In Silico Design of Covalent Organic Framework-Based Electrocatalysts
Covalent organic frameworks (COFs) are an emerging type of porous crystalline material for efficient catalysis of the oxygen evolution reaction (OER). However, it remains a grand challenge to address the best candidates from thousands of possible COFs. Here, we report a methodology for the design of...
Gespeichert in:
| Veröffentlicht in: | JACS Au Jg. 1; H. 9; S. 1497 - 1505 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
American Chemical Society
27.09.2021
|
| ISSN: | 2691-3704, 2691-3704 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Covalent organic frameworks (COFs) are an emerging type of porous crystalline material for efficient catalysis of the oxygen evolution reaction (OER). However, it remains a grand challenge to address the best candidates from thousands of possible COFs. Here, we report a methodology for the design of the best candidate screened from 100 virtual M-N x O y (M = 3d transition metal)-based model catalysts via density functional theory (DFT) and machine learning (ML). The intrinsic descriptors of OER activity of M-N x O y were addressed by the machine learning and used for predicting the best structure with OER performances. One of the predicted structures with a Ni-N2O2 unit is subsequently employed to synthesize the corresponding Ni-COF. X-ray absorption spectra characterizations, including XANES and EXAFS, validate the successful synthesis of the Ni-N2O2 coordination environment. The studies of electrocatalytic activities confirm that Ni-COF is comparable with the best reported COF-based OER catalysts. The current density reaches 10 mA cm-2 at a low overpotential of 335 mV. Furthermore, Ni-COF is stable for over 65 h during electrochemical testing. This work provides an accelerating strategy for the design of new porous crystalline-material-based electrocatalysts.Covalent organic frameworks (COFs) are an emerging type of porous crystalline material for efficient catalysis of the oxygen evolution reaction (OER). However, it remains a grand challenge to address the best candidates from thousands of possible COFs. Here, we report a methodology for the design of the best candidate screened from 100 virtual M-N x O y (M = 3d transition metal)-based model catalysts via density functional theory (DFT) and machine learning (ML). The intrinsic descriptors of OER activity of M-N x O y were addressed by the machine learning and used for predicting the best structure with OER performances. One of the predicted structures with a Ni-N2O2 unit is subsequently employed to synthesize the corresponding Ni-COF. X-ray absorption spectra characterizations, including XANES and EXAFS, validate the successful synthesis of the Ni-N2O2 coordination environment. The studies of electrocatalytic activities confirm that Ni-COF is comparable with the best reported COF-based OER catalysts. The current density reaches 10 mA cm-2 at a low overpotential of 335 mV. Furthermore, Ni-COF is stable for over 65 h during electrochemical testing. This work provides an accelerating strategy for the design of new porous crystalline-material-based electrocatalysts. |
|---|---|
