A Mixed‐Integer Linear Programming Framework for Optimization of Water Network Operations Problems
Water distribution systems (WDSs) are critical infrastructure used to convey water from sources to consumers. The mathematical framework governing the distribution of flows and heads in extended period simulations of WDSs lends itself to application in a wide range of optimization problems. Applying...
Uložené v:
| Vydané v: | Water resources research Ročník 60; číslo 2 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Washington
John Wiley & Sons, Inc
01.02.2024
Wiley |
| Predmet: | |
| ISSN: | 0043-1397, 1944-7973 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Water distribution systems (WDSs) are critical infrastructure used to convey water from sources to consumers. The mathematical framework governing the distribution of flows and heads in extended period simulations of WDSs lends itself to application in a wide range of optimization problems. Applying the classical mixed integer linear programming (MILP) approach to model WDSs hydraulics within an optimization framework can contribute to higher solution accuracy with lower computational effort. However, adapting WDSs models to conform to a MILP formulation has proven challenging because of the intrinsic non‐linearity of system hydraulics and the complexity associated with modeling hydraulic devices that influence the state of the WDS. This paper introduces MILPNet, an adjustable framework for WDSs that can be used to build and solve an extensive array of MILP optimization problems. MILPNet includes constraints that represent the mass balance and energy conservation equations, hydraulic devices, control rules, and status checks. To conform to MILP structure, MILPNet employs piece‐wise linear approximation and integer programming. MILPNet was implemented and tested using Gurobi Python API. Modeling accuracy was shown to be comparable to EPANET, a public domain software for hydraulic modeling, and sensitivity analyses were conducted to examine the impacts of the modeling assumptions on the performance of MILPNet. Additionally, application of the framework was demonstrated using pump scheduling optimization examples in single and rolling horizon scenarios. Our results show that MILPNet can facilitate the construction and solution of optimization problems for a range of applications in WDSs operations.
Key Points
A mixed‐integer linear programming framework (MILPNet) for formulating and solving water distribution system optimization problems is presented
MILPNet models system dynamics, hydraulic devices, control rules, and status checks and is flexible to adding more devices and conditions
The optimization model can be generated from a .INP file and case‐specific objectives and constraints can be specified via Python interface |
|---|---|
| AbstractList | Water distribution systems (WDSs) are critical infrastructure used to convey water from sources to consumers. The mathematical framework governing the distribution of flows and heads in extended period simulations of WDSs lends itself to application in a wide range of optimization problems. Applying the classical mixed integer linear programming (MILP) approach to model WDSs hydraulics within an optimization framework can contribute to higher solution accuracy with lower computational effort. However, adapting WDSs models to conform to a MILP formulation has proven challenging because of the intrinsic non‐linearity of system hydraulics and the complexity associated with modeling hydraulic devices that influence the state of the WDS. This paper introduces MILPNet, an adjustable framework for WDSs that can be used to build and solve an extensive array of MILP optimization problems. MILPNet includes constraints that represent the mass balance and energy conservation equations, hydraulic devices, control rules, and status checks. To conform to MILP structure, MILPNet employs piece‐wise linear approximation and integer programming. MILPNet was implemented and tested using Gurobi Python API. Modeling accuracy was shown to be comparable to EPANET, a public domain software for hydraulic modeling, and sensitivity analyses were conducted to examine the impacts of the modeling assumptions on the performance of MILPNet. Additionally, application of the framework was demonstrated using pump scheduling optimization examples in single and rolling horizon scenarios. Our results show that MILPNet can facilitate the construction and solution of optimization problems for a range of applications in WDSs operations.
Key Points
A mixed‐integer linear programming framework (MILPNet) for formulating and solving water distribution system optimization problems is presented
MILPNet models system dynamics, hydraulic devices, control rules, and status checks and is flexible to adding more devices and conditions
The optimization model can be generated from a .INP file and case‐specific objectives and constraints can be specified via Python interface Abstract Water distribution systems (WDSs) are critical infrastructure used to convey water from sources to consumers. The mathematical framework governing the distribution of flows and heads in extended period simulations of WDSs lends itself to application in a wide range of optimization problems. Applying the classical mixed integer linear programming (MILP) approach to model WDSs hydraulics within an optimization framework can contribute to higher solution accuracy with lower computational effort. However, adapting WDSs models to conform to a MILP formulation has proven challenging because of the intrinsic non‐linearity of system hydraulics and the complexity associated with modeling hydraulic devices that influence the state of the WDS. This paper introduces MILPNet, an adjustable framework for WDSs that can be used to build and solve an extensive array of MILP optimization problems. MILPNet includes constraints that represent the mass balance and energy conservation equations, hydraulic devices, control rules, and status checks. To conform to MILP structure, MILPNet employs piece‐wise linear approximation and integer programming. MILPNet was implemented and tested using Gurobi Python API. Modeling accuracy was shown to be comparable to EPANET, a public domain software for hydraulic modeling, and sensitivity analyses were conducted to examine the impacts of the modeling assumptions on the performance of MILPNet. Additionally, application of the framework was demonstrated using pump scheduling optimization examples in single and rolling horizon scenarios. Our results show that MILPNet can facilitate the construction and solution of optimization problems for a range of applications in WDSs operations. Water distribution systems (WDSs) are critical infrastructure used to convey water from sources to consumers. The mathematical framework governing the distribution of flows and heads in extended period simulations of WDSs lends itself to application in a wide range of optimization problems. Applying the classical mixed integer linear programming (MILP) approach to model WDSs hydraulics within an optimization framework can contribute to higher solution accuracy with lower computational effort. However, adapting WDSs models to conform to a MILP formulation has proven challenging because of the intrinsic non‐linearity of system hydraulics and the complexity associated with modeling hydraulic devices that influence the state of the WDS. This paper introduces MILPNet, an adjustable framework for WDSs that can be used to build and solve an extensive array of MILP optimization problems. MILPNet includes constraints that represent the mass balance and energy conservation equations, hydraulic devices, control rules, and status checks. To conform to MILP structure, MILPNet employs piece‐wise linear approximation and integer programming. MILPNet was implemented and tested using Gurobi Python API. Modeling accuracy was shown to be comparable to EPANET, a public domain software for hydraulic modeling, and sensitivity analyses were conducted to examine the impacts of the modeling assumptions on the performance of MILPNet. Additionally, application of the framework was demonstrated using pump scheduling optimization examples in single and rolling horizon scenarios. Our results show that MILPNet can facilitate the construction and solution of optimization problems for a range of applications in WDSs operations. Water distribution systems (WDSs) are critical infrastructure used to convey water from sources to consumers. The mathematical framework governing the distribution of flows and heads in extended period simulations of WDSs lends itself to application in a wide range of optimization problems. Applying the classical mixed integer linear programming (MILP) approach to model WDSs hydraulics within an optimization framework can contribute to higher solution accuracy with lower computational effort. However, adapting WDSs models to conform to a MILP formulation has proven challenging because of the intrinsic non‐linearity of system hydraulics and the complexity associated with modeling hydraulic devices that influence the state of the WDS. This paper introduces MILPNet, an adjustable framework for WDSs that can be used to build and solve an extensive array of MILP optimization problems. MILPNet includes constraints that represent the mass balance and energy conservation equations, hydraulic devices, control rules, and status checks. To conform to MILP structure, MILPNet employs piece‐wise linear approximation and integer programming. MILPNet was implemented and tested using Gurobi Python API. Modeling accuracy was shown to be comparable to EPANET, a public domain software for hydraulic modeling, and sensitivity analyses were conducted to examine the impacts of the modeling assumptions on the performance of MILPNet. Additionally, application of the framework was demonstrated using pump scheduling optimization examples in single and rolling horizon scenarios. Our results show that MILPNet can facilitate the construction and solution of optimization problems for a range of applications in WDSs operations. A mixed‐integer linear programming framework (MILPNet) for formulating and solving water distribution system optimization problems is presented MILPNet models system dynamics, hydraulic devices, control rules, and status checks and is flexible to adding more devices and conditions The optimization model can be generated from a .INP file and case‐specific objectives and constraints can be specified via Python interface |
| Author | Sela, Lina Thomas, Meghna |
| Author_xml | – sequence: 1 givenname: Meghna orcidid: 0000-0002-3755-9188 surname: Thomas fullname: Thomas, Meghna organization: The University of Texas at Austin – sequence: 2 givenname: Lina orcidid: 0000-0002-5834-8451 surname: Sela fullname: Sela, Lina email: linasela@utexas.edu organization: The University of Texas at Austin |
| BookMark | eNp9kc1uEzEUhS1UJNLCjgcYiQ0LBvzv8bKKKEQKBEWgLC2P507kMDMOtqNSVn2EPiNPgpsghCrBylf2d871ufccnU1hAoSeE_yaYKrfUEzZZo0ZF1Q-QjOiOa-VVuwMzTDmrCZMqyfoPKUdxoQLqWaou6w--O_Q_by9W0wZthCrpZ_AxupTDNtox9FP2-qqFHAd4teqD7Fa7bMf_Q-bfZiq0Fcbm4vsI-QjsdpDPD6le4t2gDE9RY97OyR49vu8QF-u3n6ev6-Xq3eL-eWytlwqWSvCeNcwKwXmVnbQEOcc5QrAYicACKHCEusI110DTrR9Sx1uFO65xqpkv0CLk28X7M7sox9tvDHBenO8CHFrbMzeDWCahkuJOQZFKNcKmk4x0XR92ysrMGuL18uT1z6GbwdI2Yw-ORgGO0E4JMOKmElFlSjoiwfoLhziVJIaqhlRgmiiCvXqRLkYUorQ__kgweZ-febv9RWcPsCdz8e55mj98C8RO4mu_QA3_21gNuv5miosJPsFGmitkA |
| CitedBy_id | crossref_primary_10_1016_j_ejor_2024_11_035 crossref_primary_10_1016_j_segan_2025_101643 crossref_primary_10_2166_ws_2024_118 crossref_primary_10_3390_electronics14132591 crossref_primary_10_1029_2024WR039830 |
| Cites_doi | 10.1016/j.arcontrol.2023.03.013 10.1061/jwrmd5.wreng-5486 10.1007/s11081-011-9141-7 10.1287/opre.14.4.699 10.1016/j.ejor.2014.08.033 10.1016/j.rser.2013.09.010 10.1016/j.envsoft.2017.06.022 10.2166/bgs.2022.003 10.1061/(asce)wr.1943-5452.0000333 10.1016/j.ejor.2019.07.060 10.1029/2019wr025694 10.1061/(asce)0733-9496(1995)121:6(423) 10.1016/j.proeng.2015.08.935 10.1002/2014wr016756 10.1029/98wr00907 10.1007/s11081-020-09575-y 10.1016/j.watres.2019.06.025 10.1007/s11081-018-9412-7 10.1007/s10107-005-0581-8 10.1016/j.ejor.2021.03.004 10.1007/0-387-23529-9_5 10.1109/jsyst.2019.2961104 10.1061/(asce)0733-9372(1994)120:4(803) 10.1016/j.apenergy.2015.12.090 10.1007/s11269-014-0655-6 10.1061/(asce)0733-9496(1996)122:2(137) 10.1002/aic.15332 10.3934/naco.2012.2.695 10.1061/(asce)0733-9496(1998)124:4(218) 10.1061/(asce)wr.1943-5452.0001028 10.1061/(asce)wr.1943-5452.0000603 10.1029/94wr00623 10.1080/0305215x.2019.1702980 10.1016/j.watres.2022.119236 10.3390/w11030562 10.1016/j.ejor.2014.12.039 10.1016/j.envsoft.2017.02.009 10.1016/j.apenergy.2016.02.136 10.1061/(asce)wr.1943-5452.0000113 10.1007/s12532-017-0130-5 10.5281/zenodo.7945404 10.1061/(asce)wr.1943-5452.0001188 10.1061/(asce)wr.1943-5452.0001011 10.1002/j.1551-8833.1997.tb08259.x 10.1061/41036(342)38 10.1007/s11081-018-9411-8 10.1007/978-3-319-93073-2_11 10.1061/(asce)wr.1943-5452.0001489 10.1061/(asce)wr.1943-5452.0001258 10.1061/(asce)wr.1943-5452.0000352 10.1007/s00186-011-0354-5 10.1287/mnsc.24.7.747 10.1016/j.ejor.2017.03.011 |
| ContentType | Journal Article |
| Copyright | 2024. The Authors. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. The Authors. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 DOA |
| DOI | 10.1029/2023WR034526 |
| DatabaseName | Wiley Online Library Open Access CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics |
| EISSN | 1944-7973 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_88466040e712497e8d7358dfbf7a503b 10_1029_2023WR034526 WRCR27056 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: National Science Foundation funderid: 1943428 |
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A6W AAESR AAHBH AAIHA AAIKC AAMMB AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABUWG ACAHQ ACBWZ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN AEFGJ AEIGN AENEX AETEA AEUYN AEUYR AFBPY AFGKR AFKRA AFRAH AFWVQ AFZJQ AGQPQ AGXDD AIDBO AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAYXX AFFHD AIQQE CITATION PQGLB WIN 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| ID | FETCH-LOGICAL-a4676-7134d83a6504a6de81ccc247eea0c5ee1125a1ac149d8ec5bfb2c0870f4907023 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001157676200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1397 |
| IngestDate | Fri Oct 03 12:53:00 EDT 2025 Fri Oct 03 00:06:35 EDT 2025 Wed Aug 13 04:33:30 EDT 2025 Tue Nov 18 19:41:24 EST 2025 Sat Nov 29 08:00:42 EST 2025 Sun Jul 06 04:45:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4676-7134d83a6504a6de81ccc247eea0c5ee1125a1ac149d8ec5bfb2c0870f4907023 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5834-8451 0000-0002-3755-9188 |
| OpenAccessLink | https://doaj.org/article/88466040e712497e8d7358dfbf7a503b |
| PQID | 2931751917 |
| PQPubID | 105507 |
| PageCount | 23 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_88466040e712497e8d7358dfbf7a503b proquest_miscellaneous_3040367275 proquest_journals_2931751917 crossref_primary_10_1029_2023WR034526 crossref_citationtrail_10_1029_2023WR034526 wiley_primary_10_1029_2023WR034526_WRCR27056 |
| PublicationCentury | 2000 |
| PublicationDate | February 2024 2024-02-00 20240201 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Water resources research |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2009; 46 1966; 14 2021; 22 2019; 11 2020; 280 1997; 89 2023; 149 2020; 14 2020; 56 2014; 28 2012; 13 2019; 161 2016; 142 1977 2001 2019; 20 2005; 103 2011; 73 1978; 24 1995; 121 1998; 124 1994; 30 2011; 137 2023; 55 2012 2015; 51 2021; 147 2015; 243 2015; 241 2009 1996 2006 2005 1996; 122 2020; 146 2019; 145 2017; 95 2012; 2 2021; 53 2017; 93 2023 2022; 4 2022 2021 2020 1994; 120 2018 2016; 62 2017; 261 2015; 119 2017; 185 2014; 140 2021; 295 2014; 30 2016; 170 2018; 10 1998; 34 2022; 226 e_1_2_7_5_1 e_1_2_7_3_1 AWWA (e_1_2_7_2_1) 2018 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 Bradley S. P. (e_1_2_7_7_1) 1977 e_1_2_7_11_1 e_1_2_7_45_1 Cplex I. I. (e_1_2_7_18_1) 2009; 46 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_28_1 Eck B. J. (e_1_2_7_22_1) 2012 Ulanicki B. (e_1_2_7_58_1) 1996 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Rossman L. A. (e_1_2_7_49_1) 2020 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_34_1 e_1_2_7_57_1 Boulos P. F. (e_1_2_7_6_1) 2006 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – volume: 280 start-page: 1035 issue: 3 year: 2020 end-page: 1050 article-title: Optimizing drinking water distribution system operations publication-title: European Journal of Operational Research – volume: 120 start-page: 803 issue: 4 year: 1994 end-page: 820 article-title: Modeling chlorine residuals in drinking‐water distribution systems publication-title: Journal of Environmental Engineering – volume: 22 start-page: 1275 issue: 3 year: 2021 end-page: 1313 article-title: Pump scheduling in drinking water distribution networks with an LP/NLP‐based branch and bound publication-title: Optimization and Engineering – volume: 4 start-page: 156 issue: 2 year: 2022 end-page: 169 article-title: Optimization of installation and energy costs in water distribution systems with unknown flow directions publication-title: Blue‐Green Systems – volume: 140 start-page: 410 issue: 4 year: 2014 end-page: 416 article-title: Research database of water distribution system models publication-title: Journal of Water Resources Planning and Management – volume: 10 start-page: 119 issue: 1 year: 2018 end-page: 142 article-title: Parallelizing the dual revised simplex method publication-title: Mathematical Programming Computation – year: 2001 – volume: 34 start-page: 1831 issue: 7 year: 1998 end-page: 1841 article-title: Enhanced lower bounds for the global optimization of water distribution networks publication-title: Water Resources Research – year: 2021 – volume: 73 start-page: 339 issue: 3 year: 2011 end-page: 362 article-title: Mixed integer linear models for the optimization of dynamical transport networks publication-title: Mathematical Methods of Operations Research – volume: 95 start-page: 420 year: 2017 end-page: 431 article-title: A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study publication-title: Environmental Modelling and Software – start-page: 61 year: 2005 end-page: 76 – year: 2018 – volume: 142 issue: 2 year: 2016 article-title: Generalized benders decomposition to reoptimize water production and distribution operations in a real water supply network publication-title: Journal of Water Resources Planning and Management – volume: 146 issue: 8 year: 2020 article-title: Optimization framework to assess the demand response capacity of a water distribution system publication-title: Journal of Water Resources Planning and Management – volume: 137 start-page: 343 issue: 4 year: 2011 end-page: 351 article-title: Efficient hydraulic state estimation technique using reduced models of urban water networks publication-title: Journal of Water Resources Planning and Management – volume: 30 start-page: 59 year: 2014 end-page: 84 article-title: Efficiency achievement in water supply systems—A review publication-title: Renewable and Sustainable Energy Reviews – volume: 89 start-page: 54 issue: 7 year: 1997 end-page: 65 article-title: Kinetics of chlorine decay publication-title: Journal‐American Water Works Association – volume: 11 issue: 3 year: 2019 article-title: Solving management problems in water distribution networks: A survey of approaches and mathematical models publication-title: Water – volume: 2 start-page: 695 issue: 4 year: 2012 end-page: 711 article-title: Towards globally optimal operation of water supply networks publication-title: Numerical Algebra, Control and Optimization – volume: 24 start-page: 747 issue: 7 year: 1978 end-page: 760 article-title: Solving the pipe network analysis problem using optimization techniques publication-title: Management Science – volume: 121 start-page: 423 issue: 6 year: 1995 end-page: 428 article-title: Modeling distribution system water quality: Regulatory implications publication-title: Journal of Water Resources Planning and Management – volume: 20 start-page: 457 issue: 2 year: 2019 end-page: 495 article-title: Global optimality bounds for the placement of control valves in water supply networks publication-title: Optimization and Engineering – year: 2022 – volume: 261 start-page: 450 issue: 2 year: 2017 end-page: 459 article-title: Polynomial optimization for water networks: Global solutions for the valve setting problem publication-title: European Journal of Operational Research – volume: 295 start-page: 690 issue: 2 year: 2021 end-page: 698 article-title: Relax‐tighten‐round algorithm for optimal placement and control of valves and chlorine boosters in water networks publication-title: European Journal of Operational Research – volume: 46 issue: 53 year: 2009 article-title: V12. 1: User’s manual for CPLEX publication-title: International Business Machines Corporation – volume: 20 start-page: 397 issue: 2 year: 2019 end-page: 455 article-title: A review and comparison of solvers for convex minlp publication-title: Optimization and Engineering – start-page: 1 year: 2009 end-page: 10 – volume: 93 start-page: 209 year: 2017 end-page: 254 article-title: Lost in optimisation of water distribution systems? A literature review of system operation publication-title: Environmental Modelling and Software – volume: 140 start-page: 444 issue: 4 year: 2014 end-page: 456 article-title: Fast and practical method for model reduction of large‐scale water‐distribution networks publication-title: Journal of Water Resources Planning and Management – volume: 56 issue: 3 year: 2020 article-title: A new derivative‐free linear approximation for solving the network water flow problem with convergence guarantees publication-title: Water Resources Research – volume: 14 start-page: 4579 issue: 3 year: 2020 end-page: 4590 article-title: An minlp‐based approach for the design‐for‐control of resilient water supply systems publication-title: IEEE Systems Journal – volume: 170 start-page: 377 year: 2016 end-page: 387 article-title: Demonstrating demand response from water distribution system through pump scheduling publication-title: Applied Energy – volume: 14 start-page: 699 issue: 4 year: 1966 end-page: 719 article-title: Branch‐and‐bound methods: A survey publication-title: Operations Research – volume: 149 issue: 2 year: 2023 article-title: Magnets: Model reduction and aggregation of water networks publication-title: Journal of Water Resources Planning and Management – volume: 13 start-page: 219 issue: 2 year: 2012 end-page: 246 article-title: On the optimal design of water distribution networks: A practical minlp approach publication-title: Optimization and Engineering – volume: 119 start-page: 1059 year: 2015 end-page: 1068 article-title: Approximation of system components for pump scheduling optimisation publication-title: Procedia Engineering – volume: 55 start-page: 442 year: 2023 end-page: 465 article-title: Model predictive control of water resources systems: A review and research agenda publication-title: Annual Reviews in Control – volume: 145 issue: 2 year: 2019 article-title: Optimal dynamic pump triggers for cost saving and robust water distribution system operations publication-title: Journal of Water Resources Planning and Management – volume: 122 start-page: 137 issue: 2 year: 1996 end-page: 146 article-title: Numerical methods for modeling water quality in distribution systems: A comparison publication-title: Journal of Water Resources Planning and Management – volume: 145 issue: 1 year: 2019 article-title: Iterative hydraulic interval state estimation for water distribution networks publication-title: Journal of Water Resources Planning and Management – year: 1977 – start-page: 493 year: 1996 end-page: 500 – volume: 146 issue: 4 year: 2020 article-title: A practical optimization scheme for real‐time operation of water distribution systems publication-title: Journal of Water Resources Planning and Management – year: 2012 – volume: 62 start-page: 4277 issue: 12 year: 2016 end-page: 4296 article-title: Energy optimization of water supply system scheduling: Novel minlp model and efficient global optimization algorithm publication-title: AIChE Journal – volume: 103 start-page: 225 issue: 2 year: 2005 end-page: 249 article-title: A polyhedral branch‐and‐cut approach to global optimization publication-title: Mathematical Programming – volume: 51 start-page: 8409 issue: 10 year: 2015 end-page: 8430 article-title: Control of tree water networks: A geometric programming approach publication-title: Water Resources Research – start-page: 191 year: 2018 end-page: 203 – volume: 28 start-page: 3057 issue: 10 year: 2014 end-page: 3074 article-title: Optimal localization of pressure reducing valves in water distribution systems by a reformulation approach publication-title: Water Resources Management – volume: 161 start-page: 517 year: 2019 end-page: 530 article-title: Real time control of water distribution networks: A state‐of‐the‐art review publication-title: Water Research – year: 2006 – volume: 53 start-page: 107 issue: 1 year: 2021 end-page: 124 article-title: Optimization of water distribution networks using a deterministic approach publication-title: Engineering Optimization – year: 2020 – year: 2023 – volume: 226 year: 2022 article-title: Pressure management in water distribution systems through prvs optimal placement and settings publication-title: Water Research – volume: 241 start-page: 490 issue: 2 year: 2015 end-page: 501 article-title: A Lagrangian decomposition approach for the pump scheduling problem in water networks publication-title: European Journal of Operational Research – volume: 185 start-page: 1702 year: 2017 end-page: 1711 article-title: A convex mathematical program for pump scheduling in a class of branched water networks publication-title: Applied Energy – volume: 243 start-page: 774 issue: 3 year: 2015 end-page: 788 article-title: Mathematical programming techniques in water network optimization publication-title: European Journal of Operational Research – volume: 147 issue: 12 year: 2021 article-title: Discussion of “regularization of an inverse problem for parameter estimation in water distribution systems” by Alexander Waldron, Filippo Pecci, and Ivan Stoianov publication-title: Journal of Water Resources Planning and Management – volume: 30 start-page: 2637 issue: 9 year: 1994 end-page: 2646 article-title: Optimal design of water distribution networks publication-title: Water Resources Research – volume: 124 start-page: 218 issue: 4 year: 1998 end-page: 228 article-title: Probabilistic model for water distribution reliability publication-title: Journal of Water Resources Planning and Management – ident: e_1_2_7_12_1 doi: 10.1016/j.arcontrol.2023.03.013 – ident: e_1_2_7_56_1 doi: 10.1061/jwrmd5.wreng-5486 – ident: e_1_2_7_8_1 doi: 10.1007/s11081-011-9141-7 – ident: e_1_2_7_34_1 doi: 10.1287/opre.14.4.699 – ident: e_1_2_7_26_1 doi: 10.1016/j.ejor.2014.08.033 – ident: e_1_2_7_16_1 doi: 10.1016/j.rser.2013.09.010 – volume-title: EPANET 2.2 user manual year: 2020 ident: e_1_2_7_49_1 – ident: e_1_2_7_32_1 doi: 10.1016/j.envsoft.2017.06.022 – ident: e_1_2_7_11_1 doi: 10.2166/bgs.2022.003 – ident: e_1_2_7_38_1 doi: 10.1061/(asce)wr.1943-5452.0000333 – volume-title: Comprehensive water distribution systems analysis handbook for engineers and planners year: 2006 ident: e_1_2_7_6_1 – ident: e_1_2_7_62_1 doi: 10.1016/j.ejor.2019.07.060 – ident: e_1_2_7_65_1 doi: 10.1029/2019wr025694 – ident: e_1_2_7_15_1 doi: 10.1061/(asce)0733-9496(1995)121:6(423) – volume-title: Addendum to water Meters—Selection, installation, testing, and maintenance year: 2018 ident: e_1_2_7_2_1 – ident: e_1_2_7_39_1 doi: 10.1016/j.proeng.2015.08.935 – ident: e_1_2_7_51_1 doi: 10.1002/2014wr016756 – ident: e_1_2_7_52_1 doi: 10.1029/98wr00907 – ident: e_1_2_7_5_1 doi: 10.1007/s11081-020-09575-y – ident: e_1_2_7_19_1 doi: 10.1016/j.watres.2019.06.025 – ident: e_1_2_7_42_1 doi: 10.1007/s11081-018-9412-7 – ident: e_1_2_7_55_1 doi: 10.1007/s10107-005-0581-8 – ident: e_1_2_7_43_1 doi: 10.1016/j.ejor.2021.03.004 – ident: e_1_2_7_46_1 doi: 10.1007/0-387-23529-9_5 – ident: e_1_2_7_59_1 doi: 10.1109/jsyst.2019.2961104 – start-page: 493 volume-title: Proceedings of the second international conference on hydroinformatics year: 1996 ident: e_1_2_7_58_1 – ident: e_1_2_7_54_1 – ident: e_1_2_7_48_1 doi: 10.1061/(asce)0733-9372(1994)120:4(803) – ident: e_1_2_7_4_1 doi: 10.1016/j.apenergy.2015.12.090 – ident: e_1_2_7_20_1 doi: 10.1007/s11269-014-0655-6 – ident: e_1_2_7_47_1 doi: 10.1061/(asce)0733-9496(1996)122:2(137) – ident: e_1_2_7_53_1 doi: 10.1002/aic.15332 – ident: e_1_2_7_27_1 doi: 10.3934/naco.2012.2.695 – ident: e_1_2_7_66_1 doi: 10.1061/(asce)0733-9496(1998)124:4(218) – volume: 46 issue: 53 year: 2009 ident: e_1_2_7_18_1 article-title: V12. 1: User’s manual for CPLEX publication-title: International Business Machines Corporation – ident: e_1_2_7_29_1 doi: 10.1061/(asce)wr.1943-5452.0001028 – ident: e_1_2_7_14_1 – ident: e_1_2_7_61_1 doi: 10.1061/(asce)wr.1943-5452.0000603 – ident: e_1_2_7_23_1 doi: 10.1029/94wr00623 – ident: e_1_2_7_10_1 doi: 10.1080/0305215x.2019.1702980 – ident: e_1_2_7_45_1 doi: 10.1016/j.watres.2022.119236 – ident: e_1_2_7_3_1 doi: 10.3390/w11030562 – ident: e_1_2_7_28_1 – volume-title: Applied mathematical programming year: 1977 ident: e_1_2_7_7_1 – ident: e_1_2_7_21_1 doi: 10.1016/j.ejor.2014.12.039 – ident: e_1_2_7_37_1 doi: 10.1016/j.envsoft.2017.02.009 – ident: e_1_2_7_40_1 doi: 10.1016/j.apenergy.2016.02.136 – ident: e_1_2_7_36_1 – ident: e_1_2_7_44_1 doi: 10.1061/(asce)wr.1943-5452.0000113 – ident: e_1_2_7_30_1 doi: 10.1007/s12532-017-0130-5 – ident: e_1_2_7_57_1 doi: 10.5281/zenodo.7945404 – ident: e_1_2_7_50_1 doi: 10.1061/(asce)wr.1943-5452.0001188 – ident: e_1_2_7_63_1 doi: 10.1061/(asce)wr.1943-5452.0001011 – ident: e_1_2_7_60_1 doi: 10.1002/j.1551-8833.1997.tb08259.x – ident: e_1_2_7_41_1 doi: 10.1061/41036(342)38 – ident: e_1_2_7_33_1 doi: 10.1007/s11081-018-9411-8 – ident: e_1_2_7_13_1 doi: 10.1007/978-3-319-93073-2_11 – ident: e_1_2_7_64_1 doi: 10.1061/(asce)wr.1943-5452.0001489 – ident: e_1_2_7_35_1 doi: 10.1061/(asce)wr.1943-5452.0001258 – ident: e_1_2_7_31_1 doi: 10.1061/(asce)wr.1943-5452.0000352 – ident: e_1_2_7_9_1 – volume-title: Valve placement in water networks: Mixed‐integer non‐linear optimization with quadratic pipe friction year: 2012 ident: e_1_2_7_22_1 – ident: e_1_2_7_24_1 doi: 10.1007/s00186-011-0354-5 – ident: e_1_2_7_17_1 doi: 10.1287/mnsc.24.7.747 – ident: e_1_2_7_25_1 doi: 10.1016/j.ejor.2017.03.011 |
| SSID | ssj0014567 |
| Score | 2.4809828 |
| Snippet | Water distribution systems (WDSs) are critical infrastructure used to convey water from sources to consumers. The mathematical framework governing the... Abstract Water distribution systems (WDSs) are critical infrastructure used to convey water from sources to consumers. The mathematical framework governing the... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Accuracy Approximation computer software Conservation equations Critical infrastructure Distribution Energy conservation Fluid flow fluid mechanics Hydraulics infrastructure Integer programming Linear programming Linearity Mass balance Mathematical models Mixed integer Model accuracy Modelling Optimization Public domain Python Sensitivity analysis water Water distribution Water distribution systems Water engineering |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQYIL5SkCLTISnCAiiePYeyxVVxxgWa1A25tlO3Zbie5WSVvBjZ_Ab-SXMJM40fZQJMQtih9yMg9_4xnPALwSKoTMVCKV1oq0DF6kuAlmqfShKBBvyEjpj3I2U4eHk3k8cKO7MH1-iPHAjSSj09ck4Ma2MdkA5cikut_LRcapRvZNuJXnXFHphqKcj14EBAdy8DAT0omB7zj-3eboK1tSl7n_CtzcBK3drjPd_t_13od7EW-yvZ5BHsANv3oId4bryC0-xzLoxz8eQb3HPp189_Xvn7_opPDINwxtVZQFNu_DuE5xo2PTIZ6LIeBln1HnnMbLnGwd2BLBa8NmfXQ5tvqexVqagkrXtI_h6_Tgy_6HNJZhSA1q0Sql26a14kjQrDRV7VXunCtK6b3JnPAeEZswuXFoa9XKO2GDLVyGeiCUaHnjVz-BrdV65Z8Cy1DIbV4jrLNkh05wqryW1nBeoV4QPIE3AyW0iznKqVTGN935youJ3vyLCbwee5_1uTmu6feeiDr2oYza3Yt1c6SjgGqFQKxCjeYlleOWXtWSC1UHG6QRGbcJ7AwsoaOYtxqxEsIvMnkTeDk2o4CS18Ws_Pqi1Rwn5eTvFgm87Rjkr4vVy8X-opCIS5_9W_fncBcbyj6ifAe2zpsLvwu33eX5Sdu86ATjDyFVCdw priority: 102 providerName: Wiley-Blackwell |
| Title | A Mixed‐Integer Linear Programming Framework for Optimization of Water Network Operations Problems |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023WR034526 https://www.proquest.com/docview/2931751917 https://www.proquest.com/docview/3040367275 https://doaj.org/article/88466040e712497e8d7358dfbf7a503b |
| Volume | 60 |
| WOSCitedRecordID | wos001157676200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1944-7973 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1944-7973 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1944-7973 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: PCBAR dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1944-7973 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: M7S dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1944-7973 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: PATMY dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1944-7973 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1944-7973 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: M2O dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: 24P dateStart: 20240101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BQYIL4leklJWR4AQRXjuOs8d26YpDu10Fqi2nyHbsUonuVpsWwY1H4Bl5EmYSZ7U9ABcuVhJbljWe8XyTGc8AvFRFCNzkKtXWqjQLXqWoBHmqfRAC8YaOO32gp9Pi5GQ02yj1RTFhXXrgjnBvC1SQOXKa11QmWfui1lIVdbBBG8WlpdMXUU9vTEX_AcIC3fuWCePEkHcuRmTty3nJJdXWvqaM2pz914DmJlxt9c3kPtyLQJHtdgt8ADf84iHc6e8RN_gc65d__v4I6l12ePbN179-_KRffKd-xdDIRCZmsy7-6hw1FJv0gVgMkSo7wsPiPN7CZMvA5og6V2zahYVjr-94o6EpqOZM8xiOJ_sfx-_TWD8hNXj85SldE60LiTvBM5PXvhg650SmvTfcKe8RaikzNA6NpLrwTtlgheMowCFDkxnJ9AS2FsuFfwqMo3TaYY14zJIBOcKphrW2RsocBVrJBF73hKxcTC5ONS6-VK2TW4yqTbIn8Go9-qJLqvGHcXu0J-sxlAq7_YAMUkUGqf7FIAns9DtaRflsKgQ5iJvIVk3gxbobJYvcJWbhl1dNJXFSSY5qlcCblhP-uthqXo5LoRFQbv-PZT-Duzh71gWI78DW5erKP4fb7uvlWbMawE2RzbDV808DuLW3P52Vg1YC8O1dOTk-wLdDPqZWHFGrP_wG8YUEqA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQSoX3ohAASPBCaJm4zjOHkvFqojtsloVbW-Wn6US3UVJi-DGT-A38kuYSZxoewAJcYuSsZXE8_jGM54BeCGqEDJdilQaI9IieJGiEcxS6UOeI96QcaWncjarjo_H89jnlM7CdPUhhg03koxWX5OA04Z0rDZARTKp8fdykXFqkn0VrhVoaIjR82I-hBEQHcg-xExQJ2a-4_jdzdGXbFJbuv8S3txEra3Zmdz67xe-DTcj4mR7HYvcgSt-dRe2-wPJDV7HRuifvt8Dt8cOT7959-vHT9orPPE1Q28VpYHNu0SuMzR1bNJndDGEvOwDap2zeJyTrQNbInyt2azLL8envmOyhqag5jXNffg4eXu0f5DGRgypRj1apnTe1FUclzQrdOl8NbLW5oX0XmdWeI-YTeiRtuhtucpbYYLJbYaaIBToe-NXP4Ct1XrlHwLLUMzNyCGwM-SJjnGqkZNGc16iZhA8gVf9Uigbq5RTs4zPqo2W52O1-RcTeDlQf-mqc_yB7g2t6kBDNbXbG-v6REURVRVCsRJ1mpfUkFv6ykkuKhdMkFpk3CSw0_OEioLeKERLCMDI6U3g-fAYRZTiLnrl1xeN4jgpp4i3SOB1yyF_fVm1XOwvconI9NG_kT-D7YOjw6mavpu9fww3kKjo8st3YOu8vvBP4Lr9en7a1E9bKfkNDJ0Nxw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BFgEX_hGBAkaCE0TNJnGcPZaWCMSyrFZU25vl31KJ7lZJi-DGI_CMPAkziRNtDyAhblEysZzYM_7GM54P4DkvvU9UwWOhNY9z73iMi2ASC-fTFPGGCCM9FbNZeXg4mQeeUzoL09WHGDbcSDNae00K7k6tD9UGqEgmEX8vF0lGJNmXYSsnHpkRbO0vqoPpEEhAfCD6IDOBnZD7ji3sbL5_YVVqi_dfQJybuLVdeKqb_93lW3AjYE62202S23DJre7Atf5IcoPXgQr98_e7YHfZh-Nvzv768ZN2C49czdBfRX1g8y6V6wQXO1b1OV0MQS_7iHbnJBzoZGvPlghgazbrMszxqeumWUNNEH1Ncw8Oqjef9t7GgYohVmhJi5hOnNoyw0FNclVYV46NMWkunFOJ4c4hauNqrAz6W7Z0hmuvU5OgLfA5et_41fdhtFqv3ANgCSq6HluEdpp80Qk2NbZCqywr0DbwLIKX_VBIE-qUE13GF9nGy9OJ3PyLEbwYpE-7-hx_kHtNozrIUFXt9sa6PpJBSWWJYKxAq-YEUXILV1qR8dJ67YXiSaYj2O7nhAyq3kjESwjByO2N4NnwGJWUIi9q5dbnjcyw0Yxi3jyCV-0M-Wtn5XKxt0gFYtOH_yb-FK7O9ys5fTd7_wiuo0zeJZhvw-isPneP4Yr5enbc1E-CmvwGeOsO3Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Mixed%E2%80%90Integer+Linear+Programming+Framework+for+Optimization+of+Water+Network+Operations+Problems&rft.jtitle=Water+resources+research&rft.au=Thomas%2C+Meghna&rft.au=Sela%2C+Lina&rft.date=2024-02-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=60&rft.issue=2&rft_id=info:doi/10.1029%2F2023WR034526&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2023WR034526 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |