A Mixed‐Integer Linear Programming Framework for Optimization of Water Network Operations Problems

Water distribution systems (WDSs) are critical infrastructure used to convey water from sources to consumers. The mathematical framework governing the distribution of flows and heads in extended period simulations of WDSs lends itself to application in a wide range of optimization problems. Applying...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Water resources research Ročník 60; číslo 2
Hlavní autori: Thomas, Meghna, Sela, Lina
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Washington John Wiley & Sons, Inc 01.02.2024
Wiley
Predmet:
ISSN:0043-1397, 1944-7973
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Water distribution systems (WDSs) are critical infrastructure used to convey water from sources to consumers. The mathematical framework governing the distribution of flows and heads in extended period simulations of WDSs lends itself to application in a wide range of optimization problems. Applying the classical mixed integer linear programming (MILP) approach to model WDSs hydraulics within an optimization framework can contribute to higher solution accuracy with lower computational effort. However, adapting WDSs models to conform to a MILP formulation has proven challenging because of the intrinsic non‐linearity of system hydraulics and the complexity associated with modeling hydraulic devices that influence the state of the WDS. This paper introduces MILPNet, an adjustable framework for WDSs that can be used to build and solve an extensive array of MILP optimization problems. MILPNet includes constraints that represent the mass balance and energy conservation equations, hydraulic devices, control rules, and status checks. To conform to MILP structure, MILPNet employs piece‐wise linear approximation and integer programming. MILPNet was implemented and tested using Gurobi Python API. Modeling accuracy was shown to be comparable to EPANET, a public domain software for hydraulic modeling, and sensitivity analyses were conducted to examine the impacts of the modeling assumptions on the performance of MILPNet. Additionally, application of the framework was demonstrated using pump scheduling optimization examples in single and rolling horizon scenarios. Our results show that MILPNet can facilitate the construction and solution of optimization problems for a range of applications in WDSs operations. Key Points A mixed‐integer linear programming framework (MILPNet) for formulating and solving water distribution system optimization problems is presented MILPNet models system dynamics, hydraulic devices, control rules, and status checks and is flexible to adding more devices and conditions The optimization model can be generated from a .INP file and case‐specific objectives and constraints can be specified via Python interface
AbstractList Water distribution systems (WDSs) are critical infrastructure used to convey water from sources to consumers. The mathematical framework governing the distribution of flows and heads in extended period simulations of WDSs lends itself to application in a wide range of optimization problems. Applying the classical mixed integer linear programming (MILP) approach to model WDSs hydraulics within an optimization framework can contribute to higher solution accuracy with lower computational effort. However, adapting WDSs models to conform to a MILP formulation has proven challenging because of the intrinsic non‐linearity of system hydraulics and the complexity associated with modeling hydraulic devices that influence the state of the WDS. This paper introduces MILPNet, an adjustable framework for WDSs that can be used to build and solve an extensive array of MILP optimization problems. MILPNet includes constraints that represent the mass balance and energy conservation equations, hydraulic devices, control rules, and status checks. To conform to MILP structure, MILPNet employs piece‐wise linear approximation and integer programming. MILPNet was implemented and tested using Gurobi Python API. Modeling accuracy was shown to be comparable to EPANET, a public domain software for hydraulic modeling, and sensitivity analyses were conducted to examine the impacts of the modeling assumptions on the performance of MILPNet. Additionally, application of the framework was demonstrated using pump scheduling optimization examples in single and rolling horizon scenarios. Our results show that MILPNet can facilitate the construction and solution of optimization problems for a range of applications in WDSs operations. Key Points A mixed‐integer linear programming framework (MILPNet) for formulating and solving water distribution system optimization problems is presented MILPNet models system dynamics, hydraulic devices, control rules, and status checks and is flexible to adding more devices and conditions The optimization model can be generated from a .INP file and case‐specific objectives and constraints can be specified via Python interface
Abstract Water distribution systems (WDSs) are critical infrastructure used to convey water from sources to consumers. The mathematical framework governing the distribution of flows and heads in extended period simulations of WDSs lends itself to application in a wide range of optimization problems. Applying the classical mixed integer linear programming (MILP) approach to model WDSs hydraulics within an optimization framework can contribute to higher solution accuracy with lower computational effort. However, adapting WDSs models to conform to a MILP formulation has proven challenging because of the intrinsic non‐linearity of system hydraulics and the complexity associated with modeling hydraulic devices that influence the state of the WDS. This paper introduces MILPNet, an adjustable framework for WDSs that can be used to build and solve an extensive array of MILP optimization problems. MILPNet includes constraints that represent the mass balance and energy conservation equations, hydraulic devices, control rules, and status checks. To conform to MILP structure, MILPNet employs piece‐wise linear approximation and integer programming. MILPNet was implemented and tested using Gurobi Python API. Modeling accuracy was shown to be comparable to EPANET, a public domain software for hydraulic modeling, and sensitivity analyses were conducted to examine the impacts of the modeling assumptions on the performance of MILPNet. Additionally, application of the framework was demonstrated using pump scheduling optimization examples in single and rolling horizon scenarios. Our results show that MILPNet can facilitate the construction and solution of optimization problems for a range of applications in WDSs operations.
