Towards Interpretable Physical‐Conceptual Catchment‐Scale Hydrological Modeling Using the Mass‐Conserving‐Perceptron
We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment‐scale hydrologic models using directed‐graph architectures based on the mass‐conserving perceptron (MCP) as the fundamental computational unit. Here, we focus on architectur...
Gespeichert in:
| Veröffentlicht in: | Water resources research Jg. 60; H. 10 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Washington
John Wiley & Sons, Inc
01.10.2024
Wiley |
| Schlagworte: | |
| ISSN: | 0043-1397, 1944-7973 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment‐scale hydrologic models using directed‐graph architectures based on the mass‐conserving perceptron (MCP) as the fundamental computational unit. Here, we focus on architectural complexity (depth) at a single location, rather than universal applicability (breadth) across large samples of catchments. The goal is to discover a minimal representation (numbers of cell‐states and flow paths) that represents the dominant processes that can explain the input‐state‐output behaviors of a given catchment, with particular emphasis given to simulating the full range (high, medium, and low) of flow dynamics. We find that a “HyMod Like” architecture with three cell‐states and two major flow pathways achieves such a representation at our study location, but that the additional incorporation of an input‐bypass mechanism significantly improves the timing and shape of the hydrograph, while the inclusion of bi‐directional groundwater mass exchanges significantly enhances the simulation of baseflow. Overall, our results demonstrate the importance of using multiple diagnostic metrics for model evaluation, while highlighting the need for properly selecting and designing the training metrics based on information‐theoretic foundations that are better suited to extracting information across the full range of flow dynamics. This study sets the stage for interpretable regional‐scale MCP‐based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes.
Plain Language Summary
We show that conventional machine learning technologies can be used to develop parsimonious, interpretable, catchment‐scale hydrologic models using the mass‐conserving perceptron (MCP) as a fundamental computational unit. Using data from the Leaf River Basin, we test a variety of minimal, dominant process, representations that can explain the input‐state‐output dynamics of the catchment. Our results demonstrate the importance of using multiple diagnostic metrics for evaluation and comparison of different model architectures, and highlight the importance of choosing (or designing) objective functions for model training that are properly suited to the task of extracting information across the full range of flow dynamics. This depth‐focus study sets the stage for interpretable regional‐scale MCP‐based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes.
Key Points
We utilize mass‐conserving perceptron (MCP) directed‐graph architectures to develop concise, interpretable catchment‐scale hydrologic models
We focus on model complexity (depth) at a single location, rather than universal applicability (breadth) across large samples of catchments
This study set the stage for interpretable MCP‐based modeling to find minimal representations in different hydroclimatic regimes |
|---|---|
| AbstractList | We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment‐scale hydrologic models using directed‐graph architectures based on the mass‐conserving perceptron (MCP) as the fundamental computational unit. Here, we focus on architectural complexity (depth) at a single location, rather than universal applicability (breadth) across large samples of catchments. The goal is to discover a minimal representation (numbers of cell‐states and flow paths) that represents the dominant processes that can explain the input‐state‐output behaviors of a given catchment, with particular emphasis given to simulating the full range (high, medium, and low) of flow dynamics. We find that a “HyMod Like” architecture with three cell‐states and two major flow pathways achieves such a representation at our study location, but that the additional incorporation of an input‐bypass mechanism significantly improves the timing and shape of the hydrograph, while the inclusion of bi‐directional groundwater mass exchanges significantly enhances the simulation of baseflow. Overall, our results demonstrate the importance of using multiple diagnostic metrics for model evaluation, while highlighting the need for properly selecting and designing the training metrics based on information‐theoretic foundations that are better suited to extracting information across the full range of flow dynamics. This study sets the stage for interpretable regional‐scale MCP‐based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes. Abstract We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment‐scale hydrologic models using directed‐graph architectures based on the mass‐conserving perceptron (MCP) as the fundamental computational unit. Here, we focus on architectural complexity (depth) at a single location, rather than universal applicability (breadth) across large samples of catchments. The goal is to discover a minimal representation (numbers of cell‐states and flow paths) that represents the dominant processes that can explain the input‐state‐output behaviors of a given catchment, with particular emphasis given to simulating the full range (high, medium, and low) of flow dynamics. We find that a “HyMod Like” architecture with three cell‐states and two major flow pathways achieves such a representation at our study location, but that the additional incorporation of an input‐bypass mechanism significantly improves the timing and shape of the hydrograph, while the inclusion of bi‐directional groundwater mass exchanges significantly enhances the simulation of baseflow. Overall, our results demonstrate the importance of using multiple diagnostic metrics for model evaluation, while highlighting the need for properly selecting and designing the training metrics based on information‐theoretic foundations that are better suited to extracting information across the full range of flow dynamics. This study sets the stage for interpretable regional‐scale MCP‐based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes. We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment‐scale hydrologic models using directed‐graph architectures based on the mass‐conserving perceptron (MCP) as the fundamental computational unit. Here, we focus on architectural complexity (depth) at a single location, rather than universal applicability (breadth) across large samples of catchments. The goal is to discover a minimal representation (numbers of cell‐states and flow paths) that represents the dominant processes that can explain the input‐state‐output behaviors of a given catchment, with particular emphasis given to simulating the full range (high, medium, and low) of flow dynamics. We find that a “ HyMod Like ” architecture with three cell‐states and two major flow pathways achieves such a representation at our study location, but that the additional incorporation of an input‐bypass mechanism significantly improves the timing and shape of the hydrograph, while the inclusion of bi‐directional groundwater mass exchanges significantly enhances the simulation of baseflow. Overall, our results demonstrate the importance of using multiple diagnostic metrics for model evaluation, while highlighting the need for properly selecting and designing the training metrics based on information‐theoretic foundations that are better suited to extracting information across the full range of flow dynamics. This study sets the stage for interpretable regional‐scale MCP‐based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes. We show that conventional machine learning technologies can be used to develop parsimonious, interpretable, catchment‐scale hydrologic models using the mass‐conserving perceptron (MCP) as a fundamental computational unit. Using data from the Leaf River Basin, we test a variety of minimal, dominant process, representations that can explain the input‐state‐output dynamics of the catchment. Our results demonstrate the importance of using multiple diagnostic metrics for evaluation and comparison of different model architectures, and highlight the importance of choosing (or designing) objective functions for model training that are properly suited to the task of extracting information across the full range of flow dynamics. This depth‐focus study sets the stage for interpretable regional‐scale MCP‐based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes. We utilize mass‐conserving perceptron (MCP) directed‐graph architectures to develop concise, interpretable catchment‐scale hydrologic models We focus on model complexity (depth) at a single location, rather than universal applicability (breadth) across large samples of catchments This study set the stage for interpretable MCP‐based modeling to find minimal representations in different hydroclimatic regimes We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment‐scale hydrologic models using directed‐graph architectures based on the mass‐conserving perceptron (MCP) as the fundamental computational unit. Here, we focus on architectural complexity (depth) at a single location, rather than universal applicability (breadth) across large samples of catchments. The goal is to discover a minimal representation (numbers of cell‐states and flow paths) that represents the dominant processes that can explain the input‐state‐output behaviors of a given catchment, with particular emphasis given to simulating the full range (high, medium, and low) of flow dynamics. We find that a “HyMod Like” architecture with three cell‐states and two major flow pathways achieves such a representation at our study location, but that the additional incorporation of an input‐bypass mechanism significantly improves the timing and shape of the hydrograph, while the inclusion of bi‐directional groundwater mass exchanges significantly enhances the simulation of baseflow. Overall, our results demonstrate the importance of using multiple diagnostic metrics for model evaluation, while highlighting the need for properly selecting and designing the training metrics based on information‐theoretic foundations that are better suited to extracting information across the full range of flow dynamics. This study sets the stage for interpretable regional‐scale MCP‐based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes. Plain Language Summary We show that conventional machine learning technologies can be used to develop parsimonious, interpretable, catchment‐scale hydrologic models using the mass‐conserving perceptron (MCP) as a fundamental computational unit. Using data from the Leaf River Basin, we test a variety of minimal, dominant process, representations that can explain the input‐state‐output dynamics of the catchment. Our results demonstrate the importance of using multiple diagnostic metrics for evaluation and comparison of different model architectures, and highlight the importance of choosing (or designing) objective functions for model training that are properly suited to the task of extracting information across the full range of flow dynamics. This depth‐focus study sets the stage for interpretable regional‐scale MCP‐based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes. Key Points We utilize mass‐conserving perceptron (MCP) directed‐graph architectures to develop concise, interpretable catchment‐scale hydrologic models We focus on model complexity (depth) at a single location, rather than universal applicability (breadth) across large samples of catchments This study set the stage for interpretable MCP‐based modeling to find minimal representations in different hydroclimatic regimes |
| Author | Gupta, Hoshin V. Wang, Yuan‐Heng |
| Author_xml | – sequence: 1 givenname: Yuan‐Heng orcidid: 0000-0002-9360-6639 surname: Wang fullname: Wang, Yuan‐Heng email: yhwang0730@gmail.com, YuanHengWang@lbl.gov, yhwang0730@arizona.edu organization: Earth and Environmental Sciences Area – sequence: 2 givenname: Hoshin V. surname: Gupta fullname: Gupta, Hoshin V. organization: The University of Arizona |
| BookMark | eNp9kc9u1DAQhyNUJLaFGw8QiQsHAv6XODmiCOhKraiWVj1aE3uym5U3Xmwv1Uoc-gh9Rp4EhyCEKsHFln_zzWdbc5qdjG7ELHtJyVtKWPOOESZuV4RLxsSTbEEbIQrZSH6SLQgRvKC8kc-y0xC2hFBRVnKRfb92d-BNyJdjRL_3GKGzmF9tjmHQYH_cP7Ru1LiPB7B5C1FvdjjGFH9JVczPj8Y769YTm186g3YY1_lNmNa4wfwSQpgdAf23lKbDFfpJ6N34PHvagw344vd-lt18_HDdnhcXnz8t2_cXBYhK1oVpEJuKVb0BDlrzihBempJ0na6RN50QVBAjG5bKRpC-QgNdD7KmYDpDgZ9ly9lrHGzV3g878EflYFC_AufXCnwctEXFjNDIO0ZJU4madcCSpBLMdCjLSkyu17Nr793XA4aodkPQaC2M6A5BcVryWnAp64S-eoRu3cGP6aeJYlRIKuoyUW9mSnsXgsf-zwMpUdNY1d9jTTh7hOshQhzcGD0M9l9NfG66Gywe_3uBul21KyaFqPlPgyW70g |
| CitedBy_id | crossref_primary_10_1093_jrsssc_qlaf009 crossref_primary_10_1029_2023WR036461 |
| Cites_doi | 10.1007/978-981-16-5501-2_7 10.1029/2022WR034118 10.1016/j.jhydrol.2023.130141 10.1029/WR019i001p00251 10.5194/hess‐18‐463‐2014 10.1038/s41467‐018‐03629‐7 10.1016/j.aej.2021.04.100 10.1002/hyp.9660 10.1029/95WR01955 10.1002/2013WR01509 10.1038/s41586‐019‐0912‐1 10.1162/106365602320169811 10.5194/hess‐23‐4323‐2019 10.1029/2019WR026065 10.1029/2020WR028338 10.1038/s41586‐024‐07145‐1 10.1007/s11831‐022‐1003‐4 10.1162/tacl_a_00489 10.1029/2022WR033918 10.1029/2011WR011044 10.1016/j.envsoft.2023.105779 10.31223/OSF.IO/53TE4 10.1029/WR019i001p00260 10.5194/gmd‐2023‐190 10.1029/2022WR032404 10.5194/hess‐28‐945‐2024 10.1061/(ASCE)1084‐0699(1999)4:2(135) 10.1029/2007WR006735 10.1002/2014WR015895 10.1029/2023WR036461 10.1016/j.envsoft.2023.105831 10.1016/j.jhydrol.2009.08.003 10.1029/92WR02617 10.1137/1.9781611975673.63 10.1029/2019WR024922 10.1162/neco.1997.9.8.1735 10.1109/TAI.2022.3200028 10.1080/09715010.2018.1556124 10.5194/hess‐28‐4187‐2024 10.5194/hess‐28‐2705‐2024 10.1371/journal.pone.0145180 10.1029/2019WR026471 10.1111/1752‐1688.12586 10.1029/WR019i001p00269 10.1038/470316a 10.1029/2020WR029328 10.1111/1752‐1688.12964 10.1029/2022WR034352 10.1016/j.jhydrol.2022.128618 10.1029/2021WR031818 10.5194/hess‐26‐5085‐2022 10.1016/j.envsoft.2023.105730 10.1038/s41467‐021‐26176‐w 10.1029/2022WR033684 10.1002/wat2.1386 10.1029/2010WR010174 10.1016/j.jhydrol.2023.129666 10.5194/hess‐27‐2357‐2023 10.1029/91WR02985 10.1029/2008WR007327 10.1016/j.envsoft.2020.104728 10.1029/2023WR036710 10.1080/02626667.2013.803183 10.5194/gmd‐15‐3417‐2022 10.1029/2021WR030394 10.1623/hysj.48.6.857.51421 10.1029/2020GL088229 10.1038/s43247‐023‐00751‐3 10.1038/s41561‐021‐00865‐3 10.5194/hess‐27‐1‐2023 10.1029/2021WR031033 10.1029/2022WR033168 10.1002/wrcr.20161 10.1029/2019WR024918 10.5194/hess‐22‐6005‐2018 10.1038/s41597‐023‐01975‐w 10.2166/nh.2010.007 10.1029/2021WR031548 10.1016/S0022‐1694(03)00225‐7 10.5194/hess‐27‐139‐2023 10.1029/97WR03495 10.1214/aos/1176344136 10.1029/2008JD010636 10.1029/2019WR026793 10.1029/2023WR035803 10.1016/j.jhydrol.2020.124700 10.1029/2020WR027948 10.5194/hess‐17‐1161‐2013 10.1029/WR021i004p00473 10.5194/hess‐23‐5089‐2019 10.1038/s43017‐023‐00178‐5 10.1109/tac.1974.1100705 10.1016/j.jhydrol.2022.128340 10.1029/2021WR030185 10.1029/2019GL085722 |
| ContentType | Journal Article |
| Copyright | 2024. The Author(s). 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. The Author(s). – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 DOA |
| DOI | 10.1029/2024WR037224 |
| DatabaseName | Open Access: Wiley-Blackwell Open Access Journals CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic Directory of Open Access Journals |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics |
| EISSN | 1944-7973 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_2d4ce3b21096482ba21ad642dbe7564a 10_1029_2024WR037224 WRCR27448 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: University of Arizona – fundername: Australian Centre of Excellence for Climate System Science funderid: CE110001028 – fundername: University of Arizona Data Science Institute |
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A00 A6W AAESR AAHBH AAHHS AAIHA AAIKC AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AIDBO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR WYJ XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAMMB AAYXX ADXHL AEFGJ AETEA AFFHD AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION GROUPED_DOAJ PHGZM PHGZT PQGLB WIN 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| ID | FETCH-LOGICAL-a4678-d9ee9626fda3acc360035d50bbc8e39b44140d792a3ad40f6edabfa781adbd1a3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001330837300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1397 |
