029/2006JC003743 – year: 1984 ident: 10.1016/j.cageo.2014.07.015_bib3 – volume: 21 start-page: 3561 issue: 18 year: 2000 ident: 10.1016/j.cageo.2014.07.015_bib12 article-title: Oil spill detection using marine SAR images publication-title: Int. J. Remote Sens. doi: 10.1080/014311600750037589 – year: 2009 ident: 10.1016/j.cageo.2014.07.015_bib13 – volume: 68 start-page: 135 year: 2012 ident: 10.1016/j.cageo.2014.07.015_bib35 article-title: Oil spill feature selection and classification using decision tree forest on SAR image data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2012.01.005 – volume: 5 start-page: 65 issue: 1 year: 2008 ident: 10.1016/j.cageo.2014.07.015_bib5 article-title: Classifiers and confidence estimation for oil spill detection in ENVISAT ASAR images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2007.907174 – ident: 10.1016/j.cageo.2014.07.015_bib17 doi: 10.1109/IGARSS.1994.399647 – volume: 6 start-page: 2355 issue: 6 year: 2013 ident: 10.1016/j.cageo.2014.07.015_bib30 article-title: Satellite oil spill detection using artificial neural networks publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2013.2251864 – volume: 30 start-page: 611 issue: 3 year: 2009 ident: 10.1016/j.cageo.2014.07.015_bib37 article-title: Investigation of genetic algorithms contribution to feature selection for oil spill detection publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802339456 – ident: 10.1016/j.cageo.2014.07.015_bib7 doi: 10.1109/IGARSS.1997.606466 – volume: 34 start-page: 163 issue: 2 year: 2008 ident: 10.1016/j.cageo.2014.07.015_bib28 article-title: Modelling surface radioactive, chemical and oil spills in the strait of gibraltar publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2007.02.002 – ident: 10.1016/j.cageo.2014.07.015_bib2 doi: 10.1109/IGARSS.1999.773452 – volume: 45 start-page: 746 issue: 3 year: 2007 ident: 10.1016/j.cageo.2014.07.015_bib32 article-title: Oil spill detection in radarsat and envisat SAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.887019 – volume: 37 start-page: 1916 issue: 4 year: 1999 ident: 10.1016/j.cageo.2014.07.015_bib31 article-title: Automatic detection of oil spills in ERS SAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.774704 – volume: 38 start-page: 2282 issue: 5 year: 2000 ident: 10.1016/j.cageo.2014.07.015_bib10 article-title: Neural networks for oil spill detection using ERS-SAR data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.868885 – volume: 8 start-page: 179 issue: 2 year: 1962 ident: 10.1016/j.cageo.2014.07.015_bib18 article-title: Visual pattern recognition by moment invariants publication-title: IRE Trans. Inf. Theory doi: 10.1109/TIT.1962.1057692 – ident: 10.1016/j.cageo.2014.07.015_bib1 – volume: 64 start-page: 2090 issue: 10 year: 2012 ident: 10.1016/j.cageo.2014.07.015_bib23 article-title: Adaptive thresholding algorithm based on SAR images and wind data to segment oil spills along the northwest coast of the Iberian Peninsula publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2012.07.018 – start-page: 53 year: 1996 ident: 10.1016/j.cageo.2014.07.015_bib33 – volume: 95 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.cageo.2014.07.015_bib4 article-title: Oil spill detection by satellite remote sensing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.11.015 – ident: 10.1016/j.cageo.2014.07.015_bib11 – ident: 10.1016/j.cageo.2014.07.015_bib25 doi: 10.1109/IGARSS.2003.1294698 – volume: 62 start-page: 264 issue: 4 year: 2007 ident: 10.1016/j.cageo.2014.07.015_bib36 article-title: Detection and discrimination between oil spills and look-alike phenomena through neural networks publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2007.05.003 – volume: 36 start-page: 1069 issue: 8 year: 2010 ident: 10.1016/j.cageo.2014.07.015_bib21 article-title: Interactive visualization of marine pollution monitoring and forecasting data via a web-based {GIS} publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2010.02.008 – volume: 29 start-page: 356 issue: 2 year: 2005 ident: 10.1016/j.cageo.2014.07.015_bib19 article-title: Optimisation of fishing predictions by means of artificial neural networks, anfis, functional networks and remote sensing images publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.04.008 – volume: 5 start-page: 