Water distribution systems (WDSs) are critical infrastructure used to convey water from sources to consumers. The mathematical framework governing the distribution of flows and heads in extended period simulations of WDSs lends itself to application in a wide range of optimization problems. Applying the classical mixed integer linear programming (MILP) approach to model WDSs hydraulics within an optimization framework can contribute to higher solution accuracy with lower computational effort. However, adapting WDSs models to conform to a MILP formulation has proven challenging because of the intrinsic non‐linearity of system hydraulics and the complexity associated with modeling hydraulic devices that influence the state of the WDS. This paper introduces MILPNet, an adjustable framework for WDSs that can be used to build and solve an extensive array of MILP optimization problems. MILPNet includes constraints that represent the mass balance and energy conservation equations, hydraulic devices, control rules, and status checks. To conform to MILP structure, MILPNet employs piece‐wise linear approximation and integer programming. MILPNet was implemented and tested using Gurobi Python API. Modeling accuracy was shown to be comparable to EPANET, a public domain software for hydraulic modeling, and sensitivity analyses were conducted to examine the impacts of the modeling assumptions on the performance of MILPNet. Additionally, application of the framework was demonstrated using pump scheduling optimization examples in single and rolling horizon scenarios. Our results show that MILPNet can facilitate the construction and solution of optimization problems for a range of applications in WDSs operations.
Water distribution systems (WDSs) are critical infrastructure used to convey water from sources to consumers. The mathematical framework governing the distribution of flows and heads in extended period simulations of WDSs lends itself to application in a wide range of optimization problems. Applying the classical mixed integer linear programming (MILP) approach to model WDSs hydraulics within an optimization framework can contribute to higher solution accuracy with lower computational effort. However, adapting WDSs models to conform to a MILP formulation has proven challenging because of the intrinsic non‐linearity of system hydraulics and the complexity associated with modeling hydraulic devices that influence the state of the WDS. This paper introduces MILPNet, an adjustable framework for WDSs that can be used to build and solve an extensive array of MILP optimization problems. MILPNet includes constraints that represent the mass balance and energy conservation equations, hydraulic devices, control rules, and status checks. To conform to MILP structure, MILPNet employs piece‐wise linear approximation and integer programming. MILPNet was implemented and tested using Gurobi Python API. Modeling accuracy was shown to be comparable to EPANET, a public domain software for hydraulic modeling, and sensitivity analyses were conducted to examine the impacts of the modeling assumptions on the performance of MILPNet. Additionally, application of the framework was demonstrated using pump scheduling optimization examples in single and rolling horizon scenarios. Our results show that MILPNet can facilitate the construction and solution of optimization problems for a range of applications in WDSs operations. A mixed‐integer linear programming framework (MILPNet) for formulating and solving water distribution system optimization problems is presented MILPNet models system dynamics, hydraulic devices, control rules, and status checks and is flexible to adding more devices and conditions The optimization model can be generated from a .INP file and case‐specific objectives and constraints can be specified via Python interface
Author Sela, Lina
Thomas, Meghna
Author_xml – sequence: 1
  givenname: Meghna
  orcidid: 0000-0002-3755-9188
  surname: Thomas
  fullname: Thomas, Meghna
  organization: The University of Texas at Austin
– sequence: 2
  givenname: Lina
  orcidid: 0000-0002-5834-8451
  surname: Sela
  fullname: Sela, Lina
  email: linasela@utexas.edu
