The High Chemofidelity of Metal-Catalyzed Hydrogen Atom Transfer
The implementation of any chemical reaction in a structurally complex setting ( King , S. M. J. Org. Chem. 2014 , 79 , 8937 ) confronts structurally defined barriers: steric environment, functional group reactivity, product instability, and through-bond electronics. However, there are also practical...
Uložené v:
| Vydané v: | Accounts of chemical research Ročník 51; číslo 11; s. 2628 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
20.11.2018
|
| Predmet: | |
| ISSN: | 1520-4898, 1520-4898 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The implementation of any chemical reaction in a structurally complex setting ( King , S. M. J. Org. Chem. 2014 , 79 , 8937 ) confronts structurally defined barriers: steric environment, functional group reactivity, product instability, and through-bond electronics. However, there are also practical barriers. Late-stage reactions conducted on small quantities of material are run inevitably at lower than optimal concentrations. Access to late-stage material limits extensive optimization. Impurities from past reactions can interfere, especially with catalytic reactions. Therefore, chemical reactions on which one can rely at the front lines of a complex synthesis campaign emerge from the crucible of total synthesis as robust, dependable, and widely applied. Trost conceptualized "chemoselectivity" as a reagent's selective reaction of one functional group or reactive site in preference to others ( Trost , B. M. Science 1983 , 219 , 245 ). Chemoselectivity and functional group tolerance can be evaluated quickly using robustness screens ( Collins , K. D. Nat. Chem. 2013 , 5 , 597 ). A reaction may also be characterized by its "chemofidelity", that is, its reliable reaction with a functional group in any molecular context. For example, ketone reduction by an electride (dissolving metal conditions) exhibits high chemofidelity but low chemoselectivity: it usually works, but many other functional groups are reduced at similar rates. Conversely, alkene coordination chemistry effected by π Lewis acids can exhibit high chemoselectivity ( Trost , B. M. Science 1983 , 219 , 245 ) but low chemofidelity: it can be highly selective for alkenes but sensitive to the substitution pattern ( Larionov , E. Chem. Commun. 2014 , 50 , 9816 ). In contrast, alkenes undergo reliable, robust, and diverse hydrogen atom transfer reactions from metal hydrides to generate carbon-centered radicals. Although there are many potential applications of this chemistry, its functional group tolerance, high rates, and ease of execution have led to its rapid deployment in complex synthesis campaigns. Its success derives from high chemofidelity, that is, its dependable reactivity in many molecular environments and with many alkene substitution patterns. Metal hydride H atom transfer (MHAT) reactions convert diverse, simple building blocks to more stereochemically and functionally dense products ( Crossley , S. W. M. Chem. Rev. 2016 , 116 , 8912 ). When hydrogen is returned to the metal, MHAT can be considered the radical equivalent of Brønsted acid catalysis-itself a broad reactivity paradigm. This Account summarizes our group's contributions to method development, reagent discovery, and mechanistic interrogation. Our earliest contribution to this area-a stepwise hydrogenation with high chemoselectivity and high chemofidelity-has found application to many problems. More recently, we reported the first examples of dual-catalytic cross-couplings that rely on the merger of MHAT cycles and nickel catalysis. With time, we anticipate that MHAT will become a staple of chemical synthesis. |
|---|---|
| AbstractList | The implementation of any chemical reaction in a structurally complex setting ( King , S. M. J. Org. Chem. 2014 , 79 , 8937 ) confronts structurally defined barriers: steric environment, functional group reactivity, product instability, and through-bond electronics. However, there are also practical barriers. Late-stage reactions conducted on small quantities of material are run inevitably at lower than optimal concentrations. Access to late-stage material limits extensive optimization. Impurities from past reactions can interfere, especially with catalytic reactions. Therefore, chemical reactions on which one can rely at the front lines of a complex synthesis campaign emerge from the crucible of total synthesis as robust, dependable, and widely applied. Trost conceptualized "chemoselectivity" as a reagent's selective reaction of one functional group or reactive site in preference to others ( Trost , B. M. Science 1983 , 219 , 245 ). Chemoselectivity and functional group tolerance can be evaluated quickly using robustness screens ( Collins , K. D. Nat. Chem. 2013 , 5 , 597 ). A reaction may also be characterized by its "chemofidelity", that is, its reliable reaction with a functional group in any molecular context. For example, ketone reduction by an electride (dissolving metal conditions) exhibits high chemofidelity but low chemoselectivity: it usually works, but many other functional groups are reduced at similar rates. Conversely, alkene coordination chemistry effected by π Lewis acids can exhibit high chemoselectivity ( Trost , B. M. Science 1983 , 219 , 245 ) but low chemofidelity: it can be highly selective for alkenes but sensitive to the substitution pattern ( Larionov , E. Chem. Commun. 2014 , 50 , 9816 ). In contrast, alkenes undergo reliable, robust, and diverse hydrogen atom transfer reactions from metal hydrides to generate carbon-centered radicals. Although there are many potential applications of this chemistry, its functional group tolerance, high rates, and ease of execution have led to its rapid deployment in complex synthesis campaigns. Its success derives from high chemofidelity, that is, its dependable reactivity in many molecular environments and with many alkene substitution patterns. Metal hydride H atom transfer (MHAT) reactions convert diverse, simple building blocks to more stereochemically and functionally dense products ( Crossley , S. W. M. Chem. Rev. 2016 , 116 , 8912 ). When hydrogen is returned to the metal, MHAT can be considered the radical equivalent of Brønsted acid catalysis-itself a broad reactivity paradigm. This Account summarizes our group's contributions to method development, reagent discovery, and mechanistic interrogation. Our earliest contribution to this area-a stepwise hydrogenation with high chemoselectivity and high chemofidelity-has found application to many problems. More recently, we reported the first examples of dual-catalytic cross-couplings that rely on the merger of MHAT cycles and nickel catalysis. With time, we anticipate that MHAT will become a staple of chemical synthesis. The implementation of any chemical reaction in a structurally complex setting ( King , S. M. J. Org. Chem. 2014 , 79 , 8937 ) confronts structurally defined barriers: steric environment, functional group reactivity, product instability, and through-bond electronics. However, there are also practical barriers. Late-stage reactions conducted on small quantities of material are run inevitably at lower than optimal concentrations. Access to late-stage material limits extensive optimization. Impurities from past reactions can interfere, especially with catalytic reactions. Therefore, chemical reactions on which one can rely at the front lines of a complex synthesis campaign emerge from the crucible of total synthesis as robust, dependable, and widely applied. Trost conceptualized "chemoselectivity" as a reagent's selective reaction of one functional group or reactive site in preference to others ( Trost , B. M. Science 1983 , 219 , 245 ). Chemoselectivity and functional group tolerance can be evaluated quickly using robustness screens ( Collins , K. D. Nat. Chem. 2013 , 5 , 597 ). A reaction may also be characterized by its "chemofidelity", that is, its reliable reaction with a functional group in any molecular context. For example, ketone reduction by an electride (dissolving metal conditions) exhibits high chemofidelity but low chemoselectivity: it usually works, but many other functional groups are reduced at similar rates. Conversely, alkene coordination chemistry effected by π Lewis acids can exhibit high chemoselectivity ( Trost , B. M. Science 1983 , 219 , 245 ) but low chemofidelity: it can be highly selective for alkenes but sensitive to the substitution pattern ( Larionov , E. Chem. Commun. 2014 , 50 , 9816 ). In contrast, alkenes undergo reliable, robust, and diverse hydrogen atom transfer reactions from metal hydrides to generate carbon-centered radicals. Although there are many potential applications of this chemistry, its functional group tolerance, high rates, and ease of execution have led to its rapid deployment in complex synthesis campaigns. Its success derives from high chemofidelity, that is, its dependable reactivity in many molecular environments and with many alkene substitution patterns. Metal hydride H atom transfer (MHAT) reactions convert diverse, simple building blocks to more stereochemically and functionally dense products ( Crossley , S. W. M. Chem. Rev. 2016 , 116 , 8912 ). When hydrogen is returned to the metal, MHAT can be considered the radical equivalent of Brønsted acid catalysis-itself a broad reactivity paradigm. This Account summarizes our group's contributions to method development, reagent discovery, and mechanistic interrogation. Our earliest contribution to this area-a stepwise hydrogenation with high chemoselectivity and high chemofidelity-has found application to many problems. More recently, we reported the first examples of dual-catalytic cross-couplings that rely on the merger of MHAT cycles and nickel catalysis. With time, we anticipate that MHAT will become a staple of chemical synthesis.The implementation of any chemical reaction in a structurally complex setting ( King , S. M. J. Org. Chem. 2014 , 79 , 8937 ) confronts structurally defined barriers: steric environment, functional group reactivity, product instability, and through-bond electronics. However, there are also practical barriers. Late-stage reactions conducted on small quantities of material are run inevitably at lower than optimal concentrations. Access to late-stage material limits extensive optimization. Impurities from past reactions can interfere, especially with catalytic reactions. Therefore, chemical reactions on which one can rely at the front lines of a complex synthesis campaign emerge from the crucible of total synthesis as robust, dependable, and widely applied. Trost conceptualized "chemoselectivity" as a reagent's selective reaction of one functional group or reactive site in preference to others ( Trost , B. M. Science 1983 , 219 , 245 ). Chemoselectivity and functional group tolerance can be evaluated quickly using robustness screens ( Collins , K. D. Nat. Chem. 2013 , 5 , 597 ). A reaction may also be characterized by its "chemofidelity", that is, its reliable reaction with a functional group in any molecular context. For example, ketone reduction by an electride (dissolving metal conditions) exhibits high chemofidelity but low chemoselectivity: it usually works, but many other functional groups are reduced at similar rates. Conversely, alkene coordination chemistry effected by π Lewis acids can exhibit high chemoselectivity ( Trost , B. M. Science 1983 , 219 , 245 ) but low chemofidelity: it can be highly selective for alkenes but sensitive to the substitution pattern ( Larionov , E. Chem. Commun. 2014 , 50 , 9816 ). In contrast, alkenes undergo reliable, robust, and diverse hydrogen atom transfer reactions from metal hydrides to generate carbon-centered radicals. Although there are many potential applications of this chemistry, its functional group tolerance, high rates, and ease of execution have led to its rapid deployment in complex synthesis campaigns. Its success derives from high chemofidelity, that is, its dependable reactivity in many molecular environments and with many alkene substitution patterns. Metal hydride H atom transfer (MHAT) reactions convert diverse, simple building blocks to more stereochemically and functionally dense products ( Crossley , S. W. M. Chem. Rev. 2016 , 116 , 8912 ). When hydrogen is returned to the metal, MHAT can be considered the radical equivalent of Brønsted acid catalysis-itself a broad reactivity paradigm. This Account summarizes our group's contributions to method development, reagent discovery, and mechanistic interrogation. Our earliest contribution to this area-a stepwise hydrogenation with high chemoselectivity and high chemofidelity-has found application to many problems. More recently, we reported the first examples of dual-catalytic cross-couplings that rely on the merger of MHAT cycles and nickel catalysis. With time, we anticipate that MHAT will become a staple of chemical synthesis. |
| Author | Green, Samantha A Vásquez-Céspedes, Suhelen Shevick, Sophia L Shenvi, Ryan A Matos, Jeishla L M Crossley, Steven W M |
| Author_xml | – sequence: 1 givenname: Samantha A surname: Green fullname: Green, Samantha A organization: Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States – sequence: 2 givenname: Steven W M surname: Crossley fullname: Crossley, Steven W M organization: Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States – sequence: 3 givenname: Jeishla L M surname: Matos fullname: Matos, Jeishla L M organization: Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States – sequence: 4 givenname: Suhelen surname: Vásquez-Céspedes fullname: Vásquez-Céspedes, Suhelen organization: Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States – sequence: 5 givenname: Sophia L surname: Shevick fullname: Shevick, Sophia L organization: Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States – sequence: 6 givenname: Ryan A orcidid: 0000-0001-8353-6449 surname: Shenvi fullname: Shenvi, Ryan A organization: Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30406655$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj81LwzAYxoNM3If-ByI5eml9kzRJe3MUdcLEyzyXpHm7VdpmNu2h_vUOnODl-YAfDzxLMut8h4TcMogZcPZgyhCbsvRjN4Q4tQBC6AuyYJJDlKRZOvuX52QZwicA8ETpKzIXkIBSUi7I4-6AdFPvDzQ_YOur2mFTDxP1FX3DwTRRbk46faOjm8n1fo8dXQ--pbvedKHC_ppcVqYJeHP2Ffl4ftrlm2j7_vKar7eRSVQ2RAYybV1aVkwJh4pzm3A00kmptU452FRYLlUFp6pRlplAwY3VzhgnQQu-Ive_u8fef40YhqKtQ4lNYzr0Yyg4E4yLLEuyE3p3RkfboiuOfd2afir-XvMfwYRc4g |
| CitedBy_id | crossref_primary_10_1002_cjoc_202100827 crossref_primary_10_1021_jacs_2c05366 crossref_primary_10_1002_anie_202310639 crossref_primary_10_1038_s41586_025_09308_0 crossref_primary_10_1002_ange_202500233 crossref_primary_10_1021_jacs_0c09544 crossref_primary_10_1021_jacs_4c01506 crossref_primary_10_1039_D4SC02356K crossref_primary_10_1021_jacs_0c06717 crossref_primary_10_1055_s_0042_1751449 crossref_primary_10_1002_ange_201900849 crossref_primary_10_1039_D4SC05190D crossref_primary_10_3390_molecules28166127 crossref_primary_10_1016_j_chempr_2025_102711 crossref_primary_10_1038_s41557_024_01714_7 crossref_primary_10_1016_j_tetlet_2019_151314 crossref_primary_10_1039_D4QO01398K crossref_primary_10_1016_j_checat_2021_05_002 crossref_primary_10_1002_anie_201814524 crossref_primary_10_1021_jacs_5c11534 crossref_primary_10_1039_D2QO00125J crossref_primary_10_1038_s41557_019_0407_6 crossref_primary_10_1021_jacs_1c05703 crossref_primary_10_1016_j_tet_2022_133172 crossref_primary_10_1021_jacs_9b04189 crossref_primary_10_1002_chem_202203286 crossref_primary_10_1002_anie_202506268 crossref_primary_10_1038_s41467_023_44030_3 crossref_primary_10_1039_D2QO01448C crossref_primary_10_1002_ange_202316825 crossref_primary_10_1021_jacs_3c03178 crossref_primary_10_1055_a_2640_2026 crossref_primary_10_1016_j_tetlet_2023_154890 crossref_primary_10_1021_jacs_3c12329 crossref_primary_10_1021_jacs_0c08231 crossref_primary_10_1039_D0SC04112B crossref_primary_10_1002_ange_202412828 crossref_primary_10_1002_chem_202101705 crossref_primary_10_1038_s41929_021_00661_7 crossref_primary_10_1002_ange_202214433 crossref_primary_10_1016_j_cclet_2023_108338 crossref_primary_10_1002_ejoc_201900363 crossref_primary_10_1002_ange_202102643 crossref_primary_10_1002_cctc_202300586 crossref_primary_10_1055_a_1463_9527 crossref_primary_10_1002_anie_202112390 crossref_primary_10_1021_jacs_3c10133 crossref_primary_10_1002_ange_202314870 crossref_primary_10_1021_jacs_5c07053 crossref_primary_10_1002_ange_202420563 crossref_primary_10_1038_s41929_021_00658_2 crossref_primary_10_1021_acscatal_5c03795 crossref_primary_10_1039_D2QO00793B crossref_primary_10_1039_D5QO00509D crossref_primary_10_1039_D0QO01454K crossref_primary_10_1016_j_trechm_2020_01_004 crossref_primary_10_1002_anie_202007247 crossref_primary_10_1038_s41467_020_20872_z crossref_primary_10_1002_ange_201814524 crossref_primary_10_1039_D5QO01020A crossref_primary_10_1016_j_tetlet_2019_151507 crossref_primary_10_1039_D4QO01579G crossref_primary_10_1016_j_cclet_2024_110239 crossref_primary_10_1039_D5CC01615K crossref_primary_10_1021_jacs_0c02143 crossref_primary_10_1002_poc_4584 crossref_primary_10_1039_D0SC03057K crossref_primary_10_1002_anie_202507961 crossref_primary_10_1002_anie_201915962 crossref_primary_10_1021_jacs_1c13370 crossref_primary_10_1002_ange_201911138 crossref_primary_10_1039_D0SC01820A crossref_primary_10_1021_jacs_3c02410 crossref_primary_10_1002_ange_202506268 crossref_primary_10_1021_acs_inorgchem_4c01365 crossref_primary_10_1016_j_tetlet_2023_154404 crossref_primary_10_1021_jacs_4c04025 crossref_primary_10_1002_cjoc_202300529 crossref_primary_10_1021_acs_orglett_5c02888 crossref_primary_10_1021_acscatal_4c06770 crossref_primary_10_1002_anie_202102643 crossref_primary_10_1021_jacs_9b11472 crossref_primary_10_1021_jacs_1c00856 crossref_primary_10_1021_jacs_1c12395 crossref_primary_10_1021_jacs_2c09985 crossref_primary_10_1055_a_2066_0860 crossref_primary_10_1021_jacs_2c05266 crossref_primary_10_1002_anie_202213086 crossref_primary_10_1002_cjoc_202400751 crossref_primary_10_1021_jacs_4c12583 crossref_primary_10_1002_ange_202007247 crossref_primary_10_1002_chem_202203731 crossref_primary_10_1039_D4SC03355H crossref_primary_10_1039_D5OB01151E crossref_primary_10_1021_jacs_3c04850 crossref_primary_10_1002_ejoc_202401103 crossref_primary_10_1021_jacs_4c04047 crossref_primary_10_1021_jacs_4c03995 crossref_primary_10_1055_a_2406_3797 crossref_primary_10_1039_D5SC04274G crossref_primary_10_1016_j_tet_2019_04_062 crossref_primary_10_1038_s41467_020_14459_x crossref_primary_10_1039_D0QO01341B crossref_primary_10_1002_ange_202112390 crossref_primary_10_1080_00397911_2024_2364845 crossref_primary_10_1021_jacs_1c12525 crossref_primary_10_1039_C9QO00108E crossref_primary_10_1002_anie_202420563 crossref_primary_10_1002_anie_202412828 crossref_primary_10_1016_j_trechm_2022_09_001 crossref_primary_10_1038_s41929_025_01380_z crossref_primary_10_1038_s41467_024_51376_9 crossref_primary_10_1002_ange_202213086 crossref_primary_10_1038_s41467_024_53281_7 crossref_primary_10_1016_j_tet_2020_131153 crossref_primary_10_1002_ajoc_202200488 crossref_primary_10_1021_jacs_5c06317 crossref_primary_10_1002_ange_202013881 crossref_primary_10_1002_anie_202503943 crossref_primary_10_1039_D5CC00153F crossref_primary_10_1021_jacs_3c11285 crossref_primary_10_1021_jacsau_4c00529 crossref_primary_10_1021_jacs_2c00527 crossref_primary_10_1002_ange_202424790 crossref_primary_10_1002_adsc_202000751 crossref_primary_10_1002_ange_202305516 crossref_primary_10_1002_anie_202100541 crossref_primary_10_1039_D3QO01632C crossref_primary_10_1002_ange_202507961 crossref_primary_10_1002_ange_202302483 crossref_primary_10_1002_anie_202214433 crossref_primary_10_1021_jacs_9b02844 crossref_primary_10_1002_ange_201915962 crossref_primary_10_1016_j_apcata_2025_120379 crossref_primary_10_1016_j_cclet_2025_111150 crossref_primary_10_1038_s41467_024_50356_3 crossref_primary_10_1002_anie_201911138 crossref_primary_10_1038_d41586_022_01740_w crossref_primary_10_1039_D1QO01139A crossref_primary_10_1038_s41929_023_01014_2 crossref_primary_10_1021_jacs_0c08631 crossref_primary_10_1002_ejoc_202401156 crossref_primary_10_1002_adsc_202000986 crossref_primary_10_1055_a_1711_6097 crossref_primary_10_1002_adsc_202100022 crossref_primary_10_1002_anie_202001677 crossref_primary_10_3762_bjoc_19_81 crossref_primary_10_1021_acs_organomet_5c00131 crossref_primary_10_1038_s41586_024_07675_8 crossref_primary_10_1021_jacs_2c08337 crossref_primary_10_1016_j_tet_2025_134497 crossref_primary_10_1039_D4CS01130A crossref_primary_10_1016_j_tet_2025_134944 crossref_primary_10_1039_D3QO01403G crossref_primary_10_1021_jacs_0c05017 crossref_primary_10_3390_molecules27010033 crossref_primary_10_1021_jacs_2c08278 crossref_primary_10_1039_D0SC04881J crossref_primary_10_1002_ange_202503943 crossref_primary_10_1016_j_checat_2023_100526 crossref_primary_10_1002_anie_202013881 crossref_primary_10_1002_asia_202500448 crossref_primary_10_1002_anie_202314870 crossref_primary_10_1007_s11426_024_2310_4 crossref_primary_10_1021_jacs_4c10421 crossref_primary_10_1134_S0036024423120208 crossref_primary_10_1021_jacs_1c05479 crossref_primary_10_1002_anie_202305516 crossref_primary_10_1039_D5QO00308C crossref_primary_10_1021_jacs_0c10333 crossref_primary_10_1039_D3SC04727J crossref_primary_10_1002_anie_202302483 crossref_primary_10_1002_anie_202500233 crossref_primary_10_1002_anie_202316825 crossref_primary_10_1038_s41570_023_00534_6 crossref_primary_10_1002_adsc_9582 crossref_primary_10_1002_ajoc_202300579 crossref_primary_10_1021_jacs_9b05074 crossref_primary_10_1002_ange_202103222 crossref_primary_10_1002_cctc_202500348 crossref_primary_10_1002_ange_202001677 crossref_primary_10_1039_D5CS00453E crossref_primary_10_1021_jacs_3c14828 crossref_primary_10_1016_j_tetlet_2024_155153 crossref_primary_10_1002_ejoc_202500162 crossref_primary_10_1002_chem_202301484 crossref_primary_10_1021_jacs_3c01991 crossref_primary_10_1007_s11426_020_9838_x crossref_primary_10_1002_anie_202424790 crossref_primary_10_1021_jacs_9b10645 crossref_primary_10_1039_D3CS01150J crossref_primary_10_1021_jacs_9b08577 crossref_primary_10_1246_bcsj_20220070 crossref_primary_10_1002_adsc_202100221 crossref_primary_10_1039_D2QO02052A crossref_primary_10_1002_anie_202103222 crossref_primary_10_1002_ange_202100541 crossref_primary_10_1021_jacs_9b02238 crossref_primary_10_1021_jacs_1c02629 crossref_primary_10_1002_anie_202304882 crossref_primary_10_1021_jacs_3c05428 crossref_primary_10_1016_j_checat_2021_12_014 crossref_primary_10_1016_j_tetlet_2023_154902 crossref_primary_10_1055_a_1990_5102 crossref_primary_10_1002_chem_202102848 crossref_primary_10_1021_jacs_5c08224 crossref_primary_10_1002_chem_202403899 crossref_primary_10_1002_ange_202310639 crossref_primary_10_1002_ange_202304882 crossref_primary_10_1002_ejoc_202000391 crossref_primary_10_1038_s41467_022_28285_w crossref_primary_10_1039_D4SC01084A crossref_primary_10_1002_anie_201900849 crossref_primary_10_1039_D2QO01834A crossref_primary_10_1038_s41467_024_51532_1 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/acs.accounts.8b00337 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1520-4898 |
