Solving the crystal structures of zeolites using electron diffraction data. II. Density-building functions

A density‐building function is used to solve the crystal structures of zeolites from electron diffraction data using both two‐ and three‐dimensional data sets. The observed data are normalized to give unitary structure factors |Uh|obs. An origin is defined using one to three reflections and a corres...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta crystallographica. Section A, Foundations of crystallography Ročník 64; číslo 2; s. 295 - 302
Hlavní autoři: Gilmore, Christopher J., Dong, Wei, Dorset, Douglas L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: 5 Abbey Square, Chester, Cheshire CH1 2HU, England International Union of Crystallography 01.03.2008
Wiley Subscription Services, Inc
Témata:
ISSN:0108-7673, 1600-5724, 2053-2733
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A density‐building function is used to solve the crystal structures of zeolites from electron diffraction data using both two‐ and three‐dimensional data sets. The observed data are normalized to give unitary structure factors |Uh|obs. An origin is defined using one to three reflections and a corresponding maximum‐entropy map, qME(x), is calculated in which the constraints are the amplitudes and phases of the origin‐defining reflections. Eight strong reflections are then given permuted phases and each phase combination is used to compute P(δq) = ∫Vδq(x)2/qME(x)dx, where δq(x) is the Fourier transform of |Uh|obsexp(i) − |Uh|MEexp(i), is the permuted phase for reflection h and is the phase angle for reflection h predicted from the Fourier transform of qME(x). The 64 phase sets with minimum values of P(δq) are subjected to entropy maximization and, following this procedure, those with the five highest log‐likelihood gains are examined. Sometimes auxiliary potential histogram information is also used. The method worked routinely with seven zeolite structures of varying complexity and data quality, but failed with an eighth structure.
Bibliografie:ArticleID:AYAWE5027
ark:/67375/WNG-ZB6G9DK7-3
istex:9339581E1FA96AC94763045EFC01F598DFC4508A
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0108-7673
1600-5724
2053-2733
DOI:10.1107/S0108767307058631