| IngestDate | Tue Oct 14 19:08:31 EDT 2025 Tue Aug 05 11:36:51 EDT 2025 Sat Aug 23 05:21:03 EDT 2025 Sat Nov 29 08:11:33 EST 2025 Tue Nov 18 20:51:13 EST 2025 Wed Jan 22 17:13:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4678-d9ee9626fda3acc360035d50bbc8e39b44140d792a3ad40f6edabfa781adbd1a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9360-6639 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024WR037224 |
| PQID | 3121471485 |
| PQPubID | 105507 |
| PageCount | 32 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2d4ce3b21096482ba21ad642dbe7564a proquest_miscellaneous_3153843778 proquest_journals_3121471485 crossref_primary_10_1029_2024WR037224 crossref_citationtrail_10_1029_2024WR037224 wiley_primary_10_1029_2024WR037224_WRCR27448 |
| PublicationCentury | 2000 |
| PublicationDate | October 2024 2024-10-00 20241001 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Water resources research |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | e_1_2_12_1_103_1 e_1_2_12_1_93_1 e_1_2_12_1_70_1 e_1_2_12_1_51_1 e_1_2_12_1_74_1 e_1_2_12_1_55_1 e_1_2_12_1_78_1 e_1_2_12_1_29_1 e_1_2_12_1_25_1 e_1_2_12_1_48_1 e_1_2_12_1_21_1 e_1_2_12_1_44_1 e_1_2_12_1_5_1 e_1_2_12_1_40_1 e_1_2_12_1_9_1 e_1_2_12_1_107_1 Schrunner S. (e_1_2_12_1_97_1) 2023 e_1_2_12_1_114_1 e_1_2_12_1_81_1 e_1_2_12_1_110_1 e_1_2_12_1_62_1 e_1_2_12_1_66_1 Nash J. E. (e_1_2_12_1_75_1) 1957; 3 e_1_2_12_1_18_1 e_1_2_12_1_14_1 e_1_2_12_1_37_1 Lee K. H. (e_1_2_12_1_69_1) 2018 e_1_2_12_1_33_1 e_1_2_12_1_118_1 e_1_2_12_1_102_1 e_1_2_12_1_90_1 e_1_2_12_1_52_1 e_1_2_12_1_94_1 e_1_2_12_1_56_1 e_1_2_12_1_79_1 e_1_2_12_1_98_1 e_1_2_12_1_28_1 e_1_2_12_1_47_1 e_1_2_12_1_24_1 e_1_2_12_1_43_1 Burnash R. J. (e_1_2_12_1_11_1) 1973 e_1_2_12_1_6_1 e_1_2_12_1_20_1 Peck E. L. (e_1_2_12_1_85_1) 1976 e_1_2_12_1_106_1 e_1_2_12_1_113_1 Hoedt P. J. (e_1_2_12_1_46_1) 2021 e_1_2_12_1_63_1 e_1_2_12_1_86_1 Elsken T. (e_1_2_12_1_19_1) 2019; 20 e_1_2_12_1_67_1 Pagano T. C. (e_1_2_12_1_82_1) 2016 e_1_2_12_1_17_1 Aghakouchak A. (e_1_2_12_1_2_1) 2010; 26 e_1_2_12_1_36_1 e_1_2_12_1_13_1 e_1_2_12_1_32_1 e_1_2_12_1_117_1 e_1_2_12_1_101_1 e_1_2_12_1_91_1 e_1_2_12_1_3_1 Yang Y. (e_1_2_12_1_116_1) 2023 e_1_2_12_1_53_1 e_1_2_12_1_95_1 e_1_2_12_1_76_1 e_1_2_12_1_57_1 e_1_2_12_1_99_1 Quiñones M. P. (e_1_2_12_1_89_1) 2021 e_1_2_12_1_27_1 Kingma D. P. (e_1_2_12_1_59_1) 2014 Liu D. (e_1_2_12_1_71_1) 2017 e_1_2_12_1_23_1 Liu H. (e_1_2_12_1_72_1) 2018 e_1_2_12_1_42_1 e_1_2_12_1_7_1 e_1_2_12_1_109_1 e_1_2_12_1_105_1 e_1_2_12_1_112_1 e_1_2_12_1_60_1 e_1_2_12_1_64_1 e_1_2_12_1_87_1 e_1_2_12_1_16_1 e_1_2_12_1_39_1 Boyle D. P. (e_1_2_12_1_10_1) 2000 Gupta H. V. (e_1_2_12_1_35_1) 2003 e_1_2_12_1_12_1 Khatami S. (e_1_2_12_1_58_1) 2020 e_1_2_12_1_31_1 LeCun Y. (e_1_2_12_1_68_1) 1988; 1 Rumelhart D. E. (e_1_2_12_1_92_1) 2013 e_1_2_12_1_50_1 e_1_2_12_1_73_1 e_1_2_12_1_96_1 e_1_2_12_1_4_1 e_1_2_12_1_54_1 e_1_2_12_1_77_1 e_1_2_12_1_49_1 e_1_2_12_1_26_1 e_1_2_12_1_45_1 e_1_2_12_1_22_1 e_1_2_12_2_2_1 e_1_2_12_1_41_1 e_1_2_12_1_8_1 e_1_2_12_1_108_1 e_1_2_12_1_104_1 e_1_2_12_1_80_1 Paszke A. (e_1_2_12_1_83_1) 2019 e_1_2_12_1_111_1 e_1_2_12_1_61_1 e_1_2_12_1_84_1 e_1_2_12_1_65_1 e_1_2_12_1_88_1 e_1_2_12_1_38_1 e_1_2_12_1_15_1 e_1_2_12_1_34_1 Singh V. P. (e_1_2_12_1_100_1) 1988 e_1_2_12_1_30_1 e_1_2_12_1_119_1 e_1_2_12_1_115_1 |
| References_xml | – ident: e_1_2_12_1_73_1 doi: 10.1007/978-981-16-5501-2_7 – ident: e_1_2_12_1_119_1 doi: 10.1029/2022WR034118 – ident: e_1_2_12_1_81_1 doi: 10.1016/j.jhydrol.2023.130141 – ident: e_1_2_12_1_104_1 doi: 10.1029/WR019i001p00251 – volume-title: A generalized streamflow simulation system: Conceptual modeling for digital computers year: 1973 ident: e_1_2_12_1_11_1 – ident: e_1_2_12_1_39_1 doi: 10.5194/hess‐18‐463‐2014 – ident: e_1_2_12_1_52_1 doi: 10.1038/s41467‐018‐03629‐7 – ident: e_1_2_12_1_51_1 doi: 10.1016/j.aej.2021.04.100 – ident: e_1_2_12_1_8_1 – ident: e_1_2_12_1_84_1 doi: 10.1002/hyp.9660 – year: 2020 ident: e_1_2_12_1_58_1 article-title: Evaluating catchment models as multiple working hypotheses: On the role of error metrics, parameter sampling, model structure, and data information content publication-title: arXiv preprint arXiv:2009.00729 – ident: e_1_2_12_1_50_1 doi: 10.1029/95WR01955 – ident: e_1_2_12_1_38_1 doi: 10.1002/2013WR01509 – volume: 3 start-page: 114 year: 1957 ident: e_1_2_12_1_75_1 article-title: The form of the instantaneous unit hydrograph publication-title: International Association Hydrologcal Science – ident: e_1_2_12_1_91_1 doi: 10.1038/s41586‐019‐0912‐1 – ident: e_1_2_12_1_105_1 doi: 10.1162/106365602320169811 – year: 2018 ident: e_1_2_12_1_72_1 article-title: Darts: Differentiable architecture search publication-title: arXiv preprint arXiv:1806.09055 – ident: e_1_2_12_1_60_1 doi: 10.5194/hess‐23‐4323‐2019 – ident: e_1_2_12_1_64_1 doi: 10.1029/2019WR026065 – ident: e_1_2_12_1_88_1 doi: 10.1029/2020WR028338 – volume: 1 start-page: 21 year: 1988 ident: e_1_2_12_1_68_1 article-title: A theoretical framework for back‐propagation publication-title: Proceedings of the 1988 connectionist models summer school – ident: e_1_2_12_1_77_1 doi: 10.1038/s41586‐024‐07145‐1 – ident: e_1_2_12_1_108_1 doi: 10.1007/s11831‐022‐1003‐4 – ident: e_1_2_12_1_67_1 doi: 10.1162/tacl_a_00489 – ident: e_1_2_12_1_30_1 doi: 10.1029/2022WR033918 – ident: e_1_2_12_1_36_1 doi: 10.1029/2011WR011044 – year: 2021 ident: e_1_2_12_1_89_1 article-title: Fast‐slow streamflow model using mass‐conserving LSTM publication-title: arXiv preprint arXiv:2107.06057 – ident: e_1_2_12_1_74_1 doi: 10.1016/j.envsoft.2023.105779 – ident: e_1_2_12_1_80_1 doi: 10.31223/OSF.IO/53TE4 – ident: e_1_2_12_1_103_1 doi: 10.1029/WR019i001p00260 – ident: e_1_2_12_1_23_1 doi: 10.5194/gmd‐2023‐190 – ident: e_1_2_12_1_22_1 doi: 10.1029/2022WR032404 – ident: e_1_2_12_1_16_1 doi: 10.5194/hess‐28‐945‐2024 – ident: e_1_2_12_1_40_1 doi: 10.1061/(ASCE)1084‐0699(1999)4:2(135) – ident: e_1_2_12_1_13_1 doi: 10.1029/2007WR006735 – ident: e_1_2_12_1_78_1 doi: 10.1002/2014WR015895 – ident: e_1_2_12_1_113_1 doi: 10.1029/2023WR036461 – volume: 26 start-page: 963 issue: 1 year: 2010 ident: e_1_2_12_1_2_1 article-title: Application of a conceptual hydrologic model in teaching hydrologic processes publication-title: International Journal of Engineering Education – ident: e_1_2_12_1_57_1 doi: 10.1016/j.envsoft.2023.105831 – ident: e_1_2_12_1_37_1 doi: 10.1016/j.jhydrol.2009.08.003 – ident: e_1_2_12_1_102_1 doi: 10.1029/92WR02617 – ident: e_1_2_12_1_54_1 doi: 10.1137/1.9781611975673.63 – start-page: 1 volume-title: Backpropagation year: 2013 ident: e_1_2_12_1_92_1 – start-page: 125 volume-title: Water science Application year: 2003 ident: e_1_2_12_1_35_1 – ident: e_1_2_12_1_90_1 doi: 10.1029/2019WR024922 – ident: e_1_2_12_1_44_1 doi: 10.1162/neco.1997.9.8.1735 – ident: e_1_2_12_1_76_1 doi: 10.1109/TAI.2022.3200028 – ident: e_1_2_12_1_5_1 doi: 10.1080/09715010.2018.1556124 – ident: e_1_2_12_1_62_1 doi: 10.5194/hess‐28‐4187‐2024 – ident: e_1_2_12_1_20_1 doi: 10.5194/hess‐28‐2705‐2024 – ident: e_1_2_12_1_47_1 doi: 10.1371/journal.pone.0145180 – year: 2014 ident: e_1_2_12_1_59_1 article-title: Adam: A method for stochastic optimization publication-title: arXiv preprint arXiv:1412.6980 – ident: e_1_2_12_1_115_1 doi: 10.1029/2019WR026471 – ident: e_1_2_12_1_93_1 doi: 10.1111/1752‐1688.12586 – ident: e_1_2_12_1_41_1 doi: 10.1029/WR019i001p00269 – ident: e_1_2_12_1_96_1 doi: 10.1038/470316a – year: 2018 ident: e_1_2_12_1_69_1 article-title: Spigan: Privileged adversarial learning from simulation publication-title: arXiv preprint arXiv:1810.03756 – volume-title: Hydrologic systems. Volume I: Rainfall‐runoff modeling year: 1988 ident: e_1_2_12_1_100_1 – ident: e_1_2_12_1_7_1 doi: 10.1029/2020WR029328 – volume: 20 start-page: 1997 issue: 1 year: 2019 ident: e_1_2_12_1_19_1 article-title: Neural architecture search: A survey publication-title: Journal of Machine Learning Research – ident: e_1_2_12_1_29_1 doi: 10.1111/1752‐1688.12964 – ident: e_1_2_12_1_109_1 doi: 10.1029/2022WR034352 – start-page: 4275 volume-title: International conference on machine learning year: 2021 ident: e_1_2_12_1_46_1 – ident: e_1_2_12_1_9_1 doi: 10.1016/j.jhydrol.2022.128618 – ident: e_1_2_12_1_118_1 doi: 10.1029/2021WR031818 – ident: e_1_2_12_1_48_1 doi: 10.5194/hess‐26‐5085‐2022 – ident: e_1_2_12_1_87_1 doi: 10.1016/j.envsoft.2023.105730 – year: 2000 ident: e_1_2_12_1_10_1 article-title: Multicriteria calibration of hydrologic models publication-title: The University of Arizona Department of Hydrology and Water Resour – year: 2023 ident: e_1_2_12_1_97_1 article-title: A Gaussian sliding Windows regression model for hydrological inference publication-title: arXiv preprint arXiv:2306.00453 – ident: e_1_2_12_1_110_1 doi: 10.1038/s41467‐021‐26176‐w – ident: e_1_2_12_1_117_1 doi: 10.1029/2022WR033684 – ident: e_1_2_12_1_21_1 doi: 10.1002/wat2.1386 – ident: e_1_2_12_1_27_1 doi: 10.1029/2010WR010174 – ident: e_1_2_12_1_53_1 doi: 10.1016/j.jhydrol.2023.129666 – volume-title: Advances in Neural Information Processing Systems year: 2019 ident: e_1_2_12_1_83_1 – ident: e_1_2_12_1_24_1 doi: 10.5194/hess‐27‐2357‐2023 – ident: e_1_2_12_1_18_1 doi: 10.1029/91WR02985 – ident: e_1_2_12_1_94_1 doi: 10.1029/2008WR007327 – ident: e_1_2_12_1_14_1 doi: 10.1016/j.envsoft.2020.104728 – start-page: 3 volume-title: Flood forecasting year: 2016 ident: e_1_2_12_1_82_1 – year: 2023 ident: e_1_2_12_1_116_1 article-title: Learning to generate lumped hydrological models publication-title: arXiv preprint arXiv:2309.09904 – ident: e_1_2_12_2_2_1 doi: 10.1029/2023WR036710 – ident: e_1_2_12_1_49_1 doi: 10.1080/02626667.2013.803183 – ident: e_1_2_12_1_106_1 doi: 10.5194/gmd‐15‐3417‐2022 – ident: e_1_2_12_1_107_1 doi: 10.1029/2021WR030394 – ident: e_1_2_12_1_101_1 doi: 10.1623/hysj.48.6.857.51421 – ident: e_1_2_12_1_55_1 doi: 10.1029/2020GL088229 – ident: e_1_2_12_1_42_1 doi: 10.1038/s43247‐023‐00751‐3 – ident: e_1_2_12_1_28_1 doi: 10.1038/s41561‐021‐00865‐3 – ident: e_1_2_12_1_43_1 doi: 10.5194/hess‐27‐1‐2023 – ident: e_1_2_12_1_114_1 doi: 10.1029/2021WR031033 – ident: e_1_2_12_1_26_1 doi: 10.1029/2022WR033168 – ident: e_1_2_12_1_32_1 doi: 10.1002/wrcr.20161 – volume-title: Catchment modeling and initial parameter estimation for the National Weather Service river forecast system (Vol. 31). Office of Hydrology year: 1976 ident: e_1_2_12_1_85_1 – volume-title: A practical guide to relu year: 2017 ident: e_1_2_12_1_71_1 – ident: e_1_2_12_1_15_1 – ident: e_1_2_12_1_79_1 doi: 10.1029/2019WR024918 – ident: e_1_2_12_1_63_1 doi: 10.5194/hess‐22‐6005‐2018 – ident: e_1_2_12_1_66_1 doi: 10.1038/s41597‐023‐01975‐w – ident: e_1_2_12_1_70_1 doi: 10.2166/nh.2010.007 – ident: e_1_2_12_1_17_1 doi: 10.1029/2021WR031548 – ident: e_1_2_12_1_86_1 doi: 10.1016/S0022‐1694(03)00225‐7 – ident: e_1_2_12_1_6_1 doi: 10.5194/hess‐27‐139‐2023 – ident: e_1_2_12_1_34_1 doi: 10.1029/97WR03495 – ident: e_1_2_12_1_61_1 doi: 10.5194/hess‐23‐4323‐2019 – ident: e_1_2_12_1_98_1 doi: 10.1214/aos/1176344136 – ident: e_1_2_12_1_95_1 doi: 10.1029/2008JD010636 – ident: e_1_2_12_1_25_1 doi: 10.1029/2019WR026793 – ident: e_1_2_12_1_45_1 doi: 10.1029/2023WR035803 – ident: e_1_2_12_1_111_1 doi: 10.1016/j.jhydrol.2020.124700 – ident: e_1_2_12_1_31_1 doi: 10.1029/2020WR027948 – ident: e_1_2_12_1_4_1 doi: 10.5194/hess‐17‐1161‐2013 – ident: e_1_2_12_1_33_1 doi: 10.1029/WR021i004p00473 – ident: e_1_2_12_1_65_1 doi: 10.5194/hess‐23‐5089‐2019 – ident: e_1_2_12_1_99_1 doi: 10.1038/s43017‐023‐00178‐5 – ident: e_1_2_12_1_3_1 doi: 10.1109/tac.1974.1100705 – ident: e_1_2_12_1_12_1 doi: 10.1016/j.jhydrol.2022.128340 – ident: e_1_2_12_1_56_1 doi: 10.1029/2021WR030185 – ident: e_1_2_12_1_112_1 doi: 10.1029/2019GL085722 |
| SSID | ssj0014567 |
| Score | 2.494718 |
| Snippet | We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment‐scale hydrologic models using... Abstract We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment‐scale hydrologic models... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | architectural hypotheses Base flow Catchments catchment‐scale Computer applications conceptual rainfall‐runoff (CRR) models Data search Diagnostic systems Dynamics Flow paths Groundwater hydrodynamics hydrograph Hydrologic models Hydrology Learning algorithms Machine learning MCP (mass‐conserving‐perceptron) model validation Modelling physically‐interpretable Regional development Representations River basins Training Watersheds |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5VFRJcED9FBAoyUnuCiMR2YvsIq1Y90Gq1tGpvkR07KlKVRbtdpEoceASekSdhxnG22wNw4ZbYlmV5xvY3nvE3AHtCGFF3VufeuCqXHWI4W9ouL5WuK6GMUT5S5n9SJyf64sJMN1J9UUzYQA88TNx77mUbhEPLxNRSc2d5aT2CZu-CqmoZoVGhzGhMJf8BwgI1-pYJ46SQ94Ibsvbl-awQinN55zCKnP13gOYmXI3nzeEjeJiAIvswDPAxbIX-Cdwf3xEv8TvlL7-8eQrfT2P065LdxhC6q8CmSQi_fvycDM8TV9jlBHffS7oUxOLPWBvY0Y1fjJsgo-xo9EadxWgChgCRHSPCHvqgO1wsxZ_pEBGzmPc7cHZ4cDo5ylNehdzitkhiCcGgIdN5K2zbiprcib4qnGt1EMYhQpKFV4ZjtZdFVwdvXWeVxpl3vrTiGWz38z48B-Z8qL2uUEKBY9_WtMSZVltioUMo5DJ4O05w0ybSccp9cdVE5zc3zaY4Mthft_46kG38od1HktW6DVFkxwJUnCYpTvMvxclgd5R0k9btshEl5W1CE7HK4M26GlccuVFsH-YraoOHhBRK6QzeRQ3562Cb89lkRjyM-sX_GPZLeEC9D_GEu7B9vViFV3Cv_Xb9Zbl4HVfBb6uyDI4 priority: 102 providerName: Directory of Open Access Journals |
| Title | Towards Interpretable Physical‐Conceptual Catchment‐Scale Hydrological Modeling Using the Mass‐Conserving‐Perceptron |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024WR037224 https://www.proquest.com/docview/3121471485 https://www.proquest.com/docview/3153843778 https://doaj.org/article/2d4ce3b21096482ba21ad642dbe7564a |
| Volume | 60 |
| WOSCitedRecordID | wos001330837300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1944-7973 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global (OCUL) customDbUrl: eissn: 1944-7973 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1944-7973 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: PCBAR dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1944-7973 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: M7S dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1944-7973 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: PATMY dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1944-7973 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1944-7973 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: M2O dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: 24P dateStart: 20240101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagRYIL_xWBsgoSnCAiiZ04PtLQVQ_tEqWttpwiO3YoUpVFSRepEgcegWfkSZhxnLA9gIS4WGt7Yllrjz1__oaQl5QKmjYyC7RQScAakOFkJJsg4lmaUC4E1xYy_5AvFtnZmSicwQ3fwgz4EJPBDTnDntfI4FL1DmwAMTJBa2fLMqQcLqGbZDuKYGREdmbF5EUA4YCPHmaUdFzgO3z_dvPra1eSRe6_Jm5uCq321pnf-9_53id3nbzpvxs2yANyw7QPye3xOXIPv10a9POrR-TbiQ2i7f3foYjqwviFW8uf33_kwyvHNQyZwyF-jrZFaD6GXuMfXOluPEt9TLKGT919G5Tgg5zpH4GgPoyBpmBohUoxBNZ0q_YxOZ3vn-QHgUvPEEg4XXF1jRGgDzVaUlnXNEWvpE5CperMUKFA0GKh5iKGbs3CJjVaqkbyLJJa6UjSHbLVrlrzhPhKm1RnSW2oiWFsKWqEXkslgtmBRKU88npcoap22OWYQuOisj70WFSb_65HXk3UXwbMjj_Q7eFiTzSItG0bVt2nyjFuFWsG01KgGYuUZbGSMUwflDatDE9SJj2yO26VyrF_X9EI0z-Bppl45MXUDYyL3hjZmtUaaeCuYZTzzCNv7Mb562SrZZmXCOeYPf038mfkDnYMAYi7ZOuyW5vn5Fb99fJz380sw0DJlx9nZHtvf1GUM2uXgNr7cn56CLWjMMcy_oAlP_4Fehsgyg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9Bh7S98B8RGGAkeIJoTZzE8SMUqiK6qiqdtrfIjh2GNKVTuiJN4oGPwGfkk3DnOKF7AAnx1tpXy6p959_5zr8DeMG55Fml8tBInYZJhRhORaoKI5FnKRdSCuMo86diNstPTuTc1zmltzAtP0R_4Uaa4ew1KThdSHu2ASLJRLc9OV4MucBT6DrsJLiT0gHsvFuMj6Z9IAHxgeiCzAR2fO47jnCw_fsrp5Ij77-COLdxqzt4xrf-e8q34abHnOxNu0nuwDVb34Xd7knyGj_7Uuinl_fg29Il0q7Z73REfWbZ3K_nz-8_Ru1Lxw0OOUJDfkr3i9j8CXstm1yaprOnjAqt0XN35hITGGJNdohgvR2DroOxFb_M2-SaZlXfh6Px--VoEvoSDaFCC0srbK1En6gyiquy5BlFJk061LrMLZcawVYyNELG2G2SYZVZo3SlRB4po02k-AMY1KvaPgSmjc1MnpaW2xjHVrIk-rVMEaEdoiodwKtuiYrS85dTGY2zwsXRY1ls_7sBvOylz1vejj_IvaXV7mWIbds1rJrPhVfeIjYJTkujdyyzJI-1inH66LgZbUWaJSqA_W6vFN4ErAseUQko9DbTAJ733ai8FJFRtV1tSAbPm4QLkQfw2u2cv062OF6MFkTpmD_6N_FnsDtZHk6L6YfZx8ewR0JtQuI-DC6ajX0CN8qvF1_WzVOvP78AEZIeSA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BQcCFf0SggJHgBFE3sRPHR1hYFVFW0VLU3iI7dihSla2yXaRKHHgEnpEnYcZxwvYAEuKW2BPLiu3xN57xNwDPOFc8b3QRW2WyWDSI4XSimziRRZ5xqZS0njJ_T87nxeGhKkOeU7oL0_NDjAdutDK8vqYF7k5sE9gGiCQTzXZxsJhwibvQRbgkMlSzRO0sytGNgOhADi5mgjoh8h2_39n8-tye5Kn7z-HNTdTqt53Zjf_u8E24HhAne9VPkVtwwbW34epwIXmFzyER-tHZHfi278NoV-x3MKI5dqwMo_nz-49pf89xjU1OUY0f0ekiFn_EWsd2z2w3aFNGadbosjvzYQkMkSb7gFC9b4MOg7EUX8o-tKZbtnfh0-zt_nQ3DgkaYo36lcbXOYUWUWM113XNc_JL2mxiTF04rgxCLTGxUqVYbcWkyZ3VptGySLQ1NtH8Hmy1y9bdB2asy22R1Y67FNvWqibytVwTnR1iKhPBi2GIqjqwl1MSjePKe9FTVW3-3Qiej9InPWvHH-Re02iPMsS17QuW3ecqLN0qtQK7ZdA2VrkoUqNT7D6abdY4meVCR7A9zJUqKIBVxRNKAIW2ZhbB07Ealy75Y3TrlmuSwd1GcCmLCF76mfPXzlYHi-mCCB2LB_8m_gSulG9m1d67-fuHcI1k-mjEbdg67dbuEVyuv55-WXWP_eL5BWN8HDE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Interpretable+Physical%E2%80%90Conceptual+Catchment%E2%80%90Scale+Hydrological+Modeling+Using+the+Mass%E2%80%90Conserving%E2%80%90Perceptron&rft.jtitle=Water+resources+research&rft.au=Yuan%E2%80%90Heng+Wang&rft.au=Gupta%2C+Hoshin+V&rft.date=2024-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=60&rft.issue=10&rft_id=info:doi/10.1029%2F2024WR037224&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |