In Silico Design of Covalent Organic Framework-Based Electrocatalysts

Covalent organic frameworks (COFs) are an emerging type of porous crystalline material for efficient catalysis of the oxygen evolution reaction (OER). However, it remains a grand challenge to address the best candidates from thousands of possible COFs. Here, we report a methodology for the design of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JACS Au Jg. 1; H. 9; S. 1497 - 1505
Hauptverfasser: Zhou, Wei, Yang, Li, Wang, Xiao, Zhao, Wenling, Yang, Junxia, Zhai, Dong, Sun, Lei, Deng, Weiqiao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: American Chemical Society 27.09.2021
ISSN:2691-3704, 2691-3704
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Covalent organic frameworks (COFs) are an emerging type of porous crystalline material for efficient catalysis of the oxygen evolution reaction (OER). However, it remains a grand challenge to address the best candidates from thousands of possible COFs. Here, we report a methodology for the design of the best candidate screened from 100 virtual M-N x O y (M = 3d transition metal)-based model catalysts via density functional theory (DFT) and machine learning (ML). The intrinsic descriptors of OER activity of M-N x O y were addressed by the machine learning and used for predicting the best structure with OER performances. One of the predicted structures with a Ni-N2O2 unit is subsequently employed to synthesize the corresponding Ni-COF. X-ray absorption spectra characterizations, including XANES and EXAFS, validate the successful synthesis of the Ni-N2O2 coordination environment. The studies of electrocatalytic activities confirm that Ni-COF is comparable with the best reported COF-based OER catalysts. The current density reaches 10 mA cm-2 at a low overpotential of 335 mV. Furthermore, Ni-COF is stable for over 65 h during electrochemical testing. This work provides an accelerating strategy for the design of new porous crystalline-material-based electrocatalysts.Covalent organic frameworks (COFs) are an emerging type of porous crystalline material for efficient catalysis of the oxygen evolution reaction (OER). However, it remains a grand challenge to address the best candidates from thousands of possible COFs. Here, we report a methodology for the design of the best candidate screened from 100 virtual M-N x O y (M = 3d transition metal)-based model catalysts via density functional theory (DFT) and machine learning (ML). The intrinsic descriptors of OER activity of M-N x O y were addressed by the machine learning and used for predicting the best structure with OER performances. One of the predicted structures with a Ni-N2O2 unit is subsequently employed to synthesize the corresponding Ni-COF. X-ray absorption spectra characterizations, including XANES and EXAFS, validate the successful synthesis of the Ni-N2O2 coordination environment. The studies of electrocatalytic activities confirm that Ni-COF is comparable with the best reported COF-based OER catalysts. The current density reaches 10 mA cm-2 at a low overpotential of 335 mV. Furthermore, Ni-COF is stable for over 65 h during electrochemical testing. This work provides an accelerating strategy for the design of new porous crystalline-material-based electrocatalysts.
AbstractList Covalent organic frameworks (COFs) are an emerging type of porous crystalline material for efficient catalysis of the oxygen evolution reaction (OER). However, it remains a grand challenge to address the best candidates from thousands of possible COFs. Here, we report a methodology for the design of the best candidate screened from 100 virtual M-N x O y (M = 3d transition metal)-based model catalysts via density functional theory (DFT) and machine learning (ML). The intrinsic descriptors of OER activity of M-N x O y were addressed by the machine learning and used for predicting the best structure with OER performances. One of the predicted structures with a Ni-N2O2 unit is subsequently employed to synthesize the corresponding Ni-COF. X-ray absorption spectra characterizations, including XANES and EXAFS, validate the successful synthesis of the Ni-N2O2 coordination environment. The studies of electrocatalytic activities confirm that Ni-COF is comparable with the best reported COF-based OER catalysts. The current density reaches 10 mA cm-2 at a low overpotential of 335 mV. Furthermore, Ni-COF is stable for over 65 h during electrochemical testing. This work provides an accelerating strategy for the design of new porous crystalline-material-based electrocatalysts.Covalent organic frameworks (COFs) are an emerging type of porous crystalline material for efficient catalysis of the oxygen evolution reaction (OER). However, it remains a grand challenge to address the best candidates from thousands of possible COFs. Here, we report a methodology for the design of the best candidate screened from 100 virtual M-N x O y (M = 3d transition metal)-based model catalysts via density functional theory (DFT) and machine learning (ML). The intrinsic descriptors of OER activity of M-N x O y were addressed by the machine learning and used for predicting the best structure with OER performances. One of the predicted structures with a Ni-N2O2 unit is subsequently employed to synthesize the corresponding Ni-COF. X-ray absorption spectra characterizations, including XANES and EXAFS, validate the successful synthesis of the Ni-N2O2 coordination environment. The studies of electrocatalytic activities confirm that Ni-COF is comparable with the best reported COF-based OER catalysts. The current density reaches 10 mA cm-2 at a low overpotential of 335 mV. Furthermore, Ni-COF is stable for over 65 h during electrochemical testing. This work provides an accelerating strategy for the design of new porous crystalline-material-based electrocatalysts.
Covalent organic frameworks (COFs) are an emerging type of porous crystalline material for efficient catalysis of the oxygen evolution reaction (OER). However, it remains a grand challenge to address the best candidates from thousands of possible COFs. Here, we report a methodology for the design of the best candidate screened from 100 virtual M–NxOy (M = 3d transition metal)-based model catalysts via density functional theory (DFT) and machine learning (ML). The intrinsic descriptors of OER activity of M–NxOy were addressed by the machine learning and used for predicting the best structure with OER performances. One of the predicted structures with a Ni–N2O2 unit is subsequently employed to synthesize the corresponding Ni–COF. X-ray absorption spectra characterizations, including XANES and EXAFS, validate the successful synthesis of the Ni–N2O2 coordination environment. The studies of electrocatalytic activities confirm that Ni–COF is comparable with the best reported COF-based OER catalysts. The current density reaches 10 mA cm–2 at a low overpotential of 335 mV. Furthermore, Ni–COF is stable for over 65 h during electrochemical testing. This work provides an accelerating strategy for the design of new porous crystalline-material-based electrocatalysts.
Author Deng, Weiqiao
Yang, Junxia
Yang, Li
Zhai, Dong
Zhao, Wenling
Sun, Lei
Zhou, Wei
Wang, Xiao
Author_xml – sequence: 1
  givenname: Wei
  surname: Zhou
  fullname: Zhou, Wei
  organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
– sequence: 2
  givenname: Li
  surname: Yang
  fullname: Yang, Li
  organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
– sequence: 3
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
  organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
– sequence: 4
  givenname: Wenling
  surname: Zhao
  fullname: Zhao, Wenling
  organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
– sequence: 5
  givenname: Junxia
  surname: Yang
  fullname: Yang, Junxia
  organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
– sequence: 6
  givenname: Dong
  orcidid: 0000-0003-3155-4607
  surname: Zhai
  fullname: Zhai, Dong
  organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
– sequence: 7
  givenname: Lei
  orcidid: 0000-0001-9960-205X
  surname: Sun
  fullname: Sun, Lei
  organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
– sequence: 8
  givenname: Weiqiao
  orcidid: 0000-0002-3671-5951
  surname: Deng
  fullname: Deng, Weiqiao
  organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China, State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
BookMark eNp1kc1vEzEQxa2qqC2lV8575LLBX7trX5AgTSFSpR6AszWxx8HBWRfbKep_z4ZEiFbqaayZ937j0XtNTsc0IiFvGZ0xytn7DdgCuxmzlPJOnZAL3mvWioHK0__e5-SqlA3da5igPT0j50L2VKpOXZDFcmy-hhhsaq6xhPXYJN_M0wNEHGtzl9cwBtvcZNji75R_tp-goGsWEW3NyUKF-FhqeUNeeYgFr471kny_WXybf2lv7z4v5x9vW5C9qq0feqa05r3y0EnlJKLlggl0HqjVVvpBeueAdR5EP809F_szrBZ04NqJS7I8cF2CjbnPYQv50SQI5m8j5bWBXIONaJzTXnGhtAAuxaCUpYoiXeEKteJcTKwPB9b9brVFZ6d7M8Qn0KeTMfww6_RglBy06ocJ8O4IyOnXDks121Asxggjpl0xvBs01bSTdJLODlKbUykZ_b81jJp9lOYQpTlGORnkM4MNFWpI-6-E-JLtD12vpOI
CitedBy_id crossref_primary_10_1039_D4EE03704A
crossref_primary_10_1038_s41467_025_56066_8
crossref_primary_10_1016_j_jallcom_2025_183889
crossref_primary_10_1016_j_cej_2023_141688
crossref_primary_10_1002_ange_202400323
crossref_primary_10_1016_j_seppur_2025_134358
crossref_primary_10_1039_D5TA03069B
crossref_primary_10_1021_acs_jpclett_5c01212
crossref_primary_10_1002_adfm_202211440
crossref_primary_10_1002_marc_202400836
crossref_primary_10_1038_s41467_023_42757_7
crossref_primary_10_1039_D5RA01430A
crossref_primary_10_1016_j_ijhydene_2024_10_229
crossref_primary_10_1039_D5TA00331H
crossref_primary_10_1002_anie_202214143
crossref_primary_10_1002_adfm_202408255
crossref_primary_10_1002_adfm_202310195
crossref_primary_10_1016_j_apcata_2025_120369
crossref_primary_10_1016_j_cej_2023_147682
crossref_primary_10_3390_nano12152646
crossref_primary_10_1002_adfm_202511972
crossref_primary_10_1016_j_colsurfa_2022_130799
crossref_primary_10_1016_j_mcat_2024_113972
crossref_primary_10_1021_jacs_5c06338
crossref_primary_10_1002_cctc_202400100
crossref_primary_10_1039_D1CS00983D
crossref_primary_10_1002_idm2_12140
crossref_primary_10_1039_D3EE01981K
crossref_primary_10_1002_anie_202400323
crossref_primary_10_1002_ange_202214143
crossref_primary_10_1016_j_jpowsour_2022_232389
crossref_primary_10_1007_s12274_022_4575_0
crossref_primary_10_1002_advs_202105912
crossref_primary_10_1016_j_bioelechem_2024_108728
Cites_doi 10.1039/D0CS01191F
10.1021/acs.accounts.0c00127
10.1038/s41929-018-0063-z
10.1039/C9CS00607A
10.1126/science.aac8343
10.1039/D0CS00013B
10.1021/ja500432h
10.1038/s41929-018-0085-6
10.1016/j.ccr.2017.09.001
10.1002/anie.201800269
10.1002/anie.202004841
10.1021/jacs.8b00947
10.1021/acsami.9b20837
10.1039/C9CS00906J
10.1016/j.nanoen.2020.104525
10.1016/j.ccr.2017.10.032
10.1021/jacs.7b04008
10.1002/aenm.201601189
10.1214/aos/1013203451
10.1021/acscatal.9b03790
10.1021/acs.chemrev.0c00004
10.1016/j.nanoen.2020.105418
10.1021/acs.chemrev.7b00689
10.1039/D0EE03697H
10.1016/j.isci.2021.102398
10.1021/jacs.9b03075
10.1038/s41929-017-0008-y
10.1038/nmat4367
10.1021/jacs.9b00485
10.1021/acssuschemeng.0c09192
10.1038/s41467-020-18154-9
10.1002/anie.201804349
10.1021/jacs.7b01523
10.1002/anie.202008787
ContentType Journal Article
Copyright 2021 The Authors. Published by American Chemical Society.