  organization: The University of Texas at Austin
BookMark eNp9kc1uEzEUhS1UJNLCjgcYiQ0LBvzv8bKKKEQKBEWgLC2P507kMDMOtqNSVn2EPiNPgpsghCrBylf2d871ufccnU1hAoSeE_yaYKrfUEzZZo0ZF1Q-QjOiOa-VVuwMzTDmrCZMqyfoPKUdxoQLqWaou6w--O_Q_by9W0wZthCrpZ_AxupTDNtox9FP2-qqFHAd4teqD7Fa7bMf_Q-bfZiq0Fcbm4vsI-QjsdpDPD6le4t2gDE9RY97OyR49vu8QF-u3n6ev6-Xq3eL-eWytlwqWSvCeNcwKwXmVnbQEOcc5QrAYicACKHCEusI110DTrR9Sx1uFO65xqpkv0CLk28X7M7sox9tvDHBenO8CHFrbMzeDWCahkuJOQZFKNcKmk4x0XR92ysrMGuL18uT1z6GbwdI2Yw-ORgGO0E4JMOKmElFlSjoiwfoLhziVJIaqhlRgmiiCvXqRLkYUorQ__kgweZ-febv9RWcPsCdz8e55mj98C8RO4mu_QA3_21gNuv5miosJPsFGmitkA
CitedBy_id crossref_primary_10_1016_j_ejor_2024_11_035
crossref_primary_10_1016_j_segan_2025_101643
crossref_primary_10_2166_ws_2024_118
crossref_primary_10_3390_electronics14132591
crossref_primary_10_1029_2024WR039830
Cites_doi 10.1016/j.arcontrol.2023.03.013
10.1061/jwrmd5.wreng-5486
10.1007/s11081-011-9141-7
10.1287/opre.14.4.699
10.1016/j.ejor.2014.08.033
10.1016/j.rser.2013.09.010
10.1016/j.envsoft.2017.06.022
10.2166/bgs.2022.003
10.1061/(asce)wr.1943-5452.0000333
10.1016/j.ejor.2019.07.060
10.1029/2019wr025694
10.1061/(asce)0733-9496(1995)121:6(423)
10.1016/j.proeng.2015.08.935
10.1002/2014wr016756
10.1029/98wr00907
10.1007/s11081-020-09575-y
10.1016/j.watres.2019.06.025
10.1007/s11081-018-9412-7
10.1007/s10107-005-0581-8
10.1016/j.ejor.2021.03.004
10.1007/0-387-23529-9_5
10.1109/jsyst.2019.2961104
10.1061/(asce)0733-9372(1994)120:4(803)
10.1016/j.apenergy.2015.12.090
10.1007/s11269-014-0655-6
10.1061/(asce)0733-9496(1996)122:2(137)
10.1002/aic.15332
10.3934/naco.2012.2.695
10.1061/(asce)0733-9496(1998)124:4(218)
10.1061/(asce)wr.1943-5452.0001028
10.1061/(asce)wr.1943-5452.0000603
10.1029/94wr00623
10.1080/0305215x.2019.1702980
10.1016/j.watres.2022.119236
10.3390/w11030562
10.1016/j.ejor.2014.12.039
10.1016/j.envsoft.2017.02.009
10.1016/j.apenergy.2016.02.136
10.1061/(asce)wr.1943-5452.0000113
10.1007/s12532-017-0130-5
10.5281/zenodo.7945404
10.1061/(asce)wr.1943-5452.0001188
10.1061/(asce)wr.1943-5452.0001011
10.1002/j.1551-8833.1997.tb08259.x
10.1061/41036(342)38
10.1007/s11081-018-9411-8
10.1007/978-3-319-93073-2_11
10.1061/(asce)wr.1943-5452.0001489
10.1061/(asce)wr.1943-5452.0001258
10.1061/(asce)wr.1943-5452.0000352
10.1007/s00186-011-0354-5
10.1287/mnsc.24.7.747
10.1016/j.ejor.2017.03.011
ContentType Journal Article
Copyright 2024. The Authors.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Authors.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOA
DOI 10.1029/2023WR034526
DatabaseName Wiley Online Library Open Access
CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
CrossRef
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID oai_doaj_org_article_88466040e712497e8d7358dfbf7a503b
10_1029_2023WR034526
WRCR27056
Genre researchArticle
GrantInformation_xml – fundername: National Science Foundation
  funderid: 1943428
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A6W
AAESR
AAHBH
AAIHA
AAIKC
AAMMB
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABUWG
ACAHQ
ACBWZ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEIGN
AENEX
AETEA
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AIDBO
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAYXX
AFFHD
AIQQE
CITATION
PQGLB
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-a4676-7134d83a6504a6de81ccc247eea0c5ee1125a1ac149d8ec5bfb2c0870f4907023
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001157676200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Fri Oct 03 12:53:00 EDT 2025
Fri Oct 03 00:06:35 EDT 2025
Wed Aug 13 04:33:30 EDT 2025
Tue Nov 18 19:41:24 EST 2025
Sat Nov 29 08:00:42 EST 2025
Sun Jul 06 04:45:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4676-7134d83a6504a6de81ccc247eea0c5ee1125a1ac149d8ec5bfb2c0870f4907023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5834-8451
0000-0002-3755-9188
OpenAccessLink https://doaj.org/article/88466040e712497e8d7358dfbf7a503b
PQID 2931751917
PQPubID 105507
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_88466040e712497e8d7358dfbf7a503b
proquest_miscellaneous_3040367275
proquest_journals_2931751917
crossref_primary_10_1029_2023WR034526
crossref_citationtrail_10_1029_2023WR034526
wiley_primary_10_1029_2023WR034526_WRCR27056