| AbstractList | Covalent organic frameworks (COFs) are an emerging type of porous crystalline material for efficient catalysis of the oxygen evolution reaction (OER). However, it remains a grand challenge to address the best candidates from thousands of possible COFs. Here, we report a methodology for the design of the best candidate screened from 100 virtual M-N x O y (M = 3d transition metal)-based model catalysts via density functional theory (DFT) and machine learning (ML). The intrinsic descriptors of OER activity of M-N x O y were addressed by the machine learning and used for predicting the best structure with OER performances. One of the predicted structures with a Ni-N2O2 unit is subsequently employed to synthesize the corresponding Ni-COF. X-ray absorption spectra characterizations, including XANES and EXAFS, validate the successful synthesis of the Ni-N2O2 coordination environment. The studies of electrocatalytic activities confirm that Ni-COF is comparable with the best reported COF-based OER catalysts. The current density reaches 10 mA cm-2 at a low overpotential of 335 mV. Furthermore, Ni-COF is stable for over 65 h during electrochemical testing. This work provides an accelerating strategy for the design of new porous crystalline-material-based electrocatalysts.Covalent organic frameworks (COFs) are an emerging type of porous crystalline material for efficient catalysis of the oxygen evolution reaction (OER). However, it remains a grand challenge to address the best candidates from thousands of possible COFs. Here, we report a methodology for the design of the best candidate screened from 100 virtual M-N x O y (M = 3d transition metal)-based model catalysts via density functional theory (DFT) and machine learning (ML). The intrinsic descriptors of OER activity of M-N x O y were addressed by the machine learning and used for predicting the best structure with OER performances. One of the predicted structures with a Ni-N2O2 unit is subsequently employed to synthesize the corresponding Ni-COF. X-ray absorption spectra characterizations, including XANES and EXAFS, validate the successful synthesis of the Ni-N2O2 coordination environment. The studies of electrocatalytic activities confirm that Ni-COF is comparable with the best reported COF-based OER catalysts. The current density reaches 10 mA cm-2 at a low overpotential of 335 mV. Furthermore, Ni-COF is stable for over 65 h during electrochemical testing. This work provides an accelerating strategy for the design of new porous crystalline-material-based electrocatalysts. Covalent organic frameworks (COFs) are an emerging type of porous crystalline material for efficient catalysis of the oxygen evolution reaction (OER). However, it remains a grand challenge to address the best candidates from thousands of possible COFs. Here, we report a methodology for the design of the best candidate screened from 100 virtual M–NxOy (M = 3d transition metal)-based model catalysts via density functional theory (DFT) and machine learning (ML). The intrinsic descriptors of OER activity of M–NxOy were addressed by the machine learning and used for predicting the best structure with OER performances. One of the predicted structures with a Ni–N2O2 unit is subsequently employed to synthesize the corresponding Ni–COF. X-ray absorption spectra characterizations, including XANES and EXAFS, validate the successful synthesis of the Ni–N2O2 coordination environment. The studies of electrocatalytic activities confirm that Ni–COF is comparable with the best reported COF-based OER catalysts. The current density reaches 10 mA cm–2 at a low overpotential of 335 mV. Furthermore, Ni–COF is stable for over 65 h during electrochemical testing. This work provides an accelerating strategy for the design of new porous crystalline-material-based electrocatalysts. |
| Author | Deng, Weiqiao Yang, Junxia Yang, Li Zhai, Dong Zhao, Wenling Sun, Lei Zhou, Wei Wang, Xiao |
| Author_xml | – sequence: 1 givenname: Wei surname: Zhou fullname: Zhou, Wei organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China – sequence: 2 givenname: Li surname: Yang fullname: Yang, Li organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China – sequence: 3 givenname: Xiao surname: Wang fullname: Wang, Xiao organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China – sequence: 4 givenname: Wenling surname: Zhao fullname: Zhao, Wenling organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China – sequence: 5 givenname: Junxia surname: Yang fullname: Yang, Junxia organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China – sequence: 6 givenname: Dong orcidid: 0000-0003-3155-4607 surname: Zhai fullname: Zhai, Dong organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China – sequence: 7 givenname: Lei orcidid: 0000-0001-9960-205X surname: Sun fullname: Sun, Lei organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China – sequence: 8 givenname: Weiqiao orcidid: 0000-0002-3671-5951 surname: Deng fullname: Deng, Weiqiao organization: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China, State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China |
| BookMark | eNp1kc1vEzEQxa2qqC2lV8575LLBX7trX5AgTSFSpR6AszWxx8HBWRfbKep_z4ZEiFbqaayZ937j0XtNTsc0IiFvGZ0xytn7DdgCuxmzlPJOnZAL3mvWioHK0__e5-SqlA3da5igPT0j50L2VKpOXZDFcmy-hhhsaq6xhPXYJN_M0wNEHGtzl9cwBtvcZNji75R_tp-goGsWEW3NyUKF-FhqeUNeeYgFr471kny_WXybf2lv7z4v5x9vW5C9qq0feqa05r3y0EnlJKLlggl0HqjVVvpBeueAdR5EP809F_szrBZ04NqJS7I8cF2CjbnPYQv50SQI5m8j5bWBXIONaJzTXnGhtAAuxaCUpYoiXeEKteJcTKwPB9b9brVFZ6d7M8Qn0KeTMfww6_RglBy06ocJ8O4IyOnXDks121Asxggjpl0xvBs01bSTdJLODlKbUykZ_b81jJp9lOYQpTlGORnkM4MNFWpI-6-E-JLtD12vpOI |
| CitedBy_id | crossref_primary_10_1039_D4EE03704A crossref_primary_10_1038_s41467_025_56066_8 crossref_primary_10_1016_j_jallcom_2025_183889 crossref_primary_10_1016_j_cej_2023_141688 crossref_primary_10_1002_ange_202400323 crossref_primary_10_1016_j_seppur_2025_134358 crossref_primary_10_1039_D5TA03069B crossref_primary_10_1021_acs_jpclett_5c01212 crossref_primary_10_1002_adfm_202211440 crossref_primary_10_1002_marc_202400836 crossref_primary_10_1038_s41467_023_42757_7 crossref_primary_10_1039_D5RA01430A crossref_primary_10_1016_j_ijhydene_2024_10_229 crossref_primary_10_1039_D5TA00331H crossref_primary_10_1002_anie_202214143 crossref_primary_10_1002_adfm_202408255 crossref_primary_10_1002_adfm_202310195 crossref_primary_10_1016_j_apcata_2025_120369 crossref_primary_10_1016_j_cej_2023_147682 crossref_primary_10_3390_nano12152646 crossref_primary_10_1002_adfm_202511972 crossref_primary_10_1016_j_colsurfa_2022_130799 crossref_primary_10_1016_j_mcat_2024_113972 crossref_primary_10_1021_jacs_5c06338 crossref_primary_10_1002_cctc_202400100 crossref_primary_10_1039_D1CS00983D crossref_primary_10_1002_idm2_12140 crossref_primary_10_1039_D3EE01981K crossref_primary_10_1002_anie_202400323 crossref_primary_10_1002_ange_202214143 crossref_primary_10_1016_j_jpowsour_2022_232389 crossref_primary_10_1007_s12274_022_4575_0 crossref_primary_10_1002_advs_202105912 crossref_primary_10_1016_j_bioelechem_2024_108728 |
| Cites_doi | 10.1039/D0CS01191F 10.1021/acs.accounts.0c00127 10.1038/s41929-018-0063-z 10.1039/C9CS00607A 10.1126/science.aac8343 10.1039/D0CS00013B 10.1021/ja500432h 10.1038/s41929-018-0085-6 10.1016/j.ccr.2017.09.001 10.1002/anie.201800269 10.1002/anie.202004841 10.1021/jacs.8b00947 10.1021/acsami.9b20837 10.1039/C9CS00906J 10.1016/j.nanoen.2020.104525 10.1016/j.ccr.2017.10.032 10.1021/jacs.7b04008 10.1002/aenm.201601189 10.1214/aos/1013203451 10.1021/acscatal.9b03790 10.1021/acs.chemrev.0c00004 10.1016/j.nanoen.2020.105418 10.1021/acs.chemrev.7b00689 10.1039/D0EE03697H 10.1016/j.isci.2021.102398 10.1021/jacs.9b03075 10.1038/s41929-017-0008-y 10.1038/nmat4367 10.1021/jacs.9b00485 10.1021/acssuschemeng.0c09192 10.1038/s41467-020-18154-9 10.1002/anie.201804349 10.1021/jacs.7b01523 10.1002/anie.202008787 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. Published by American Chemical Society. 2021 The Authors. Published by American Chemical Society 2021 The Authors |
| Copyright_xml | – notice: 2021 The Authors. Published by American Chemical Society. – notice: 2021 The Authors. Published by American Chemical Society 2021 The Authors |
| DBID | AAYXX CITATION 7X8 5PM DOA |
| DOI | 10.1021/jacsau.1c00258 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2691-3704 |
| EndPage | 1505 |
| ExternalDocumentID | oai_doaj_org_article_dd9f823893a243788c080e0bebe98223 PMC8479867 10_1021_jacsau_1c00258 |
| GrantInformation_xml | – fundername: ; grantid: 21525315 – fundername: ; grantid: 2019GN023 – fundername: ; grantid: 2017YFA0204800 – fundername: ; grantid: 2019HW016 |
| GroupedDBID | AAFWJ AAYXX ABBLG ACS ADUCK AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION EBS GROUPED_DOAJ M~E N~. OK1 PGMZT RPM VF5 7X8 5PM |
| ID | FETCH-LOGICAL-a468t-f761899268fa548d4eec2313edfa0c9c4f74fdda15fa368d4f232691c930729d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 54 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000703333000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2691-3704 |
| IngestDate | Fri Oct 03 12:43:56 EDT 2025 Tue Sep 30 17:00:34 EDT 2025 Sun Nov 09 09:39:09 EST 2025 Sat Nov 29 06:47:50 EST 2025 Tue Nov 18 21:33:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a468t-f761899268fa548d4eec2313edfa0c9c4f74fdda15fa368d4f232691c930729d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-3671-5951 0000-0001-9960-205X 0000-0003-3155-4607 |
| OpenAccessLink | https://doaj.org/article/dd9f823893a243788c080e0bebe98223 |
| PMID | 34604858 |
| PQID | 2579090540 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dd9f823893a243788c080e0bebe98223 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8479867 proquest_miscellaneous_2579090540 crossref_primary_10_1021_jacsau_1c00258 crossref_citationtrail_10_1021_jacsau_1c00258 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-27 |
| PublicationDateYYYYMMDD | 2021-09-27 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | JACS Au |
| PublicationYear | 2021 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
| References_xml | – ident: ref7/cit7 doi: 10.1039/D0CS01191F – ident: ref1/cit1 doi: 10.1021/acs.accounts.0c00127 – ident: ref14/cit14 doi: 10.1038/s41929-018-0063-z – ident: ref3/cit3 doi: 10.1039/C9CS00607A – ident: ref19/cit19 doi: 10.1126/science.aac8343 – ident: ref2/cit2 doi: 10.1039/D0CS00013B – ident: ref34/cit34 doi: 10.1021/ja500432h – ident: ref12/cit12 doi: 10.1038/s41929-018-0085-6 – ident: ref5/cit5 doi: 10.1016/j.ccr.2017.09.001 – ident: ref10/cit10 doi: 10.1002/anie.201800269 – ident: ref17/cit17 doi: 10.1002/anie.202004841 – ident: ref30/cit30 doi: 10.1021/jacs.8b00947 – ident: ref26/cit26 doi: 10.1021/acsami.9b20837 – ident: ref6/cit6 doi: 10.1039/C9CS00906J – ident: ref9/cit9 doi: 10.1016/j.nanoen.2020.104525 – ident: ref22/cit22 doi: 10.1016/j.ccr.2017.10.032 – ident: ref20/cit20 doi: 10.1021/jacs.7b04008 – ident: ref33/cit33 doi: 10.1002/aenm.201601189 – ident: ref29/cit29 doi: 10.1214/aos/1013203451 – ident: ref11/cit11 doi: 10.1021/acscatal.9b03790 – ident: ref25/cit25 doi: 10.1021/acs.chemrev.0c00004 – ident: ref32/cit32 doi: 10.1016/j.nanoen.2020.105418 – ident: ref4/cit4 doi: 10.1021/acs.chemrev.7b00689 – ident: ref8/cit8 doi: 10.1039/D0EE03697H – ident: ref28/cit28 doi: 10.1016/j.isci.2021.102398 – ident: ref31/cit31 doi: 10.1021/jacs.9b03075 – ident: ref18/cit18 doi: 10.1038/s41929-017-0008-y – ident: ref13/cit13 doi: 10.1038/nmat4367 – ident: ref21/cit21 doi: 10.1021/jacs.9b00485 – ident: ref27/cit27 doi: 10.1021/acssuschemeng.0c09192 – ident: ref23/cit23 doi: 10.1038/s41467-020-18154-9 – ident: ref15/cit15 doi: 10.1002/anie.201804349 – ident: ref24/cit24 doi: 10.1021/jacs.7b01523 – ident: ref16/cit16 doi: 10.1002/anie.202008787 |
| SSID | ssj0002513060 |
| Score | 2.4139438 |
| Snippet | Covalent organic frameworks (COFs) are an emerging type of porous crystalline material for efficient catalysis of the oxygen evolution reaction (OER). However,... Covalent organic frameworks (COFs) are an emerging type of porous crystalline material for efficient catalysis of the oxygen evolution reaction (OER). However,... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1497 |
| Title | In Silico Design of Covalent Organic Framework-Based Electrocatalysts |
| URI | https://www.proquest.com/docview/2579090540 https://pubmed.ncbi.nlm.nih.gov/PMC8479867 https://doaj.org/article/dd9f823893a243788c080e0bebe98223 |
| Volume | 1 |
| WOSCitedRecordID | wos000703333000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society (ACS) Open Access customDbUrl: eissn: 2691-3704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513060 issn: 2691-3704 databaseCode: N~. dateStart: 20210125 isFulltext: true titleUrlDefault: https://pubs.acs.org providerName: American Chemical Society – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2691-3704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513060 issn: 2691-3704 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2691-3704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513060 issn: 2691-3704 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB6SJdBcQpO2ZNM2KBDoya0te_U4drdeUmhCoQ_2ZmQ9yMLiDWtvoJf-9o5ke1kfSi65-CCNLTEja2Y0o28ArmnGSuUo-iZlaqNM6DIqnZCRpnzCy5RZFu6t_f7G7-7EYiG_75X68jlhLTxwy7hPxkgnqFerymPnCeGhsW1c4uAeei7gfGLLnjPl92DU2mgLxz1KI_UwQ7pW24-J9p1ioIUCWP_AwhzmR-4pnPlLOOksRfK5neEpHNjqDF7M-gJtryD_WpEfyxWKknwJeRhk7chsjUsHP0jaS5aazPvsq2iKCsuQvK17E45t_tRN_Rp-zfOfs5uoq4oQqYyJJnKcJegkUSacQnfDZNZqNNJSa5yKtdSZ45kzRiUTp1KG_Q6NJiYTLVOPEm7SNzCq1pU9B5JYfNlQp_CnzdCzUxMX24lLU-VEwg0dQ9RzqdAdZLivXLEqQuiaousQuFp0XB3Dhx39QwuW8V_KqWf6jsqDXIcGFH3Rib54SvRjuOpFViDrfaRDVXa9rQvch2QsvTU6Bj6Q5WDEYU-1vA_w2qivpWD84jmm-BaOqU-C8WEs_g5GzWZr38ORfmyW9eYSDvlCXIaVi8_bv_k_kID10g |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Silico+Design+of+Covalent+Organic+Framework-Based+Electrocatalysts&rft.jtitle=JACS+Au&rft.au=Zhou%2C+Wei&rft.au=Yang%2C+Li&rft.au=Wang%2C+Xiao&rft.au=Zhao%2C+Wenling&rft.date=2021-09-27&rft.issn=2691-3704&rft.eissn=2691-3704&rft.volume=1&rft.issue=9&rft.spage=1497&rft_id=info:doi/10.1021%2Fjacsau.1c00258&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3704&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3704&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3704&client=summon |