2021 The Authors. Published by American Chemical Society 2021 The Authors
Copyright_xml – notice: 2021 The Authors. Published by American Chemical Society.
– notice: 2021 The Authors. Published by American Chemical Society 2021 The Authors
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1021/jacsau.1c00258
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2691-3704
EndPage 1505
ExternalDocumentID oai_doaj_org_article_dd9f823893a243788c080e0bebe98223
PMC8479867
10_1021_jacsau_1c00258
GrantInformation_xml – fundername: ;
  grantid: 21525315
– fundername: ;
  grantid: 2019GN023
– fundername: ;
  grantid: 2017YFA0204800
– fundername: ;
  grantid: 2019HW016
GroupedDBID AAFWJ
AAYXX
ABBLG
ACS
ADUCK
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
GROUPED_DOAJ
M~E
N~.
OK1
PGMZT
RPM
VF5
7X8
5PM
ID FETCH-LOGICAL-a468t-f761899268fa548d4eec2313edfa0c9c4f74fdda15fa368d4f232691c930729d3
IEDL.DBID DOA
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000703333000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2691-3704
IngestDate Fri Oct 03 12:43:56 EDT 2025
Tue Sep 30 17:00:34 EDT 2025
Sun Nov 09 09:39:09 EST 2025
Sat Nov 29 06:47:50 EST 2025
Tue Nov 18 21:33:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a468t-f761899268fa548d4eec2313edfa0c9c4f74fdda15fa368d4f232691c930729d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3671-5951
0000-0001-9960-205X
0000-0003-3155-4607
OpenAccessLink https://doaj.org/article/dd9f823893a243788c080e0bebe98223
PMID 34604858
PQID 2579090540
PQPubID 23479
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_dd9f823893a243788c080e0bebe98223
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8479867
proquest_miscellaneous_2579090540
crossref_primary_10_1021_jacsau_1c00258
crossref_citationtrail_10_1021_jacsau_1c00258
PublicationCentury 2000
PublicationDate 2021-09-27
PublicationDateYYYYMMDD 2021-09-27
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-27
  day: 27
PublicationDecade 2020
PublicationTitle JACS Au
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref7/cit7
  doi: 10.1039/D0CS01191F
– ident: ref1/cit1
  doi: 10.1021/acs.accounts.0c00127
– ident: ref14/cit14
  doi: 10.1038/s41929-018-0063-z
– ident: ref3/cit3
  doi: 10.1039/C9CS00607A
– ident: ref19/cit19
  doi: 10.1126/science.aac8343
– ident: ref2/cit2
  doi: 10.1039/D0CS00013B
– ident: ref34/cit34
  doi: 10.1021/ja500432h
– ident: ref12/cit12
  doi: 10.1038/s41929-018-0085-6
– ident: ref5/cit5
  doi: 10.1016/j.ccr.2017.09.001
– ident: ref10/cit10
  doi: 10.1002/anie.201800269
– ident: ref17/cit17
  doi: 10.1002/anie.202004841
– ident: ref30/cit30
  doi: 10.1021/jacs.8b00947
– ident: ref26/cit26
  doi: 10.1021/acsami.9b20837
– ident: ref6/cit6
  doi: 10.1039/C9CS00906J
– ident: ref9/cit9
  doi: 10.1016/j.nanoen.2020.104525
– ident: ref22/cit22
  doi: 10.1016/j.ccr.2017.10.032
– ident: ref20/cit20
  doi: 10.1021/jacs.7b04008
– ident: ref33/cit33
  doi: 10.1002/aenm.201601189
– ident: ref29/cit29
  doi: 10.1214/aos/1013203451
– ident: ref11/cit11
  doi: 10.1021/acscatal.9b03790
– ident: ref25/cit25
  doi: 10.1021/acs.chemrev.0c00004
– ident: ref32/cit32
  doi: 10.1016/j.nanoen.2020.105418
– ident: ref4/cit4
  doi: 10.1021/acs.chemrev.7b00689
– ident: ref8/cit8
  doi: 10.1039/D0EE03697H
– ident: ref28/cit28
  doi: 10.1016/j.isci.2021.102398
– ident: ref31/cit31
  doi: 10.1021/jacs.9b03075
– ident: ref18/cit18
  doi: 10.1038/s41929-017-0008-y
– ident: ref13/cit13
  doi: 10.1038/nmat4367
– ident: ref21/cit21
  doi: 10.1021/jacs.9b00485
– ident: ref27/cit27
  doi: 10.1021/acssuschemeng.0c09192
– ident: ref23/cit23
  doi: 10.1038/s41467-020-18154-9
– ident: ref15/cit15
  doi: 10.1002/anie.201804349
– ident: ref24/cit24
  doi: 10.1021/jacs.7b01523
– ident: ref16/cit16
  doi: 10.1002/anie.202008787
SSID ssj0002513060
Score 2.4139438
Snippet Covalent organic frameworks (COFs) are an emerging type of porous crystalline material for efficient catalysis of the oxygen evolution reaction (OER). However,...
Covalent organic frameworks (COFs) are an emerging type of porous crystalline material for efficient catalysis of the oxygen evolution reaction (OER). However,...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1497
Title In Silico Design of Covalent Organic Framework-Based Electrocatalysts
URI https://www.proquest.com/docview/2579090540
https://pubmed.ncbi.nlm.nih.gov/PMC8479867
https://doaj.org/article/dd9f823893a243788c080e0bebe98223
Volume 1
WOSCitedRecordID wos000703333000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society (ACS) Open Access
  customDbUrl:
  eissn: 2691-3704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513060
  issn: 2691-3704
  databaseCode: N~.
  dateStart: 20210125
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org
  providerName: American Chemical Society
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2691-3704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513060
  issn: 2691-3704
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2691-3704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513060
  issn: 2691-3704
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB6SJdBcQpO2ZNM2KBDoya0te_U4drdeUmhCoQ_2ZmQ9yMLiDWtvoJf-9o5ke1kfSi65-CCNLTEja2Y0o28ArmnGSuUo-iZlaqNM6DIqnZCRpnzCy5RZFu6t_f7G7-7EYiG_75X68jlhLTxwy7hPxkgnqFerymPnCeGhsW1c4uAeei7gfGLLnjPl92DU2mgLxz1KI_UwQ7pW24-J9p1ioIUCWP_AwhzmR-4pnPlLOOksRfK5neEpHNjqDF7M-gJtryD_WpEfyxWKknwJeRhk7chsjUsHP0jaS5aazPvsq2iKCsuQvK17E45t_tRN_Rp-zfOfs5uoq4oQqYyJJnKcJegkUSacQnfDZNZqNNJSa5yKtdSZ45kzRiUTp1KG_Q6NJiYTLVOPEm7SNzCq1pU9B5JYfNlQp_CnzdCzUxMX24lLU-VEwg0dQ9RzqdAdZLivXLEqQuiaousQuFp0XB3Dhx39QwuW8V_KqWf6jsqDXIcGFH3Rib54SvRjuOpFViDrfaRDVXa9rQvch2QsvTU6Bj6Q5WDEYU-1vA_w2qivpWD84jmm-BaOqU-C8WEs_g5GzWZr38ORfmyW9eYSDvlCXIaVi8_bv_k_kID10g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Silico+Design+of+Covalent+Organic+Framework-Based+Electrocatalysts&rft.jtitle=JACS+Au&rft.au=Zhou%2C+Wei&rft.au=Yang%2C+Li&rft.au=Wang%2C+Xiao&rft.au=Zhao%2C+Wenling&rft.date=2021-09-27&rft.issn=2691-3704&rft.eissn=2691-3704&rft.volume=1&rft.issue=9&rft.spage=1497&rft_id=info:doi/10.1021%2Fjacsau.1c00258&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3704&client=summon