46 issue: 1 year: 1998 ident: 10.1016/j.cageo.2014.07.015_bib9 article-title: OpenMP publication-title: IEEE Comput. Sci. Eng. doi: 10.1109/99.660313 – volume: 63 start-page: 22 issue: 0 year: 2014 ident: 10.1016/j.cageo.2014.07.015_bib8 article-title: Geological mapping using remote sensing data publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2013.10.008 – volume: 19 start-page: 473 issue: 5 year: 2004 ident: 10.1016/j.cageo.2014.07.015_bib22 article-title: RADARSAT for oil spill trajectory model publication-title: Environ. Model. Softw. doi: 10.1016/S1364-8152(03)00162-2 – volume: 56 start-page: 700 issue: 11 year: 2001 ident: 10.1016/j.cageo.2014.07.015_bib27 article-title: On the monitoring of illicit vessel discharges using spaceborne sar remote sensing—a reconnaissance study in the Mediterranean sea publication-title: Ann. Telecommun. doi: 10.1007/BF02995563 – volume: 27 start-page: 1931 issue: 10 year: 2006 ident: 10.1016/j.cageo.2014.07.015_bib26 article-title: Use of ASAR images to study the evolution of the Prestige oil spill off the Galician coast publication-title: Int. J. Remote Sens. doi: 10.1080/01431160512331314038 – volume: 8 start-page: 6642 issue: 10 year: 2008 ident: 10.1016/j.cageo.2014.07.015_bib34 article-title: Oil spill detection by SAR images publication-title: Sensors doi: 10.3390/s8106642 – volume: 35 start-page: 411 issue: 5 year: 2009 ident: 10.1016/j.cageo.2014.07.015_bib14 article-title: Using SAR images to delineate ocean oil slicks with a texture-classifying neural network algorithm (TCNNA) publication-title: Can. J. Remote Sens. doi: 10.5589/m09-035 – ident: 10.1016/j.cageo.2014.07.015_bib20 – volume: 9 start-page: 9011 issue: 11 year: 2009 ident: 10.1016/j.cageo.2014.07.015_bib29 article-title: Testing multivariate adaptive regression splines (MARS) as a method of land cover classification of TERRA-ASTER satellite images publication-title: Sensors doi: 10.3390/s91109011 |
| SSID | ssj0002285 |
| Score | 2.2390883 |
| Snippet | Global trade is mainly supported by maritime transport, which generates important pollution problems. Thus, effective surveillance and intervention means are... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 184 |
| SubjectTerms | Adaptive threshold Algorithms Automation coasts computers Decision support system Decision support systems Emergencies Iberian Peninsula international trade monitoring oceans Oil spills pollution SAR sea transportation Shape characterization shipping Spillage Synthetic aperture radar wind |
| Title | Automatic decision support system based on SAR data for oil spill detection |
| URI | https://dx.doi.org/10.1016/j.cageo.2014.07.015 https://www.proquest.com/docview/1642612683 https://www.proquest.com/docview/1651409303 https://www.proquest.com/docview/2101312319 |
| Volume | 72 |
| WOSCitedRecordID | wos000343631600016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-7803 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002285 issn: 0098-3004 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZgA4kXxFUbNxmJPZVIsZPm8lhBy22UaXSob1bsOFWnKilNisa_5xzbScumVeOBl6iK7KTy-WIf-5zzfYS84TIOpFS5l8bwNYUq970k0coruIxkwRSWDhixiXg8TqbT9MSlBNVGTiAuy-TiIl3-V1PDPTA2ls7-g7m7h8IN-A1GhyuYHa43Mvxg3VSWhzV3-jm9er1EN9vRNvdw5coxSvB9cNrDFFGTa1jNF716OV8soF9jErTKbc-1lX-oDVhm2pFgblIQv-pVdilLHqs_mqqLNGxOXn9kWEPjnbhISLWJEJ1W-Wo-W7tz7UwuKqf-5U4mWOhK9LZm2zTxkNFre7a1Qj1uumRWHs6tvMzqdl2Z1O35wjls2GemXpOFhm_VloH-TaE9_iZGZ8fHYjKcTo6C0fKnh_piGIc_Ct5bW98m-zzupzCJ7w8-Daefu3Wb86TfMqziv245qkw24JV3X-fHXFrRjZsyeUDuu_0FHVhcPCS3dPmI3P1g9Jt_PyZfOnTQFh3UoYNadFCDDgr3AR0U0UEBHRTQQQ06aIeOJ-RsNJy8--g5PQ0vC2O_8TiXGfdR30DrJC2U8kMZ6kimPs8KXzPJuGJFEeUxODbgSPpSRSrgkikVqjDLg6dkr6xKfUBo32dFEkS5lBjHzSVs2mUu4YFZCFviQh0S3o6OUI5sHjVPFqLNKjwXZkgFDqnwYwFDekjedp2Wlmtld_OoHXbhIG_dQAHA2d3xdWskAZMpRsiyUlfrWrAITxR4lAS72vSRJA5cv-vbcIY0VrB1Sp_d4F3Pyb3N5_OC7DWrtX5J7qhfzbxevXIw_QNniq6L |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+decision+support+system+based+on+SAR+data+for+oil+spill+detection&rft.jtitle=Computers+%26+geosciences&rft.au=Mera%2C+David&rft.au=Cotos%2C+Jose+M&rft.au=Varela-Pet%2C+Jose&rft.au=Rodriguez%2C+Pablo+G&rft.date=2014-11-01&rft.issn=0098-3004&rft.volume=72&rft.spage=184&rft.epage=191&rft_id=info:doi/10.1016%2Fj.cageo.2014.07.015&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon |