The High Chemofidelity of Metal-Catalyzed Hydrogen Atom Transfer

The implementation of any chemical reaction in a structurally complex setting ( King , S. M. J. Org. Chem. 2014 , 79 , 8937 ) confronts structurally defined barriers: steric environment, functional group reactivity, product instability, and through-bond electronics. However, there are also practical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Accounts of chemical research Jg. 51; H. 11; S. 2628
Hauptverfasser: Green, Samantha A, Crossley, Steven W M, Matos, Jeishla L M, Vásquez-Céspedes, Suhelen, Shevick, Sophia L, Shenvi, Ryan A
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 20.11.2018
Schlagworte:
ISSN:1520-4898, 1520-4898
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The implementation of any chemical reaction in a structurally complex setting ( King , S. M. J. Org. Chem. 2014 , 79 , 8937 ) confronts structurally defined barriers: steric environment, functional group reactivity, product instability, and through-bond electronics. However, there are also practical barriers. Late-stage reactions conducted on small quantities of material are run inevitably at lower than optimal concentrations. Access to late-stage material limits extensive optimization. Impurities from past reactions can interfere, especially with catalytic reactions. Therefore, chemical reactions on which one can rely at the front lines of a complex synthesis campaign emerge from the crucible of total synthesis as robust, dependable, and widely applied. Trost conceptualized "chemoselectivity" as a reagent's selective reaction of one functional group or reactive site in preference to others ( Trost , B. M. Science 1983 , 219 , 245 ). Chemoselectivity and functional group tolerance can be evaluated quickly using robustness screens ( Collins , K. D. Nat. Chem. 2013 , 5 , 597 ). A reaction may also be characterized by its "chemofidelity", that is, its reliable reaction with a functional group in any molecular context. For example, ketone reduction by an electride (dissolving metal conditions) exhibits high chemofidelity but low chemoselectivity: it usually works, but many other functional groups are reduced at similar rates. Conversely, alkene coordination chemistry effected by π Lewis acids can exhibit high chemoselectivity ( Trost , B. M. Science 1983 , 219 , 245 ) but low chemofidelity: it can be highly selective for alkenes but sensitive to the substitution pattern ( Larionov , E. Chem. Commun. 2014 , 50 , 9816 ). In contrast, alkenes undergo reliable, robust, and diverse hydrogen atom transfer reactions from metal hydrides to generate carbon-centered radicals. Although there are many potential applications of this chemistry, its functional group tolerance, high rates, and ease of execution have led to its rapid deployment in complex synthesis campaigns. Its success derives from high chemofidelity, that is, its dependable reactivity in many molecular environments and with many alkene substitution patterns. Metal hydride H atom transfer (MHAT) reactions convert diverse, simple building blocks to more stereochemically and functionally dense products ( Crossley , S. W. M. Chem. Rev. 2016 , 116 , 8912 ). When hydrogen is returned to the metal, MHAT can be considered the radical equivalent of Brønsted acid catalysis-itself a broad reactivity paradigm. This Account summarizes our group's contributions to method development, reagent discovery, and mechanistic interrogation. Our earliest contribution to this area-a stepwise hydrogenation with high chemoselectivity and high chemofidelity-has found application to many problems. More recently, we reported the first examples of dual-catalytic cross-couplings that rely on the merger of MHAT cycles and nickel catalysis. With time, we anticipate that MHAT will become a staple of chemical synthesis.
AbstractList The implementation of any chemical reaction in a structurally complex setting ( King , S. M. J. Org. Chem. 2014 , 79 , 8937 ) confronts structurally defined barriers: steric environment, functional group reactivity, product instability, and through-bond electronics. However, there are also practical barriers. Late-stage reactions conducted on small quantities of material are run inevitably at lower than optimal concentrations. Access to late-stage material limits extensive optimization. Impurities from past reactions can interfere, especially with catalytic reactions. Therefore, chemical reactions on which one can rely at the front lines of a complex synthesis campaign emerge from the crucible of total synthesis as robust, dependable, and widely applied. Trost conceptualized "chemoselectivity" as a reagent's selective reaction of one functional group or reactive site in preference to others ( Trost , B. M. Science 1983 , 219 , 245 ). Chemoselectivity and functional group tolerance can be evaluated quickly using robustness screens ( Collins , K. D. Nat. Chem. 2013 , 5 , 597 ). A reaction may also be characterized by its "chemofidelity", that is, its reliable reaction with a functional group in any molecular context. For example, ketone reduction by an electride (dissolving metal conditions) exhibits high chemofidelity but low chemoselectivity: it usually works, but many other functional groups are reduced at similar rates. Conversely, alkene coordination chemistry effected by π Lewis acids can exhibit high chemoselectivity ( Trost , B. M. Science 1983 , 219 , 245 ) but low chemofidelity: it can be highly selective for alkenes but sensitive to the substitution pattern ( Larionov , E. Chem. Commun. 2014 , 50 , 9816 ). In contrast, alkenes undergo reliable, robust, and diverse hydrogen atom transfer reactions from metal hydrides to generate carbon-centered radicals. Although there are many potential applications of this chemistry, its functional group tolerance, high rates, and ease of execution have led to its rapid deployment in complex synthesis campaigns. Its success derives from high chemofidelity, that is, its dependable reactivity in many molecular environments and with many alkene substitution patterns. Metal hydride H atom transfer (MHAT) reactions convert diverse, simple building blocks to more stereochemically and functionally dense products ( Crossley , S. W. M. Chem. Rev. 2016 , 116 , 8912 ). When hydrogen is returned to the metal, MHAT can be considered the radical equivalent of Brønsted acid catalysis-itself a broad reactivity paradigm. This Account summarizes our group's contributions to method development, reagent discovery, and mechanistic interrogation. Our earliest contribution to this area-a stepwise hydrogenation with high chemoselectivity and high chemofidelity-has found application to many problems. More recently, we reported the first examples of dual-catalytic cross-couplings that rely on the merger of MHAT cycles and nickel catalysis. With time, we anticipate that MHAT will become a staple of chemical synthesis.
The implementation of any chemical reaction in a structurally complex setting ( King , S. M. J. Org. Chem. 2014 , 79 , 8937 ) confronts structurally defined barriers: steric environment, functional group reactivity, product instability, and through-bond electronics. However, there are also practical barriers. Late-stage reactions conducted on small quantities of material are run inevitably at lower than optimal concentrations. Access to late-stage material limits extensive optimization. Impurities from past reactions can interfere, especially with catalytic reactions. Therefore, chemical reactions on which one can rely at the front lines of a complex synthesis campaign emerge from the crucible of total synthesis as robust, dependable, and widely applied. Trost conceptualized "chemoselectivity" as a reagent's selective reaction of one functional group or reactive site in preference to others ( Trost , B. M. Science 1983 , 219 , 245 ). Chemoselectivity and functional group tolerance can be evaluated quickly using robustness screens ( Collins , K. D. Nat. Chem. 2013 , 5 , 597 ). A reaction may also be characterized by its "chemofidelity", that is, its reliable reaction with a functional group in any molecular context. For example, ketone reduction by an electride (dissolving metal conditions) exhibits high chemofidelity but low chemoselectivity: it usually works, but many other functional groups are reduced at similar rates. Conversely, alkene coordination chemistry effected by π Lewis acids can exhibit high chemoselectivity ( Trost , B. M. Science 1983 , 219 , 245 ) but low chemofidelity: it can be highly selective for alkenes but sensitive to the substitution pattern ( Larionov , E. Chem. Commun. 2014 , 50 , 9816 ). In contrast, alkenes undergo reliable, robust, and diverse hydrogen atom transfer reactions from metal hydrides to generate carbon-centered radicals. Although there are many potential applications of this chemistry, its functional group tolerance, high rates, and ease of execution have led to its rapid deployment in complex synthesis campaigns. Its success derives from high chemofidelity, that is, its dependable reactivity in many molecular environments and with many alkene substitution patterns. Metal hydride H atom transfer (MHAT) reactions convert diverse, simple building blocks to more stereochemically and functionally dense products ( Crossley , S. W. M. Chem. Rev. 2016 , 116 , 8912 ). When hydrogen is returned to the metal, MHAT can be considered the radical equivalent of Brønsted acid catalysis-itself a broad reactivity paradigm. This Account summarizes our group's contributions to method development, reagent discovery, and mechanistic interrogation. Our earliest contribution to this area-a stepwise hydrogenation with high chemoselectivity and high chemofidelity-has found application to many problems. More recently, we reported the first examples of dual-catalytic cross-couplings that rely on the merger of MHAT cycles and nickel catalysis. With time, we anticipate that MHAT will become a staple of chemical synthesis.The implementation of any chemical reaction in a structurally complex setting ( King , S. M. J. Org. Chem. 2014 , 79 , 8937 ) confronts structurally defined barriers: steric environment, functional group reactivity, product instability, and through-bond electronics. However, there are also practical barriers. Late-stage reactions conducted on small quantities of material are run inevitably at lower than optimal concentrations. Access to late-stage material limits extensive optimization. Impurities from past reactions can interfere, especially with catalytic reactions. Therefore, chemical reactions on which one can rely at the front lines of a complex synthesis campaign emerge from the crucible of total synthesis as robust, dependable, and widely applied. Trost conceptualized "chemoselectivity" as a reagent's selective reaction of one functional group or reactive site in preference to others ( Trost , B. M. Science 1983 , 219 , 245 ). Chemoselectivity and functional group tolerance can be evaluated quickly using robustness screens ( Collins , K. D. Nat. Chem. 2013 , 5 , 597 ). A reaction may also be characterized by its "chemofidelity", that is, its reliable reaction with a functional group in any molecular context. For example, ketone reduction by an electride (dissolving metal conditions) exhibits high chemofidelity but low chemoselectivity: it usually works, but many other functional groups are reduced at similar rates. Conversely, alkene coordination chemistry effected by π Lewis acids can exhibit high chemoselectivity ( Trost , B. M. Science 1983 , 219 , 245 ) but low chemofidelity: it can be highly selective for alkenes but sensitive to the substitution pattern ( Larionov , E. Chem. Commun. 2014 , 50 , 9816 ). In contrast, alkenes undergo reliable, robust, and diverse hydrogen atom transfer reactions from metal hydrides to generate carbon-centered radicals. Although there are many potential applications of this chemistry, its functional group tolerance, high rates, and ease of execution have led to its rapid deployment in complex synthesis campaigns. Its success derives from high chemofidelity, that is, its dependable reactivity in many molecular environments and with many alkene substitution patterns. Metal hydride H atom transfer (MHAT) reactions convert diverse, simple building blocks to more stereochemically and functionally dense products ( Crossley , S. W. M. Chem. Rev. 2016 , 116 , 8912 ). When hydrogen is returned to the metal, MHAT can be considered the radical equivalent of Brønsted acid catalysis-itself a broad reactivity paradigm. This Account summarizes our group's contributions to method development, reagent discovery, and mechanistic interrogation. Our earliest contribution to this area-a stepwise hydrogenation with high chemoselectivity and high chemofidelity-has found application to many problems. More recently, we reported the first examples of dual-catalytic cross-couplings that rely on the merger of MHAT cycles and nickel catalysis. With time, we anticipate that MHAT will become a staple of chemical synthesis.
Author Green, Samantha A
Vásquez-Céspedes, Suhelen
Shevick, Sophia L
Shenvi, Ryan A
Matos, Jeishla L M
Crossley, Steven W M
Author_xml – sequence: 1
  givenname: Samantha A
  surname: Green
  fullname: Green, Samantha A
  organization: Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
– sequence: 2
  givenname: Steven W M
  surname: Crossley
  fullname: Crossley, Steven W M
  organization: Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
– sequence: 3
  givenname: Jeishla L M
  surname: Matos
  fullname: Matos, Jeishla L M
  organization: Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
– sequence: 4
  givenname: Suhelen
  surname: Vásquez-Céspedes
  fullname: Vásquez-Céspedes, Suhelen
  organization: Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
– sequence: 5
  givenname: Sophia L
  surname: Shevick
  fullname: Shevick, Sophia L
  organization: Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
– sequence: 6
  givenname: Ryan A
  orcidid: 0000-0001-8353-6449
  surname: Shenvi
  fullname: Shenvi, Ryan A
  organization: Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30406655$$D View this record in MEDLINE/PubMed
BookMark eNpNj81LwzAYxoNM3If-ByI5eml9kzRJe3MUdcLEyzyXpHm7VdpmNu2h_vUOnODl-YAfDzxLMut8h4TcMogZcPZgyhCbsvRjN4Q4tQBC6AuyYJJDlKRZOvuX52QZwicA8ETpKzIXkIBSUi7I4-6AdFPvDzQ_YOur2mFTDxP1FX3DwTRRbk46faOjm8n1fo8dXQ--pbvedKHC_ppcVqYJeHP2Ffl4ftrlm2j7_vKar7eRSVQ2RAYybV1aVkwJh4pzm3A00kmptU452FRYLlUFp6pRlplAwY3VzhgnQQu-Ive_u8fef40YhqKtQ4lNYzr0Yyg4E4yLLEuyE3p3RkfboiuOfd2afir-XvMfwYRc4g
CitedBy_id crossref_primary_10_1002_cjoc_202100827
crossref_primary_10_1021_jacs_2c05366
crossref_primary_10_1002_anie_202310639
crossref_primary_10_1038_s41586_025_09308_0
crossref_primary_10_1002_ange_202500233
crossref_primary_10_1021_jacs_0c09544
crossref_primary_10_1021_jacs_4c01506
crossref_primary_10_1039_D4SC02356K
crossref_primary_10_1021_jacs_0c06717
crossref_primary_10_1055_s_0042_1751449
crossref_primary_10_1002_ange_201900849
crossref_primary_10_1039_D4SC05190D
crossref_primary_10_3390_molecules28166127
crossref_primary_10_1016_j_chempr_2025_102711
crossref_primary_10_1038_s41557_024_01714_7
crossref_primary_10_1016_j_tetlet_2019_151314
crossref_primary_10_1039_D4QO01398K
crossref_primary_10_1016_j_checat_2021_05_002
crossref_primary_10_1002_anie_201814524
crossref_primary_10_1021_jacs_5c11534
crossref_primary_10_1039_D2QO00125J
crossref_primary_10_1038_s41557_019_0407_6
crossref_primary_10_1021_jacs_1c05703
crossref_primary_10_1016_j_tet_2022_133172
crossref_primary_10_1021_jacs_9b04189
crossref_primary_10_1002_chem_202203286
crossref_primary_10_1002_anie_202506268
crossref_primary_10_1038_s41467_023_44030_3
crossref_primary_10_1039_D2QO01448C
crossref_primary_10_1002_ange_202316825
crossref_primary_10_1021_jacs_3c03178
crossref_primary_10_1055_a_2640_2026
crossref_primary_10_1016_j_tetlet_2023_154890
crossref_primary_10_1021_jacs_3c12329
crossref_primary_10_1021_jacs_0c08231
crossref_primary_10_1039_D0SC04112B
crossref_primary_10_1002_ange_202412828
crossref_primary_10_1002_chem_202101705
crossref_primary_10_1038_s41929_021_00661_7
crossref_primary_10_1002_ange_202214433
crossref_primary_10_1016_j_cclet_2023_108338
crossref_primary_10_1002_ejoc_201900363
crossref_primary_10_1002_ange_202102643
crossref_primary_10_1002_cctc_202300586
crossref_primary_10_1055_a_1463_9527
crossref_primary_10_1002_anie_202112390
crossref_primary_10_1021_jacs_3c10133
crossref_primary_10_1002_ange_202314870
crossref_primary_10_1021_jacs_5c07053
crossref_primary_10_1002_ange_202420563
crossref_primary_10_1038_s41929_021_00658_2
crossref_primary_10_1021_acscatal_5c03795
crossref_primary_10_1039_D2QO00793B
crossref_primary_10_1039_D5QO00509D
crossref_primary_10_1039_D0QO01454K
crossref_primary_10_1016_j_trechm_2020_01_004
crossref_primary_10_1002_anie_202007247
crossref_primary_10_1038_s41467_020_20872_z
crossref_primary_10_1002_ange_201814524
crossref_primary_10_1039_D5QO01020A
crossref_primary_10_1016_j_tetlet_2019_151507
crossref_primary_10_1039_D4QO01579G
crossref_primary_10_1016_j_cclet_2024_110239
crossref_primary_10_1039_D5CC01615K
crossref_primary_10_1021_jacs_0c02143
crossref_primary_10_1002_poc_4584
crossref_primary_10_1039_D0SC03057K
crossref_primary_10_1002_anie_202507961
crossref_primary_10_1002_anie_201915962
crossref_primary_10_1021_jacs_1c13370
crossref_primary_10_1002_ange_201911138
crossref_primary_10_1039_D0SC01820A
crossref_primary_10_1021_jacs_3c02410
crossref_primary_10_1002_ange_202506268
crossref_primary_10_1021_acs_inorgchem_4c01365
crossref_primary_10_1016_j_tetlet_2023_154404
crossref_primary_10_1021_jacs_4c04025
crossref_primary_10_1002_cjoc_202300529
crossref_primary_10_1021_acs_orglett_5c02888
crossref_primary_10_1021_acscatal_4c06770
crossref_primary_10_1002_anie_202102643
crossref_primary_10_1021_jacs_9b11472
crossref_primary_10_1021_jacs_1c00856
crossref_primary_10_1021_jacs_1c12395
crossref_primary_10_1021_jacs_2c09985
crossref_primary_10_1055_a_2066_0860
crossref_primary_10_1021_jacs_2c05266
crossref_primary_10_1002_anie_202213086
crossref_primary_10_1002_cjoc_202400751
crossref_primary_10_1021_jacs_4c12583
crossref_primary_10_1002_ange_202007247
crossref_primary_10_1002_chem_202203731
crossref_primary_10_1039_D4SC03355H
crossref_primary_10_1039_D5OB01151E
crossref_primary_10_1021_jacs_3c04850
crossref_primary_10_1002_ejoc_202401103
crossref_primary_10_1021_jacs_4c04047
crossref_primary_10_1021_jacs_4c03995
crossref_primary_10_1055_a_2406_3797
crossref_primary_10_1039_D5SC04274G
crossref_primary_10_1016_j_tet_2019_04_062
crossref_primary_10_1038_s41467_020_14459_x
crossref_primary_10_1039_D0QO01341B
crossref_primary_10_1002_ange_202112390
crossref_primary_10_1080_00397911_2024_2364845
crossref_primary_10_1021_jacs_1c12525
crossref_primary_10_1039_C9QO00108E
crossref_primary_10_1002_anie_202420563
crossref_primary_10_1002_anie_202412828
crossref_primary_10_1016_j_trechm_2022_09_001
crossref_primary_10_1038_s41929_025_01380_z
crossref_primary_10_1038_s41467_024_51376_9
crossref_primary_10_1002_ange_202213086
crossref_primary_10_1038_s41467_024_53281_7
crossref_primary_10_1016_j_tet_2020_131153
crossref_primary_10_1002_ajoc_202200488
crossref_primary_10_1021_jacs_5c06317
crossref_primary_10_1002_ange_202013881
crossref_primary_10_1002_anie_202503943
crossref_primary_10_1039_D5CC00153F
crossref_primary_10_1021_jacs_3c11285
crossref_primary_10_1021_jacsau_4c00529
crossref_primary_10_1021_jacs_2c00527
crossref_primary_10_1002_ange_202424790
crossref_primary_10_1002_adsc_202000751
crossref_primary_10_1002_ange_202305516
crossref_primary_10_1002_anie_202100541
crossref_primary_10_1039_D3QO01632C
crossref_primary_10_1002_ange_202507961
crossref_primary_10_1002_ange_202302483
crossref_primary_10_1002_anie_202214433
crossref_primary_10_1021_jacs_9b02844
crossref_primary_10_1002_ange_201915962
crossref_primary_10_1016_j_apcata_2025_120379
crossref_primary_10_1016_j_cclet_2025_111150
crossref_primary_10_1038_s41467_024_50356_3
crossref_primary_10_1002_anie_201911138
crossref_primary_10_1038_d41586_022_01740_w
crossref_primary_10_1039_D1QO01139A
crossref_primary_10_1038_s41929_023_01014_2
crossref_primary_10_1021_jacs_0c08631
crossref_primary_10_1002_ejoc_202401156
crossref_primary_10_1002_adsc_202000986
crossref_primary_10_1055_a_1711_6097
crossref_primary_10_1002_adsc_202100022
crossref_primary_10_1002_anie_202001677
crossref_primary_10_3762_bjoc_19_81
crossref_primary_10_1021_acs_organomet_5c00131
crossref_primary_10_1038_s41586_024_07675_8
crossref_primary_10_1021_jacs_2c08337
crossref_primary_10_1016_j_tet_2025_134497
crossref_primary_10_1039_D4CS01130A
crossref_primary_10_1016_j_tet_2025_134944
crossref_primary_10_1039_D3QO01403G
crossref_primary_10_1021_jacs_0c05017
crossref_primary_10_3390_molecules27010033
crossref_primary_10_1021_jacs_2c08278
crossref_primary_10_1039_D0SC04881J
crossref_primary_10_1002_ange_202503943
crossref_primary_10_1016_j_checat_2023_100526
crossref_primary_10_1002_anie_202013881
crossref_primary_10_1002_asia_202500448
crossref_primary_10_1002_anie_202314870
crossref_primary_10_1007_s11426_024_2310_4
crossref_primary_10_1021_jacs_4c10421
crossref_primary_10_1134_S0036024423120208
crossref_primary_10_1021_jacs_1c05479
crossref_primary_10_1002_anie_202305516
crossref_primary_10_1039_D5QO00308C
crossref_primary_10_1021_jacs_0c10333
crossref_primary_10_1039_D3SC04727J
crossref_primary_10_1002_anie_202302483
crossref_primary_10_1002_anie_202500233
crossref_primary_10_1002_anie_202316825
crossref_primary_10_1038_s41570_023_00534_6
crossref_primary_10_1002_adsc_9582
crossref_primary_10_1002_ajoc_202300579
crossref_primary_10_1021_jacs_9b05074
crossref_primary_10_1002_ange_202103222
crossref_primary_10_1002_cctc_202500348
crossref_primary_10_1002_ange_202001677
crossref_primary_10_1039_D5CS00453E
crossref_primary_10_1021_jacs_3c14828
crossref_primary_10_1016_j_tetlet_2024_155153
crossref_primary_10_1002_ejoc_202500162
crossref_primary_10_1002_chem_202301484
crossref_primary_10_1021_jacs_3c01991
crossref_primary_10_1007_s11426_020_9838_x
crossref_primary_10_1002_anie_202424790
crossref_primary_10_1021_jacs_9b10645
crossref_primary_10_1039_D3CS01150J
crossref_primary_10_1021_jacs_9b08577
crossref_primary_10_1246_bcsj_20220070
crossref_primary_10_1002_adsc_202100221
crossref_primary_10_1039_D2QO02052A
crossref_primary_10_1002_anie_202103222
crossref_primary_10_1002_ange_202100541
crossref_primary_10_1021_jacs_9b02238
crossref_primary_10_1021_jacs_1c02629
crossref_primary_10_1002_anie_202304882
crossref_primary_10_1021_jacs_3c05428
crossref_primary_10_1016_j_checat_2021_12_014
crossref_primary_10_1016_j_tetlet_2023_154902
crossref_primary_10_1055_a_1990_5102
crossref_primary_10_1002_chem_202102848
crossref_primary_10_1021_jacs_5c08224
crossref_primary_10_1002_chem_202403899
crossref_primary_10_1002_ange_202310639
crossref_primary_10_1002_ange_202304882
crossref_primary_10_1002_ejoc_202000391
crossref_primary_10_1038_s41467_022_28285_w
crossref_primary_10_1039_D4SC01084A
crossref_primary_10_1002_anie_201900849
crossref_primary_10_1039_D2QO01834A
crossref_primary_10_1038_s41467_024_51532_1
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.accounts.8b00337
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
ExternalDocumentID 30406655
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM122606
– fundername: NIGMS NIH HHS
  grantid: R01 GM104180
GroupedDBID ---
-DZ
-~X
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
6P2
7~N
85S
AABXI
ABJNI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AFXLT
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CGR
CS3
CUPRZ
CUY
CVF
D0L
EBS
ECM
ED~
EIF
EJD
F5P
GGK
GNL
IH2
IH9
JG~
LG6
NPM
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
XSW
YZZ
ZCA
~02
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a469t-a097bd8cf163de622b42ea5d55777820b83b256f07777e5c93e32ab7daad50732
IEDL.DBID 7X8
ISICitedReferencesCount 295
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451245900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-4898
IngestDate Fri Jul 11 13:09:19 EDT 2025
Mon Apr 07 02:14:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a469t-a097bd8cf163de622b42ea5d55777820b83b256f07777e5c93e32ab7daad50732
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8353-6449
PMID 30406655
PQID 2131239949
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2131239949
pubmed_primary_30406655
PublicationCentury 2000
PublicationDate 2018-11-20
PublicationDateYYYYMMDD 2018-11-20
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc Chem Res
PublicationYear 2018
SSID ssj0002467
Score 2.6657968
Snippet The implementation of any chemical reaction in a structurally complex setting ( King , S. M. J. Org. Chem. 2014 , 79 , 8937 ) confronts structurally defined...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2628
SubjectTerms Alkenes - chemistry
Catalysis
Cyclization
Hydrogen - chemistry
Hydrogenation
Iron - chemistry
Isomerism
Kinetics
Metals - chemistry
Nickel - chemistry
Thermodynamics
Title The High Chemofidelity of Metal-Catalyzed Hydrogen Atom Transfer
URI https://www.ncbi.nlm.nih.gov/pubmed/30406655
https://www.proquest.com/docview/2131239949
Volume 51
WOSCitedRecordID wos000451245900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qBb34ftQXEbzG7uaxyZ60FEsPtvSg0FtJNrPgwW7tVqH-eifbLT0JgpeFLCwkw7czXyaZ-Qi588b5VFlgwgvJpOaW2VxLZhTuPXQEPtFVofCzHgzMaJQO64RbWV-rXPnEylH7Igs58haPRRzqMGX6MP1gQTUqnK7WEhqbpCGQygRU69G6WziXlYIshqiISZOaVekcj1s2K3HClR5DeW8CtoX-nWRWwaa7_99pHpC9mmbS9hIXh2QDJkdkp7NSdzsmj4gPGi550PASEeYhEHJa5LQPSMhZJ-R1Ft_gaW_hZwXijLbnxTutglsOsxPy2n166fRYrabALG6B58xGqXbeZDkyMA8J505ysMorpXVomueMcMh_8giHGlSWChDcOu2t9UgaBT8lW5NiAueEZpmG3ECstLMyj8BE0tnEgdfGRs7pJrldGWeMywpHEHYCxWc5XpunSc6WFh5Pl201xgL9SZIodfGHry_JLjIXE4oCeXRFGjn-q3BNtrOv-Vs5u6lggM_BsP8DsmG9mA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+High+Chemofidelity+of+Metal-Catalyzed+Hydrogen+Atom+Transfer&rft.jtitle=Accounts+of+chemical+research&rft.au=Green%2C+Samantha+A&rft.au=Crossley%2C+Steven+W+M&rft.au=Matos%2C+Jeishla+L+M&rft.au=V%C3%A1squez-C%C3%A9spedes%2C+Suhelen&rft.date=2018-11-20&rft.eissn=1520-4898&rft.volume=51&rft.issue=11&rft.spage=2628&rft_id=info:doi/10.1021%2Facs.accounts.8b00337&rft_id=info%3Apmid%2F30406655&rft_id=info%3Apmid%2F30406655&rft.externalDocID=30406655
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4898&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4898&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4898&client=summon