| ExternalDocumentID | 30406655 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM122606 – fundername: NIGMS NIH HHS grantid: R01 GM104180 |
| GroupedDBID | --- -DZ -~X 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 6P2 7~N 85S AABXI ABJNI ABMVS ABQRX ABUCX ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AFXLT AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CGR CS3 CUPRZ CUY CVF D0L EBS ECM ED~ EIF EJD F5P GGK GNL IH2 IH9 JG~ LG6 NPM P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 XSW YZZ ZCA ~02 7X8 ABBLG ABLBI |
| ID | FETCH-LOGICAL-a469t-a097bd8cf163de622b42ea5d55777820b83b256f07777e5c93e32ab7daad50732 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 295 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451245900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-4898 |
| IngestDate | Fri Jul 11 13:09:19 EDT 2025 Mon Apr 07 02:14:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a469t-a097bd8cf163de622b42ea5d55777820b83b256f07777e5c93e32ab7daad50732 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8353-6449 |
| PMID | 30406655 |
| PQID | 2131239949 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2131239949 pubmed_primary_30406655 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-20 |
| PublicationDateYYYYMMDD | 2018-11-20 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Accounts of chemical research |
| PublicationTitleAlternate | Acc Chem Res |
| PublicationYear | 2018 |
| SSID | ssj0002467 |
| Score | 2.6657968 |
| Snippet | The implementation of any chemical reaction in a structurally complex setting ( King , S. M. J. Org. Chem. 2014 , 79 , 8937 ) confronts structurally defined... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2628 |
| SubjectTerms | Alkenes - chemistry Catalysis Cyclization Hydrogen - chemistry Hydrogenation Iron - chemistry Isomerism Kinetics Metals - chemistry Nickel - chemistry Thermodynamics |
| Title | The High Chemofidelity of Metal-Catalyzed Hydrogen Atom Transfer |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30406655 https://www.proquest.com/docview/2131239949 |
| Volume | 51 |
| WOSCitedRecordID | wos000451245900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UCnrx_agvVvC6NtndZDcnLcXSgy09KPQWdrMT8GBTmyrUX-9smtCTIHgJJBDYDF9mvn3M9xFyJy3W1DwCFlgrmJRgmJU6ZgK8eBXg_Cer1PWf1WikJ5NkXC-4lfWxyiYnVonaFZlfI-_wUIS-D1MmD7MP5l2j_O5qbaGxSVoCqYxHtZqs1cK5rBxksUQFTOpEN61zPOyYrMQBV34M5b322Bbqd5JZFZv-_n-HeUD2appJuytcHJINmB6RnV7j7nZMHhEf1B_yoP4hIsyBJ-S0yOkQkJCznl_XWX6Do4OlmxeIM9pdFO-0Km45zE_Ia__ppTdgtZsCMzgFXjATJMo6neXIwBzEnFvJwUQuipTyonlWC4v8Jw_wVkGUJQIEN1Y5YxySRsFPyda0mMI5oZpXMjnO8NxKLIMGMLihzpKY59wp3ia3TXBS_Cy_BWGmUHyW6To8bXK2inA6W8lqpALzSRxH0cUf3r4ku8hctG8K5MEVaeX4r8I12c6-Fm_l_KaCAV5H4-EPFCm70w |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+High+Chemofidelity+of+Metal-Catalyzed+Hydrogen+Atom+Transfer&rft.jtitle=Accounts+of+chemical+research&rft.au=Green%2C+Samantha+A&rft.au=Crossley%2C+Steven+W+M&rft.au=Matos%2C+Jeishla+L+M&rft.au=V%C3%A1squez-C%C3%A9spedes%2C+Suhelen&rft.date=2018-11-20&rft.eissn=1520-4898&rft.volume=51&rft.issue=11&rft.spage=2628&rft_id=info:doi/10.1021%2Facs.accounts.8b00337&rft_id=info%3Apmid%2F30406655&rft_id=info%3Apmid%2F30406655&rft.externalDocID=30406655 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4898&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4898&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4898&client=summon |