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
20240201
2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2009; 46
1966; 14
2021; 22
2019; 11
2020; 280
1997; 89
2023; 149
2020; 14
2020; 56
2014; 28
2012; 13
2019; 161
2016; 142
1977
2001
2019; 20
2005; 103
2011; 73
1978; 24
1995; 121
1998; 124
1994; 30
2011; 137
2023; 55
2012
2015; 51
2021; 147
2015; 243
2015; 241
2009
1996
2006
2005
1996; 122
2020; 146
2019; 145
2017; 95
2012; 2
2021; 53
2017; 93
2023
2022; 4
2022
2021
2020
1994; 120
2018
2016; 62
2017; 261
2015; 119
2017; 185
2014; 140
2021; 295
2014; 30
2016; 170
2018; 10
1998; 34
2022; 226
e_1_2_7_5_1
e_1_2_7_3_1
AWWA (e_1_2_7_2_1) 2018
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
Bradley S. P. (e_1_2_7_7_1) 1977
e_1_2_7_11_1
e_1_2_7_45_1
Cplex I. I. (e_1_2_7_18_1) 2009; 46
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_28_1
Eck B. J. (e_1_2_7_22_1) 2012
Ulanicki B. (e_1_2_7_58_1) 1996
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Rossman L. A. (e_1_2_7_49_1) 2020
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_34_1
e_1_2_7_57_1
Boulos P. F. (e_1_2_7_6_1) 2006
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 280
  start-page: 1035
  issue: 3
  year: 2020
  end-page: 1050
  article-title: Optimizing drinking water distribution system operations
  publication-title: European Journal of Operational Research
– volume: 120
  start-page: 803
  issue: 4
  year: 1994
  end-page: 820
  article-title: Modeling chlorine residuals in drinking‐water distribution systems
  publication-title: Journal of Environmental Engineering
– volume: 22
  start-page: 1275
  issue: 3
  year: 2021
  end-page: 1313
  article-title: Pump scheduling in drinking water distribution networks with an LP/NLP‐based branch and bound
  publication-title: Optimization and Engineering
– volume: 4
  start-page: 156
  issue: 2
  year: 2022
  end-page: 169
  article-title: Optimization of installation and energy costs in water distribution systems with unknown flow directions
  publication-title: Blue‐Green Systems
– volume: 140
  start-page: 410
  issue: 4
  year: 2014
  end-page: 416
  article-title: Research database of water distribution system models
  publication-title: Journal of Water Resources Planning and Management
– volume: 10
  start-page: 119
  issue: 1
  year: 2018
  end-page: 142
  article-title: Parallelizing the dual revised simplex method
  publication-title: Mathematical Programming Computation
– year: 2001
– volume: 34
  start-page: 1831
  issue: 7
  year: 1998
  end-page: 1841
  article-title: Enhanced lower bounds for the global optimization of water distribution networks
  publication-title: Water Resources Research
– year: 2021
– volume: 73
  start-page: 339
  issue: 3
  year: 2011
  end-page: 362
  article-title: Mixed integer linear models for the optimization of dynamical transport networks
  publication-title: Mathematical Methods of Operations Research
– volume: 95
  start-page: 420
  year: 2017
  end-page: 431
  article-title: A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study
  publication-title: Environmental Modelling and Software
– start-page: 61
  year: 2005
  end-page: 76
– year: 2018
– volume: 142
  issue: 2
  year: 2016
  article-title: Generalized benders decomposition to reoptimize water production and distribution operations in a real water supply network
  publication-title: Journal of Water Resources Planning and Management
– volume: 146
  issue: 8
  year: 2020
  article-title: Optimization framework to assess the demand response capacity of a water distribution system
  publication-title: Journal of Water Resources Planning and Management
– volume: 137
  start-page: 343
  issue: 4
  year: 2011
  end-page: 351
  article-title: Efficient hydraulic state estimation technique using reduced models of urban water networks
  publication-title: Journal of Water Resources Planning and Management
– volume: 30
  start-page: 59
  year: 2014
  end-page: 84
  article-title: Efficiency achievement in water supply systems—A review
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 89
  start-page: 54
  issue: 7
  year: 1997
  end-page: 65
  article-title: Kinetics of chlorine decay
  publication-title: Journal‐American Water Works Association
– volume: 11
  issue: 3
  year: 2019
  article-title: Solving management problems in water distribution networks: A survey of approaches and mathematical models
  publication-title: Water
– volume: 2
  start-page: 695
  issue: 4
  year: 2012
  end-page: 711
  article-title: Towards globally optimal operation of water supply networks
  publication-title: Numerical Algebra, Control and Optimization
– volume: 24
  start-page: 747
  issue: 7
  year: 1978
  end-page: 760
  article-title: Solving the pipe network analysis problem using optimization techniques
  publication-title: Management Science
– volume: 121
  start-page: 423
  issue: 6
  year: 1995
  end-page: 428
  article-title: Modeling distribution system water quality: Regulatory implications
  publication-title: Journal of Water Resources Planning and Management
– volume: 20
  start-page: 457
  issue: 2
  year: 2019
  end-page: 495
  article-title: Global optimality bounds for the placement of control valves in water supply networks
  publication-title: Optimization and Engineering
– year: 2022
– volume: 261
  start-page: 450
  issue: 2
  year: 2017
  end-page: 459
  article-title: Polynomial optimization for water networks: Global solutions for the valve setting problem
  publication-title: European Journal of Operational Research
– volume: 295
  start-page: 690
  issue: 2
  year: 2021
  end-page: 698
  article-title: Relax‐tighten‐round algorithm for optimal placement and control of valves and chlorine boosters in water networks
  publication-title: European Journal of Operational Research
– volume: 46
  issue: 53
  year: 2009
  article-title: V12. 1: User’s manual for CPLEX
  publication-title: International Business Machines Corporation
– volume: 20
  start-page: 397
  issue: 2
  year: 2019
  end-page: 455
  article-title: A review and comparison of solvers for convex minlp
  publication-title: Optimization and Engineering
– start-page: 1
  year: 2009
  end-page: 10
– volume: 93
  start-page: 209
  year: 2017
  end-page: 254
  article-title: Lost in optimisation of water distribution systems? A literature review of system operation
  publication-title: Environmental Modelling and Software
– volume: 140
  start-page: 444
  issue: 4
  year: 2014
  end-page: 456
  article-title: Fast and practical method for model reduction of large‐scale water‐distribution networks
  publication-title: Journal of Water Resources Planning and Management
– volume: 56
  issue: 3
  year: 2020
  article-title: A new derivative‐free linear approximation for solving the network water flow problem with convergence guarantees
  publication-title: Water Resources Research
– volume: 14
  start-page: 4579
  issue: 3
  year: 2020
  end-page: 4590
  article-title: An minlp‐based approach for the design‐for‐control of resilient water supply systems
  publication-title: IEEE Systems Journal
– volume: 170
  start-page: 377
  year: 2016
  end-page: 387
  article-title: Demonstrating demand response from water distribution system through pump scheduling
  publication-title: Applied Energy
– volume: 14
  start-page: 699
  issue: 4
  year: 1966
  end-page: 719
  article-title: Branch‐and‐bound methods: A survey
  publication-title: Operations Research
– volume: 149
  issue: 2
  year: 2023
  article-title: Magnets: Model reduction and aggregation of water networks
  publication-title: Journal of Water Resources Planning and Management
– volume: 13
  start-page: 219
  issue: 2
  year: 2012
  end-page: 246
  article-title: On the optimal design of water distribution networks: A practical minlp approach
  publication-title: Optimization and Engineering
– volume: 119
  start-page: 1059
  year: 2015
  end-page: 1068
  article-title: Approximation of system components for pump scheduling optimisation
  publication-title: Procedia Engineering
– volume: 55
  start-page: 442
  year: 2023
  end-page: 465
  article-title: Model predictive control of water resources systems: A review and research agenda
  publication-title: Annual Reviews in Control
– volume: 145
  issue: 2
  year: 2019
  article-title: Optimal dynamic pump triggers for cost saving and robust water distribution system operations
  publication-title: Journal of Water Resources Planning and Management
– volume: 122
  start-page: 137
  issue: 2
  year: 1996
  end-page: 146
  article-title: Numerical methods for modeling water quality in distribution systems: A comparison
  publication-title: Journal of Water Resources Planning and Management
– volume: 145
  issue: 1
  year: 2019
  article-title: Iterative hydraulic interval state estimation for water distribution networks
  publication-title: Journal of Water Resources Planning and Management
– year: 1977
– start-page: 493
  year: 1996
  end-page: 500
– volume: 146
  issue: 4
  year: 2020
  article-title: A practical optimization scheme for real‐time operation of water distribution systems
  publication-title: Journal of Water Resources Planning and Management
– year: 2012
– volume: 62
  start-page: 4277
  issue: 12
  year: 2016
  end-page: 4296
  article-title: Energy optimization of water supply system scheduling: Novel minlp model and efficient global optimization algorithm
  publication-title: AIChE Journal
– volume: 103
  start-page: 225
  issue: 2
  year: 2005
  end-page: 249
  article-title: A polyhedral branch‐and‐cut approach to global optimization
  publication-title: Mathematical Programming
– volume: 51
  start-page: 8409
  issue: 10
  year: 2015
  end-page: 8430
  article-title: Control of tree water networks: A geometric programming approach
  publication-title: Water Resources Research
– start-page: 191
  year: 2018
  end-page: 203
– volume: 28
  start-page: 3057
  issue: 10
  year: 2014
  end-page: 3074
  article-title: Optimal localization of pressure reducing valves in water distribution systems by a reformulation approach
  publication-title: Water Resources Management
– volume: 161
  start-page: 517
  year: 2019
  end-page: 530
  article-title: Real time control of water distribution networks: A state‐of‐the‐art review
  publication-title: Water Research
– year: 2006
– volume: 53
  start-page: 107
  issue: 1
  year: 2021
  end-page: 124
  article-title: Optimization of water distribution networks using a deterministic approach
  publication-title: Engineering Optimization
– year: 2020
– year: 2023
– volume: 226
  year: 2022
  article-title: Pressure management in water distribution systems through prvs optimal placement and settings
  publication-title: Water Research
– volume: 241
  start-page: 490
  issue: 2
  year: 2015
  end-page: 501
  article-title: A Lagrangian decomposition approach for the pump scheduling problem in water networks
  publication-title: European Journal of Operational Research
– volume: 185
  start-page: 1702
  year: 2017
  end-page: 1711
  article-title: A convex mathematical program for pump scheduling in a class of branched water networks
  publication-title: Applied Energy
– volume: 243
  start-page: 774
  issue: 3
  year: 2015
  end-page: 788
  article-title: Mathematical programming techniques in water network optimization
  publication-title: European Journal of Operational Research
– volume: 147
  issue: 12
  year: 2021
  article-title: Discussion of “regularization of an inverse problem for parameter estimation in water distribution systems” by Alexander Waldron, Filippo Pecci, and Ivan Stoianov
  publication-title: Journal of Water Resources Planning and Management
– volume: 30
  start-page: 2637
  issue: 9
  year: 1994
  end-page: 2646
  article-title: Optimal design of water distribution networks
  publication-title: Water Resources Research
– volume: 124
  start-page: 218
  issue: 4
  year: 1998
  end-page: 228
  article-title: Probabilistic model for water distribution reliability
  publication-title: Journal of Water Resources Planning and Management
– ident: e_1_2_7_12_1
  doi: 10.1016/j.arcontrol.2023.03.013
– ident: e_1_2_7_56_1
  doi: 10.1061/jwrmd5.wreng-5486
– ident: e_1_2_7_8_1
  doi: 10.1007/s11081-011-9141-7
– ident: e_1_2_7_34_1
  doi: 10.1287/opre.14.4.699
– ident: e_1_2_7_26_1
  doi: 10.1016/j.ejor.2014.08.033
– ident: e_1_2_7_16_1
  doi: 10.1016/j.rser.2013.09.010
– volume-title: EPANET 2.2 user manual
  year: 2020
  ident: e_1_2_7_49_1
– ident: e_1_2_7_32_1
  doi: 10.1016/j.envsoft.2017.06.022
– ident: e_1_2_7_11_1
  doi: 10.2166/bgs.2022.003
– ident: e_1_2_7_38_1
  doi: 10.1061/(asce)wr.1943-5452.0000333
– volume-title: Comprehensive water distribution systems analysis handbook for engineers and planners
  year: 2006
  ident: e_1_2_7_6_1
– ident: e_1_2_7_62_1
  doi: 10.1016/j.ejor.2019.07.060
– ident: e_1_2_7_65_1
  doi: 10.1029/2019wr025694
– ident: e_1_2_7_15_1
  doi: 10.1061/(asce)0733-9496(1995)121:6(423)
– volume-title: Addendum to water Meters—Selection, installation, testing, and maintenance
  year: 2018
  ident: e_1_2_7_2_1
– ident: e_1_2_7_39_1
  doi: 10.1016/j.proeng.2015.08.935
– ident: e_1_2_7_51_1
  doi: 10.1002/2014wr016756
– ident: e_1_2_7_52_1
  doi: 10.1029/98wr00907
– ident: e_1_2_7_5_1
  doi: 10.1007/s11081-020-09575-y
– ident: e_1_2_7_19_1
  doi: 10.1016/j.watres.2019.06.025
– ident: e_1_2_7_42_1
  doi: 10.1007/s11081-018-9412-7
– ident: e_1_2_7_55_1
  doi: 10.1007/s10107-005-0581-8
– ident: e_1_2_7_43_1
  doi: 10.1016/j.ejor.2021.03.004
– ident: e_1_2_7_46_1
  doi: 10.1007/0-387-23529-9_5
– ident: e_1_2_7_59_1
  doi: 10.1109/jsyst.2019.2961104
– start-page: 493
  volume-title: Proceedings of the second international conference on hydroinformatics
  year: 1996
  ident: e_1_2_7_58_1
– ident: e_1_2_7_54_1
– ident: e_1_2_7_48_1
  doi: 10.1061/(asce)0733-9372(1994)120:4(803)
– ident: e_1_2_7_4_1
  doi: 10.1016/j.apenergy.2015.12.090
– ident: e_1_2_7_20_1
  doi: 10.1007/s11269-014-0655-6
– ident: e_1_2_7_47_1
  doi: 10.1061/(asce)0733-9496(1996)122:2(137)
– ident: e_1_2_7_53_1
  doi: 10.1002/aic.15332
– ident: e_1_2_7_27_1
  doi: 10.3934/naco.2012.2.695
– ident: e_1_2_7_66_1
  doi: 10.1061/(asce)0733-9496(1998)124:4(218)
– volume: 46
  issue: 53
  year: 2009
  ident: e_1_2_7_18_1
  article-title: V12. 1: User’s manual for CPLEX
  publication-title: International Business Machines Corporation
– ident: e_1_2_7_29_1
  doi: 10.1061/(asce)wr.1943-5452.0001028
– ident: e_1_2_7_14_1
– ident: e_1_2_7_61_1
  doi: 10.1061/(asce)wr.1943-5452.0000603
– ident: e_1_2_7_23_1
  doi: 10.1029/94wr00623
– ident: e_1_2_7_10_1
  doi: 10.1080/0305215x.2019.1702980
– ident: e_1_2_7_45_1
  doi: 10.1016/j.watres.2022.119236
– ident: e_1_2_7_3_1
  doi: 10.3390/w11030562
– ident: e_1_2_7_28_1
– volume-title: Applied mathematical programming
  year: 1977
  ident: e_1_2_7_7_1
– ident: e_1_2_7_21_1
  doi: 10.1016/j.ejor.2014.12.039
– ident: e_1_2_7_37_1
  doi: 10.1016/j.envsoft.2017.02.009
– ident: e_1_2_7_40_1
  doi: 10.1016/j.apenergy.2016.02.136
– ident: e_1_2_7_36_1
– ident: e_1_2_7_44_1
  doi: 10.1061/(asce)wr.1943-5452.0000113
– ident: e_1_2_7_30_1
  doi: 10.1007/s12532-017-0130-5
– ident: e_1_2_7_57_1
  doi: 10.5281/zenodo.7945404
– ident: e_1_2_7_50_1
  doi: 10.1061/(asce)wr.1943-5452.0001188
– ident: e_1_2_7_63_1
  doi: 10.1061/(asce)wr.1943-5452.0001011
– ident: e_1_2_7_60_1
  doi: 10.1002/j.1551-8833.1997.tb08259.x
– ident: e_1_2_7_41_1
  doi: 10.1061/41036(342)38
– ident: e_1_2_7_33_1
  doi: 10.1007/s11081-018-9411-8
– ident: e_1_2_7_13_1
  doi: 10.1007/978-3-319-93073-2_11
– ident: e_1_2_7_64_1
  doi: 10.1061/(asce)wr.1943-5452.0001489
– ident: e_1_2_7_35_1
  doi: 10.1061/(asce)wr.1943-5452.0001258
– ident: e_1_2_7_31_1
  doi: 10.1061/(asce)wr.1943-5452.0000352
– ident: e_1_2_7_9_1
– volume-title: Valve placement in water networks: Mixed‐integer non‐linear optimization with quadratic pipe friction
  year: 2012
  ident: e_1_2_7_22_1
– ident: e_1_2_7_24_1
  doi: 10.1007/s00186-011-0354-5
– ident: e_1_2_7_17_1
  doi: 10.1287/mnsc.24.7.747
– ident: e_1_2_7_25_1
  doi: 10.1016/j.ejor.2017.03.011
SSID ssj0014567
Score 2.4809828
Snippet Water distribution systems (WDSs) are critical infrastructure used to convey water from sources to consumers. The mathematical framework governing the...
Abstract Water distribution systems (WDSs) are critical infrastructure used to convey water from sources to consumers. The mathematical framework governing the...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Approximation
computer software
Conservation equations
Critical infrastructure
Distribution
Energy conservation
Fluid flow
fluid mechanics
Hydraulics
infrastructure
Integer programming
Linear programming
Linearity
Mass balance
Mathematical models
Mixed integer
Model accuracy
Modelling
Optimization
Public domain
Python
Sensitivity analysis
water
Water distribution
Water distribution systems
Water engineering
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQYIL5SkCLTISnCAiiePYeyxVVxxgWa1A25tlO3Zbie5WSVvBjZ_Ab-SXMJM40fZQJMQtih9yMg9_4xnPALwSKoTMVCKV1oq0DF6kuAlmqfShKBBvyEjpj3I2U4eHk3k8cKO7MH1-iPHAjSSj09ck4Ma2MdkA5cikut_LRcapRvZNuJXnXFHphqKcj14EBAdy8DAT0omB7zj-3eboK1tSl7n_CtzcBK3drjPd_t_13od7EW-yvZ5BHsANv3oId4bryC0-xzLoxz8eQb3HPp189_Xvn7_opPDINwxtVZQFNu_DuE5xo2PTIZ6LIeBln1HnnMbLnGwd2BLBa8NmfXQ5tvqexVqagkrXtI_h6_Tgy_6HNJZhSA1q0Sql26a14kjQrDRV7VXunCtK6b3JnPAeEZswuXFoa9XKO2GDLVyGeiCUaHnjVz-BrdV65Z8Cy1DIbV4jrLNkh05wqryW1nBeoV4QPIE3AyW0iznKqVTGN935youJ3vyLCbwee5_1uTmu6feeiDr2oYza3Yt1c6SjgGqFQKxCjeYlleOWXtWSC1UHG6QRGbcJ7AwsoaOYtxqxEsIvMnkTeDk2o4CS18Ws_Pqi1Rwn5eTvFgm87Rjkr4vVy8X-opCIS5_9W_fncBcbyj6ifAe2zpsLvwu33eX5Sdu86ATjDyFVCdw
  priority: 102
  providerName: Wiley-Blackwell
Title A Mixed‐Integer Linear Programming Framework for Optimization of Water Network Operations Problems
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023WR034526
https://www.proquest.com/docview/2931751917
https://www.proquest.com/docview/3040367275
https://doaj.org/article/88466040e712497e8d7358dfbf7a503b
Volume 60
WOSCitedRecordID wos001157676200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: PCBAR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: M7S
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: PATMY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: M2O
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: 24P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BQYIL4leklJWR4AQRXjuOs8d26YpDu10Fqi2nyHbsUonuVpsWwY1H4Bl5EmYSZ7U9ABcuVhJbljWe8XyTGc8AvFRFCNzkKtXWqjQLXqWoBHmqfRAC8YaOO32gp9Pi5GQ02yj1RTFhXXrgjnBvC1SQOXKa11QmWfui1lIVdbBBG8WlpdMXUU9vTEX_AcIC3fuWCePEkHcuRmTty3nJJdXWvqaM2pz914DmJlxt9c3kPtyLQJHtdgt8ADf84iHc6e8RN_gc65d__v4I6l12ePbN179-_KRffKd-xdDIRCZmsy7-6hw1FJv0gVgMkSo7wsPiPN7CZMvA5og6V2zahYVjr-94o6EpqOZM8xiOJ_sfx-_TWD8hNXj85SldE60LiTvBM5PXvhg650SmvTfcKe8RaikzNA6NpLrwTtlgheMowCFDkxnJ9AS2FsuFfwqMo3TaYY14zJIBOcKphrW2RsocBVrJBF73hKxcTC5ONS6-VK2TW4yqTbIn8Go9-qJLqvGHcXu0J-sxlAq7_YAMUkUGqf7FIAns9DtaRflsKgQ5iJvIVk3gxbobJYvcJWbhl1dNJXFSSY5qlcCblhP-uthqXo5LoRFQbv-PZT-Duzh71gWI78DW5erKP4fb7uvlWbMawE2RzbDV808DuLW3P52Vg1YC8O1dOTk-wLdDPqZWHFGrP_wG8YUEqA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQSoX3ohAASPBCaJm4zjOHkvFqojtsloVbW-Wn6US3UVJi-DGT-A38kuYSZxoewAJcYuSsZXE8_jGM54BeCGqEDJdilQaI9IieJGiEcxS6UOeI96QcaWncjarjo_H89jnlM7CdPUhhg03koxWX5OA04Z0rDZARTKp8fdykXFqkn0VrhVoaIjR82I-hBEQHcg-xExQJ2a-4_jdzdGXbFJbuv8S3txEra3Zmdz67xe-DTcj4mR7HYvcgSt-dRe2-wPJDV7HRuifvt8Dt8cOT7959-vHT9orPPE1Q28VpYHNu0SuMzR1bNJndDGEvOwDap2zeJyTrQNbInyt2azLL8envmOyhqag5jXNffg4eXu0f5DGRgypRj1apnTe1FUclzQrdOl8NbLW5oX0XmdWeI-YTeiRtuhtucpbYYLJbYaaIBToe-NXP4Ct1XrlHwLLUMzNyCGwM-SJjnGqkZNGc16iZhA8gVf9Uigbq5RTs4zPqo2W52O1-RcTeDlQf-mqc_yB7g2t6kBDNbXbG-v6REURVRVCsRJ1mpfUkFv6ykkuKhdMkFpk3CSw0_OEioLeKERLCMDI6U3g-fAYRZTiLnrl1xeN4jgpp4i3SOB1yyF_fVm1XOwvconI9NG_kT-D7YOjw6mavpu9fww3kKjo8st3YOu8vvBP4Lr9en7a1E9bKfkNDJ0Nxw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BFgEX_hGBAkaCE0TNJnGcPZaWCMSyrFZU25vl31KJ7lZJi-DGI_CMPAkziRNtDyAhblEysZzYM_7GM54P4DkvvU9UwWOhNY9z73iMi2ASC-fTFPGGCCM9FbNZeXg4mQeeUzoL09WHGDbcSDNae00K7k6tD9UGqEgmEX8vF0lGJNmXYSsnHpkRbO0vqoPpEEhAfCD6IDOBnZD7ji3sbL5_YVVqi_dfQJybuLVdeKqb_93lW3AjYE62202S23DJre7Atf5IcoPXgQr98_e7YHfZh-Nvzv768ZN2C49czdBfRX1g8y6V6wQXO1b1OV0MQS_7iHbnJBzoZGvPlghgazbrMszxqeumWUNNEH1Ncw8Oqjef9t7GgYohVmhJi5hOnNoyw0FNclVYV46NMWkunFOJ4c4hauNqrAz6W7Z0hmuvU5OgLfA5et_41fdhtFqv3ANgCSq6HluEdpp80Qk2NbZCqywr0DbwLIKX_VBIE-qUE13GF9nGy9OJ3PyLEbwYpE-7-hx_kHtNozrIUFXt9sa6PpJBSWWJYKxAq-YEUXILV1qR8dJ67YXiSaYj2O7nhAyq3kjESwjByO2N4NnwGJWUIi9q5dbnjcyw0Yxi3jyCV-0M-Wtn5XKxt0gFYtOH_yb-FK7O9ys5fTd7_wiuo0zeJZhvw-isPneP4Yr5enbc1E-CmvwGeOsO3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Mixed%E2%80%90Integer+Linear+Programming+Framework+for+Optimization+of+Water+Network+Operations+Problems&rft.jtitle=Water+resources+research&rft.au=Thomas%2C+Meghna&rft.au=Sela%2C+Lina&rft.date=2024-02-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=60&rft.issue=2&rft_id=info:doi/10.1029%2F2023WR034526&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2023WR034526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon