Comparative Analysis of Supervised Classification Algorithms for Residential Water End Uses

Water sustainability in the built environment requires an accurate estimation of residential water end uses (e.g., showers, toilets, faucets, etc.). In this study, we evaluate the performance of four models (Random Forest, RF; Support Vector Machines, SVM; Logistic Regression, Log‐reg; and Neural Ne...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Water resources research Ročník 60; číslo 6
Hlavní autori: Heydari, Zahra, Stillwell, Ashlynn S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Washington John Wiley & Sons, Inc 01.06.2024
Wiley
Predmet:
ISSN:0043-1397, 1944-7973
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Water sustainability in the built environment requires an accurate estimation of residential water end uses (e.g., showers, toilets, faucets, etc.). In this study, we evaluate the performance of four models (Random Forest, RF; Support Vector Machines, SVM; Logistic Regression, Log‐reg; and Neural Networks, NN) for residential water end‐use classification using actual (measured) and synthetic labeled data sets. We generated synthetic labeled data using Conditional Tabular Generative Adversarial Networks. We then utilized grid search to train each model on their respective optimized hyperparameters. The RF model exhibited the best model performance overall, while the Log‐reg model had the shortest execution times under different balanced and imbalanced (based on number of events per class) synthetic data scenarios, demonstrating a computationally efficient alternative for RF for specific end uses. The NN model exhibited high performance with the tradeoff of longer execution times compared to the other classification models. In the balanced data set scenario, all models achieved closely aligned F1‐scores, ranging from 0.83 to 0.90. However, when faced with imbalanced data reflective of actual conditions, both the SVM and Log‐reg models showed inferior performance compared to the RF and NN models. Overall, we concluded that decision tree‐based models emerge as the optimal choice for classification tasks in the context of water end‐use data. Our study advances residential smart water metering systems through creating synthetic labeled end‐use data and providing insight into the strengths and weaknesses of various supervised machine learning classifiers for end‐use identification. Plain Language Summary We looked at how well different computer models can tell apart types of water use in homes, like identifying when someone is taking a shower versus flushing a toilet. We used real water meter data and also created fake, but realistic, water use data to test these models. Among the models we tested, the Random Forest model (a method that uses a collection of decisions to make predictions) was the most accurate. However, the Logistic Regression model, another type of model we tested, was faster in analyzing the data, making it a good option for quickly identifying specific water uses without needing as much computer power. We also found that all the models we tested were close in detecting what type of water use event had occurred when the data were evenly distributed across different types of water use. But, when the data were uneven—more like real‐life situations—the Random Forest and Neural Network models were better than the others. This research helps improve systems that monitor how humans use water in homes, making it easier to identify where water is used and how we can save more of it, contributing to more sustainable living environments. Key Points We generated synthetic labeled data representing residential water end uses with a Conditional Tabular Generative Adversarial Network In the context of water end‐use data, decision tree‐based models emerge as the optimal choice for classification tasks Logistic function‐based models, such as logistic regression, are computationally efficient alternatives for classifying specific end uses
AbstractList Water sustainability in the built environment requires an accurate estimation of residential water end uses (e.g., showers, toilets, faucets, etc.). In this study, we evaluate the performance of four models (Random Forest, RF; Support Vector Machines, SVM; Logistic Regression, Log‐reg; and Neural Networks, NN) for residential water end‐use classification using actual (measured) and synthetic labeled data sets. We generated synthetic labeled data using Conditional Tabular Generative Adversarial Networks. We then utilized grid search to train each model on their respective optimized hyperparameters. The RF model exhibited the best model performance overall, while the Log‐reg model had the shortest execution times under different balanced and imbalanced (based on number of events per class) synthetic data scenarios, demonstrating a computationally efficient alternative for RF for specific end uses. The NN model exhibited high performance with the tradeoff of longer execution times compared to the other classification models. In the balanced data set scenario, all models achieved closely aligned F1‐scores, ranging from 0.83 to 0.90. However, when faced with imbalanced data reflective of actual conditions, both the SVM and Log‐reg models showed inferior performance compared to the RF and NN models. Overall, we concluded that decision tree‐based models emerge as the optimal choice for classification tasks in the context of water end‐use data. Our study advances residential smart water metering systems through creating synthetic labeled end‐use data and providing insight into the strengths and weaknesses of various supervised machine learning classifiers for end‐use identification. We looked at how well different computer models can tell apart types of water use in homes, like identifying when someone is taking a shower versus flushing a toilet. We used real water meter data and also created fake, but realistic, water use data to test these models. Among the models we tested, the Random Forest model (a method that uses a collection of decisions to make predictions) was the most accurate. However, the Logistic Regression model, another type of model we tested, was faster in analyzing the data, making it a good option for quickly identifying specific water uses without needing as much computer power. We also found that all the models we tested were close in detecting what type of water use event had occurred when the data were evenly distributed across different types of water use. But, when the data were uneven—more like real‐life situations—the Random Forest and Neural Network models were better than the others. This research helps improve systems that monitor how humans use water in homes, making it easier to identify where water is used and how we can save more of it, contributing to more sustainable living environments. We generated synthetic labeled data representing residential water end uses with a Conditional Tabular Generative Adversarial Network In the context of water end‐use data, decision tree‐based models emerge as the optimal choice for classification tasks Logistic function‐based models, such as logistic regression, are computationally efficient alternatives for classifying specific end uses
Water sustainability in the built environment requires an accurate estimation of residential water end uses (e.g., showers, toilets, faucets, etc.). In this study, we evaluate the performance of four models (Random Forest, RF; Support Vector Machines, SVM; Logistic Regression, Log‐reg; and Neural Networks, NN) for residential water end‐use classification using actual (measured) and synthetic labeled data sets. We generated synthetic labeled data using Conditional Tabular Generative Adversarial Networks. We then utilized grid search to train each model on their respective optimized hyperparameters. The RF model exhibited the best model performance overall, while the Log‐reg model had the shortest execution times under different balanced and imbalanced (based on number of events per class) synthetic data scenarios, demonstrating a computationally efficient alternative for RF for specific end uses. The NN model exhibited high performance with the tradeoff of longer execution times compared to the other classification models. In the balanced data set scenario, all models achieved closely aligned F1‐scores, ranging from 0.83 to 0.90. However, when faced with imbalanced data reflective of actual conditions, both the SVM and Log‐reg models showed inferior performance compared to the RF and NN models. Overall, we concluded that decision tree‐based models emerge as the optimal choice for classification tasks in the context of water end‐use data. Our study advances residential smart water metering systems through creating synthetic labeled end‐use data and providing insight into the strengths and weaknesses of various supervised machine learning classifiers for end‐use identification.
Abstract Water sustainability in the built environment requires an accurate estimation of residential water end uses (e.g., showers, toilets, faucets, etc.). In this study, we evaluate the performance of four models (Random Forest, RF; Support Vector Machines, SVM; Logistic Regression, Log‐reg; and Neural Networks, NN) for residential water end‐use classification using actual (measured) and synthetic labeled data sets. We generated synthetic labeled data using Conditional Tabular Generative Adversarial Networks. We then utilized grid search to train each model on their respective optimized hyperparameters. The RF model exhibited the best model performance overall, while the Log‐reg model had the shortest execution times under different balanced and imbalanced (based on number of events per class) synthetic data scenarios, demonstrating a computationally efficient alternative for RF for specific end uses. The NN model exhibited high performance with the tradeoff of longer execution times compared to the other classification models. In the balanced data set scenario, all models achieved closely aligned F1‐scores, ranging from 0.83 to 0.90. However, when faced with imbalanced data reflective of actual conditions, both the SVM and Log‐reg models showed inferior performance compared to the RF and NN models. Overall, we concluded that decision tree‐based models emerge as the optimal choice for classification tasks in the context of water end‐use data. Our study advances residential smart water metering systems through creating synthetic labeled end‐use data and providing insight into the strengths and weaknesses of various supervised machine learning classifiers for end‐use identification.
Water sustainability in the built environment requires an accurate estimation of residential water end uses (e.g., showers, toilets, faucets, etc.). In this study, we evaluate the performance of four models (Random Forest, RF; Support Vector Machines, SVM; Logistic Regression, Log‐reg; and Neural Networks, NN) for residential water end‐use classification using actual (measured) and synthetic labeled data sets. We generated synthetic labeled data using Conditional Tabular Generative Adversarial Networks. We then utilized grid search to train each model on their respective optimized hyperparameters. The RF model exhibited the best model performance overall, while the Log‐reg model had the shortest execution times under different balanced and imbalanced (based on number of events per class) synthetic data scenarios, demonstrating a computationally efficient alternative for RF for specific end uses. The NN model exhibited high performance with the tradeoff of longer execution times compared to the other classification models. In the balanced data set scenario, all models achieved closely aligned F1‐scores, ranging from 0.83 to 0.90. However, when faced with imbalanced data reflective of actual conditions, both the SVM and Log‐reg models showed inferior performance compared to the RF and NN models. Overall, we concluded that decision tree‐based models emerge as the optimal choice for classification tasks in the context of water end‐use data. Our study advances residential smart water metering systems through creating synthetic labeled end‐use data and providing insight into the strengths and weaknesses of various supervised machine learning classifiers for end‐use identification. Plain Language Summary We looked at how well different computer models can tell apart types of water use in homes, like identifying when someone is taking a shower versus flushing a toilet. We used real water meter data and also created fake, but realistic, water use data to test these models. Among the models we tested, the Random Forest model (a method that uses a collection of decisions to make predictions) was the most accurate. However, the Logistic Regression model, another type of model we tested, was faster in analyzing the data, making it a good option for quickly identifying specific water uses without needing as much computer power. We also found that all the models we tested were close in detecting what type of water use event had occurred when the data were evenly distributed across different types of water use. But, when the data were uneven—more like real‐life situations—the Random Forest and Neural Network models were better than the others. This research helps improve systems that monitor how humans use water in homes, making it easier to identify where water is used and how we can save more of it, contributing to more sustainable living environments. Key Points We generated synthetic labeled data representing residential water end uses with a Conditional Tabular Generative Adversarial Network In the context of water end‐use data, decision tree‐based models emerge as the optimal choice for classification tasks Logistic function‐based models, such as logistic regression, are computationally efficient alternatives for classifying specific end uses
Author Stillwell, Ashlynn S.
Heydari, Zahra
Author_xml – sequence: 1
  givenname: Zahra
  orcidid: 0000-0003-0281-8669
  surname: Heydari
  fullname: Heydari, Zahra
  organization: University of Illinois Urbana‐Champaign
– sequence: 2
  givenname: Ashlynn S.
  orcidid: 0000-0002-6781-6480
  surname: Stillwell
  fullname: Stillwell, Ashlynn S.
  email: ashlynn@illinois.edu
  organization: University of Illinois Urbana‐Champaign
BookMark eNp9kUFrGzEQhUVJoU7aW3-AoJce6nak0a52j8akTSBQcBt86EGMd2dTGXnlSusU__sqcQsl0J4GHt97zLw5F2djHFmI1wreK9DtBw0a1yvAum7hmZip1pi5bS2eiRmAwbnC1r4Q5zlvAZSpajsT35Zxt6dEk79nuRgpHLPPMg7yy2HP6d5n7uUyUM5-8F2h4igX4S4mP33fZTnEJFecfc_j5CnINU2c5OXYy9vM-aV4PlDI_Or3vBC3Hy-_Lq_mN58_XS8XN3MytS0bboA19hulOqt7S5YZ0Dagh2EDdVvppm1ZkbJYdxqLyH3fUINAALUp8oW4PuX2kbZun_yO0tFF8u5RiOnOUZp8F9ixKfaaWsXVYCwpIoOIFtjUle3UpmS9PWXtU_xx4Dy5nc8dh0Ajx0N2qAGwQtOogr55gm7jIZUKCwVWQ2NVhYXSJ6pLMefEg-v89FjklMgHp8A9_M79_btievfE9Oeqf-B4wn_6wMf_sm69Wq601dbgL-p7qbk
CitedBy_id crossref_primary_10_1016_j_clrc_2025_100252
crossref_primary_10_1016_j_envsoft_2025_106443
crossref_primary_10_3390_urbansci9090348
crossref_primary_10_1088_2634_4505_adbd6f
Cites_doi 10.1007/s13280‐011‐0152‐6
10.1016/j.patcog.2010.06.010
10.1016/j.gloenvcha.2014.04.022
10.2166/aqua.2020.153
10.1016/j.proeng.2015.08.1070
10.1016/j.envsoft.2017.11.022
10.1088/2634‐4505/ac8a6b
10.1145/3287064
10.1214/07-SS033
10.1061/9780784412947.090
10.1016/j.envsoft.2017.11.021
10.1016/j.softx.2022.101214
10.1037//1082‐989x.7.2.147
10.1016/j.resconrec.2010.03.004
10.1109/CompComm.2016.7925139
10.1023/a:1010933404324
10.1016/j.jenvman.2011.03.023
10.1016/j.chemgeo.2013.01.010
10.2307/2347628
10.1039/d0ew00724b
10.2166/ws.2005.0094
10.1080/15730620600961288
10.2307/2280095
10.1109/CSAC.2003.1254343
10.1038/s41597‐022‐01685‐9
10.1061/(asce)wr.1943‐5452.0000340
10.1186/s12859‐018‐2264‐5
10.3390/w13020236
10.1016/j.envsoft.2015.07.012
10.1007/978-3-642-21726-5_4
10.1061/(asce)wr.1943‐5452.0001379
10.1186/s40537‐019‐0219‐y
10.3390/environsciproc2020002020
10.1080/14486563.2011.566160
10.1145/3422622
10.3390/w10060714
10.1016/j.catena.2016.11.032
10.1029/wr015i004p00763
10.1002/j.1551‐8833.1996.tb06487.x
10.1016/j.eswa.2015.08.033
10.1016/j.enbuild.2017.04.038
10.1016/j.jher.2013.02.004
10.3390/math10152733
10.1016/j.pmcj.2010.08.008
10.3390/w13010036
10.1016/j.watres.2022.119500
10.2166/ws.2012.036
10.1016/j.neucom.2015.04.098
10.1109/ICIT.2017.7915420
10.1016/j.jenvman.2019.06.126
10.1061/jwrmd5.wreng‐5444
ContentType Journal Article
Copyright 2024. The Authors. published by Wiley Periodicals LLC on behalf of American Geophysical Union.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Authors. published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOA
DOI 10.1029/2023WR036690
DatabaseName Wiley Online Library Open Access
CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Civil Engineering Abstracts
AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID oai_doaj_org_article_e4fbe6a91e5f47a1aa433370e4657c1b
10_1029_2023WR036690
WRCR27274
Genre researchArticle
GrantInformation_xml – fundername: Google
– fundername: National Science Foundation
  funderid: CBET‐1847404
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
PQGLB
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-a4674-7b0e23db11c72d7a7ee037802ffb06952899e1a1736c23ffbedd8a830a0064173
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001247327200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Mon Nov 10 04:32:11 EST 2025
Fri Oct 03 00:07:05 EDT 2025
Wed Aug 13 09:48:15 EDT 2025
Sat Nov 29 08:08:11 EST 2025
Tue Nov 18 20:51:13 EST 2025
Wed Jan 22 17:18:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4674-7b0e23db11c72d7a7ee037802ffb06952899e1a1736c23ffbedd8a830a0064173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6781-6480
0000-0003-0281-8669
OpenAccessLink https://doaj.org/article/e4fbe6a91e5f47a1aa433370e4657c1b
PQID 3072087153
PQPubID 105507
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_e4fbe6a91e5f47a1aa433370e4657c1b
proquest_miscellaneous_3200353481
proquest_journals_3072087153
crossref_citationtrail_10_1029_2023WR036690
crossref_primary_10_1029_2023WR036690
wiley_primary_10_1029_2023WR036690_WRCR27274
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
20240601
2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2010; 54
2020; 63
2015; 72
2019; 247
2014; 27
2023; 149
2017; 151
2022; 20
2013; 7
2001; 45
2012; 12
2011; 18
2015; 170
2018; 2
2020; 2
2018; 1
2016; 43
1992; 41
2021; 7
2018; 100
2022; 230
1979; 15
2019; 6
2021; 147
2019; 32
2018; 102
2011; 40
2002; 7
2015; 121
1951; 46
2009
2008
2006; 3
2005
2004
2003
2013; 341
2012; 79
2011; 9
1999
2018; 19
2021; 13
2010; 43
2023
2021
2020
2011; 92
2022; 9
2005; 5
2018
2017
2020; 69
2016
2014; 140
2015
2022; 10
2022; 2
2013
2018; 10
2017; 147
2012; 8
1996; 88
El Emam K. (e_1_2_8_19_1) 2020
e_1_2_8_28_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Xu L. (e_1_2_8_69_1) 2019; 32
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
Mayer P. (e_1_2_8_44_1) 2004
e_1_2_8_62_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Goodfellow I. (e_1_2_8_25_1) 2016
Roberts P. (e_1_2_8_55_1) 2005
Lu Y. (e_1_2_8_40_1) 2023
e_1_2_8_11_1
e_1_2_8_34_1
Wizard T. (e_1_2_8_67_1) 2003
e_1_2_8_51_1
González F. C. (e_1_2_8_24_1) 2008
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_46_1
Kingma D. P. (e_1_2_8_31_1) 2013
e_1_2_8_27_1
e_1_2_8_48_1
Kirasich K. (e_1_2_8_32_1) 2018; 1
e_1_2_8_2_1
Nitze I. (e_1_2_8_53_1) 2012
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Chollet F. (e_1_2_8_10_1) 2021
Mantovani R. G. (e_1_2_8_41_1) 2015
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
Probst P. (e_1_2_8_54_1) 2018
e_1_2_8_50_1
References_xml – volume: 247
  start-page: 867
  year: 2019
  end-page: 876
  article-title: Enhancing domestic water conservation behaviour: A review of empirical studies on influencing tactics
  publication-title: Journal of Environmental Management
– year: 2009
– volume: 10
  issue: 15
  year: 2022
  article-title: Survey on synthetic data generation, evaluation methods and GANs
  publication-title: Mathematics
– volume: 41
  start-page: 191
  issue: 1
  year: 1992
  end-page: 201
  article-title: Ridge estimators in logistic regression
  publication-title: Journal of the Royal Statistical Society ‐ Series C: Applied Statistics
– start-page: 1
  year: 2015
  end-page: 8
– volume: 121
  start-page: 285
  year: 2015
  end-page: 292
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– year: 2021
– start-page: 564
  year: 2017
  end-page: 569
– volume: 92
  start-page: 1996
  issue: 8
  year: 2011
  end-page: 2009
  article-title: Quantifying the influence of environmental and water conservation attitudes on household end use water consumption
  publication-title: Journal of Environmental Management
– volume: 27
  start-page: 96
  year: 2014
  end-page: 105
  article-title: Water on an urban planet: Urbanization and the reach of urban water infrastructure
  publication-title: Global Environmental Change
– volume: 7
  start-page: 147
  issue: 2
  year: 2002
  end-page: 177
  article-title: Missing data: Our view of the state of the art
  publication-title: Psychological Methods
– volume: 10
  issue: 6
  year: 2018
  article-title: Water event categorization using sub‐metered water and coincident electricity data
  publication-title: Water
– volume: 43
  start-page: 15
  year: 2016
  end-page: 22
  article-title: Training with synthesised data for disaggregated event classification at the water meter
  publication-title: Expert Systems with Applications
– volume: 32
  year: 2019
  article-title: Modeling tabular data using conditional GAN
  publication-title: Advances in Neural Information Processing Systems
– volume: 15
  start-page: 763
  issue: 4
  year: 1979
  end-page: 767
  article-title: An analysis of residential demand for water using micro time‐series data
  publication-title: Water Resources Research
– volume: 88
  start-page: 79
  issue: 1
  year: 1996
  end-page: 90
  article-title: Flow trace analysis to access water use
  publication-title: Journal ‐ American Water Works Association
– volume: 2
  issue: 4
  year: 2022
  article-title: Is smart water meter temporal resolution a limiting factor to residential water end‐use classification? A quantitative experimental analysis
  publication-title: Environmental Research: Infrastructure and Sustainability
– start-page: 936
  year: 2013
  end-page: 945
– volume: 54
  start-page: 1117
  issue: 12
  year: 2010
  end-page: 1127
  article-title: Alarming visual display monitors affecting shower end use water and energy conservation in Australian residential households
  publication-title: Resources, Conservation and Recycling
– start-page: 2451
  year: 2016
  end-page: 2455
– year: 2003
  article-title: Trace Wizard water use analysis tool
  publication-title: Users Manual
– year: 2018
  article-title: Tunability: Importance of hyperparameters of machine learning algorithms
  publication-title: arXiv preprint arXiv:1802.09596
– volume: 9
  start-page: 50
  year: 2011
  end-page: 69
– volume: 2
  start-page: 1
  issue: 4
  year: 2018
  end-page: 26
  article-title: What will you do for the rest of the day? An approach to continuous trajectory prediction
  publication-title: Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies
– year: 2005
  article-title: Yarra Valley water: 2004 residential end use measurement study
  publication-title: Yarra Valley Water Melbourne
– volume: 149
  issue: 7
  year: 2023
  article-title: An open‐source, semisupervised water end‐use disaggregation and classification tool
  publication-title: Journal of Water Resources Planning and Management
– volume: 13
  issue: 2
  year: 2021
  article-title: Implications of experiment set‐ups for residential water end‐use classification
  publication-title: Water
– volume: 341
  start-page: 140
  year: 2013
  end-page: 146
  article-title: Multi‐sample comparison of detrital age distributions
  publication-title: Chemical Geology
– volume: 147
  start-page: 77
  year: 2017
  end-page: 89
  article-title: Trees vs Neurons: Comparison between random forest and ANN for high‐resolution prediction of building energy consumption
  publication-title: Energy and Buildings
– volume: 7
  start-page: 182
  issue: 3
  year: 2013
  end-page: 201
  article-title: Development of an intelligent model to categorise residential water end use events
  publication-title: Journal of Hydro‐Environment Research
– volume: 151
  start-page: 147
  year: 2017
  end-page: 160
  article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility
  publication-title: Catena
– year: 2008
– volume: 8
  start-page: 82
  issue: 1
  year: 2012
  end-page: 102
  article-title: Disaggregated water sensing from a single, pressure‐based sensor: An extended analysis of HydroSense using staged experiments
  publication-title: Pervasive and Mobile Computing
– volume: 170
  start-page: 448
  year: 2015
  end-page: 465
  article-title: A review of datasets and load forecasting techniques for smart natural gas and water grids: Analysis and experiments
  publication-title: Neurocomputing
– year: 2004
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  end-page: 28
  article-title: Effectiveness analysis of machine learning classification models for predicting personalized context‐aware smartphone usage
  publication-title: Journal of Big Data
– volume: 100
  start-page: 48
  year: 2018
  end-page: 66
  article-title: A methodology for synthetic household water consumption data generation
  publication-title: Environmental Modelling & Software
– volume: 19
  start-page: 1
  year: 2018
  end-page: 14
  article-title: Random forest versus logistic regression: A large‐scale benchmark experiment
  publication-title: BMC Bioinformatics
– volume: 18
  start-page: 47
  issue: 1
  year: 2011
  end-page: 60
  article-title: Does water context influence behaviour and attitudes to water conservation?
  publication-title: Australasian Journal of Environmental Management
– volume: 79
  start-page: 3540
  year: 2012
– volume: 2
  issue: 1
  year: 2020
  article-title: Development of an IoT system for the generation of a database of residential water end‐use consumption time series
  publication-title: Environmental Sciences Proceedings
– volume: 20
  year: 2022
  article-title: WEUSEDTO — Water End USE Dataset and TOols: An open water end use consumption dataset and data analytics tools
  publication-title: SoftwareX
– volume: 140
  start-page: 288
  issue: 3
  year: 2014
  end-page: 297
  article-title: Heterogeneous residential water and energy linkages and implications for conservation and management
  publication-title: Journal of Water Resources Planning and Management
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  end-page: 144
  article-title: Generative adversarial networks
  publication-title: Communications of the ACM
– volume: 1
  start-page: 9
  issue: 3
  year: 2018
  article-title: Random forest vs logistic regression: Binary classification for heterogeneous datasets
  publication-title: SMU Data Science Review
– year: 2023
  article-title: Machine learning for synthetic data generation: A review
  publication-title: arXiv preprint arXiv:2302.04062
– year: 2016
– volume: 9
  start-page: 561
  issue: 1
  year: 2022
  article-title: Intravital microscopy datasets examining key nephron segments of transplanted decellularized kidneys
  publication-title: Scientific Data
– volume: 230
  year: 2022
  article-title: Investigating the characteristics of residential end uses of water: A worldwide review
  publication-title: Water Research
– volume: 72
  start-page: 198
  year: 2015
  end-page: 214
  article-title: Benefits and challenges of using smart meters for advancing residential water demand modeling and management: A review
  publication-title: Environmental Modelling and Software
– volume: 12
  start-page: 619
  issue: 5
  year: 2012
  end-page: 629
  article-title: Hydraulic transients in plumbing systems
  publication-title: Water Science and Technology: Water Supply
– volume: 13
  issue: 1
  year: 2021
  article-title: Urban water consumption at multiple spatial and temporal scales. a review of existing datasets
  publication-title: Water
– volume: 43
  start-page: 3977
  issue: 12
  year: 2010
  end-page: 3987
  article-title: A hybrid SVM based decision tree
  publication-title: Pattern Recognition
– year: 2020
– volume: 46
  start-page: 68
  issue: 253
  year: 1951
  end-page: 78
  article-title: The Kolmogorov‐Smirnov test for goodness of fit
  publication-title: Journal of the American Statistical Association
– volume: 40
  start-page: 437
  issue: 5
  year: 2011
  end-page: 446
  article-title: Implications of fast urban growth for freshwater provision
  publication-title: Ambio
– year: 2023
– volume: 147
  issue: 6
  year: 2021
  article-title: Automated household water end‐use disaggregation through rule‐based methodology
  publication-title: Journal of Water Resources Planning and Management
– volume: 102
  start-page: 199
  year: 2018
  end-page: 212
  article-title: Implications of data sampling resolution on water use simulation, end‐use disaggregation, and demand management
  publication-title: Environmental Modelling and Software
– volume: 3
  start-page: 127
  issue: 3
  year: 2006
  end-page: 143
  article-title: A review of residential water conservation tool performance and influences on implementation effectiveness
  publication-title: Urban Water Journal
– year: 2013
  article-title: Auto‐encoding variational bayes
  publication-title: arXiv preprint arXiv:1312.6114
– volume: 69
  start-page: 387
  issue: 4
  year: 2020
  end-page: 397
  article-title: Extracting household water use event characteristics from rudimentary data
  publication-title: Journal of Water Supply: Research & Technology ‐ Aqua
– start-page: 384
  year: 2003
  end-page: 394
– volume: 5
  start-page: 145
  issue: 3–4
  year: 2005
  end-page: 150
  article-title: Using measured microcomponent data to model the impact of water conservation strategies on the diurnal consumption profile
  publication-title: Water Science and Technology: Water Supply
– volume: 7
  start-page: 487
  issue: 3
  year: 2021
  end-page: 503
  article-title: Emerging investigator series: Disaggregating residential sector high‐resolution smart water meter data into appliance end‐uses with unsupervised machine learning
  publication-title: Environmental Sciences: Water Research & Technology
– year: 1999
– ident: e_1_2_8_45_1
– start-page: 3540
  volume-title: Proceedings of the 4th GEOBIA
  year: 2012
  ident: e_1_2_8_53_1
– year: 2013
  ident: e_1_2_8_31_1
  article-title: Auto‐encoding variational bayes
  publication-title: arXiv preprint arXiv:1312.6114
– year: 2023
  ident: e_1_2_8_40_1
  article-title: Machine learning for synthetic data generation: A review
  publication-title: arXiv preprint arXiv:2302.04062
– ident: e_1_2_8_48_1
  doi: 10.1007/s13280‐011‐0152‐6
– ident: e_1_2_8_36_1
  doi: 10.1016/j.patcog.2010.06.010
– ident: e_1_2_8_49_1
  doi: 10.1016/j.gloenvcha.2014.04.022
– ident: e_1_2_8_51_1
  doi: 10.2166/aqua.2020.153
– ident: e_1_2_8_64_1
  doi: 10.1016/j.proeng.2015.08.1070
– ident: e_1_2_8_11_1
  doi: 10.1016/j.envsoft.2017.11.022
– start-page: 1
  volume-title: 2015 International Joint Conference on Neural Networks (ijcnn)
  year: 2015
  ident: e_1_2_8_41_1
– ident: e_1_2_8_28_1
  doi: 10.1088/2634‐4505/ac8a6b
– ident: e_1_2_8_56_1
  doi: 10.1145/3287064
– ident: e_1_2_8_60_1
  doi: 10.1214/07-SS033
– year: 2003
  ident: e_1_2_8_67_1
  article-title: Trace Wizard water use analysis tool
  publication-title: Users Manual
– ident: e_1_2_8_61_1
  doi: 10.1061/9780784412947.090
– ident: e_1_2_8_33_1
  doi: 10.1016/j.envsoft.2017.11.021
– ident: e_1_2_8_18_1
  doi: 10.1016/j.softx.2022.101214
– ident: e_1_2_8_58_1
  doi: 10.1037//1082‐989x.7.2.147
– ident: e_1_2_8_65_1
  doi: 10.1016/j.resconrec.2010.03.004
– volume-title: Deep learning with Python
  year: 2021
  ident: e_1_2_8_10_1
– ident: e_1_2_8_59_1
  doi: 10.1109/CompComm.2016.7925139
– ident: e_1_2_8_7_1
  doi: 10.1023/a:1010933404324
– volume: 32
  year: 2019
  ident: e_1_2_8_69_1
  article-title: Modeling tabular data using conditional GAN
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_8_66_1
  doi: 10.1016/j.jenvman.2011.03.023
– volume-title: Deep learning
  year: 2016
  ident: e_1_2_8_25_1
– ident: e_1_2_8_62_1
  doi: 10.1016/j.chemgeo.2013.01.010
– ident: e_1_2_8_8_1
  doi: 10.2307/2347628
– volume-title: Practical synthetic data generation: Balancing privacy and the broad availability of data
  year: 2020
  ident: e_1_2_8_19_1
– volume: 1
  start-page: 9
  issue: 3
  year: 2018
  ident: e_1_2_8_32_1
  article-title: Random forest vs logistic regression: Binary classification for heterogeneous datasets
  publication-title: SMU Data Science Review
– ident: e_1_2_8_6_1
  doi: 10.1039/d0ew00724b
– ident: e_1_2_8_35_1
  doi: 10.2166/ws.2005.0094
– ident: e_1_2_8_30_1
  doi: 10.1080/15730620600961288
– ident: e_1_2_8_42_1
  doi: 10.2307/2280095
– ident: e_1_2_8_5_1
  doi: 10.1109/CSAC.2003.1254343
– ident: e_1_2_8_13_1
  doi: 10.1038/s41597‐022‐01685‐9
– ident: e_1_2_8_50_1
– ident: e_1_2_8_2_1
  doi: 10.1061/(asce)wr.1943‐5452.0000340
– ident: e_1_2_8_14_1
  doi: 10.1186/s12859‐018‐2264‐5
– ident: e_1_2_8_27_1
  doi: 10.3390/w13020236
– ident: e_1_2_8_12_1
  doi: 10.1016/j.envsoft.2015.07.012
– ident: e_1_2_8_22_1
  doi: 10.1007/978-3-642-21726-5_4
– ident: e_1_2_8_47_1
  doi: 10.1061/(asce)wr.1943‐5452.0001379
– ident: e_1_2_8_57_1
  doi: 10.1186/s40537‐019‐0219‐y
– ident: e_1_2_8_43_1
  doi: 10.3390/environsciproc2020002020
– ident: e_1_2_8_39_1
– volume-title: Microcomponentes y factores explicativos del consumo doméstico de agua en la comunidad de Madrid
  year: 2008
  ident: e_1_2_8_24_1
– ident: e_1_2_8_23_1
  doi: 10.1080/14486563.2011.566160
– ident: e_1_2_8_26_1
  doi: 10.1145/3422622
– ident: e_1_2_8_63_1
  doi: 10.3390/w10060714
– ident: e_1_2_8_9_1
  doi: 10.1016/j.catena.2016.11.032
– ident: e_1_2_8_15_1
  doi: 10.1029/wr015i004p00763
– ident: e_1_2_8_16_1
  doi: 10.1002/j.1551‐8833.1996.tb06487.x
– ident: e_1_2_8_68_1
  doi: 10.1016/j.eswa.2015.08.033
– ident: e_1_2_8_3_1
  doi: 10.1016/j.enbuild.2017.04.038
– volume-title: Tampa water department residential water conservation study: The impacts of high efficiency plumbing fixture retrofits in single‐family homes
  year: 2004
  ident: e_1_2_8_44_1
– year: 2018
  ident: e_1_2_8_54_1
  article-title: Tunability: Importance of hyperparameters of machine learning algorithms
  publication-title: arXiv preprint arXiv:1802.09596
– ident: e_1_2_8_52_1
  doi: 10.1016/j.jher.2013.02.004
– ident: e_1_2_8_21_1
  doi: 10.3390/math10152733
– year: 2005
  ident: e_1_2_8_55_1
  article-title: Yarra Valley water: 2004 residential end use measurement study
  publication-title: Yarra Valley Water Melbourne
– ident: e_1_2_8_37_1
  doi: 10.1016/j.pmcj.2010.08.008
– ident: e_1_2_8_17_1
  doi: 10.3390/w13010036
– ident: e_1_2_8_46_1
  doi: 10.1016/j.watres.2022.119500
– ident: e_1_2_8_38_1
  doi: 10.2166/ws.2012.036
– ident: e_1_2_8_20_1
  doi: 10.1016/j.neucom.2015.04.098
– ident: e_1_2_8_29_1
  doi: 10.1109/ICIT.2017.7915420
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jenvman.2019.06.126
– ident: e_1_2_8_4_1
  doi: 10.1061/jwrmd5.wreng‐5444
SSID ssj0014567
Score 2.4807878
Snippet Water sustainability in the built environment requires an accurate estimation of residential water end uses (e.g., showers, toilets, faucets, etc.). In this...
Abstract Water sustainability in the built environment requires an accurate estimation of residential water end uses (e.g., showers, toilets, faucets, etc.)....
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Built environment
Choice learning
class
Classification
Comparative analysis
Computer models
data collection
Datasets
Decision trees
Generative adversarial networks
logistic regression
Machine learning
Mathematical models
model validation
neural network
Neural networks
Performance evaluation
random forest
Regression analysis
Regression models
residential water
smart metering systems
Supervised learning
support vector machine
Support vector machines
Synthetic data
Toilets
Urban environments
Water
Water metering
Water meters
Water use
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9UwFA86BX3xe9g5JYI-aTFfbdrHednwQca4Ou_Ah5I06Ta4tqO9V9h_7zm5ab17UBDfSnICoecjv-Qkv0PIG4vrtnUszXIpUuVKmRowFHC8TGSO1dyHcm_fPuvj4-LsrDyJB274FmbDDzEduKFnhHiNDm7sEMkGkCMT634v5hCAYX93m9zhXGq0aqFOpiwCgAM9ZpgR6cSL7zD-w_boG0tSYO6_ATe3QWtYdY4e_u98H5EHEW_Sg42BPCa3fPuE3BufIw_wHcugX1w_Jd9nv7nA6UhXQruGfllfYUwZvKOhiibeLwoqpQfL866_XF38GCjAXzr3WP6zhbCxpAuAsT09bB09HfzwjJweHX6dfUpj9YXUYAWSVFsGenKW81oLp432nkldMNE0luVlhjs1zw3XMq-FhEbvXGEKyQzCHGjeJTtt1_rnhBrPau1LbUxuVOMyW_OyrIWzAF4gwBQJeTcqoKojNTlWyFhWIUUuymr75yXk7SR9taHk-IPcR9TlJINE2qGh68-r6JeVVzDx3JTcZ43ShhujpJSaeZVnuuY2IfujJVTRu4cK4qJgsNPMZEJeT93gl5hsMa3v1iATqGbxmXNC3ge7-Otkq8V8NhcAJtXev4m_IPehQ21ur-2TnVW_9i_J3frn6nLoXwV_-AWfNwb0
  priority: 102
  providerName: Wiley-Blackwell
Title Comparative Analysis of Supervised Classification Algorithms for Residential Water End Uses
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023WR036690
https://www.proquest.com/docview/3072087153
https://www.proquest.com/docview/3200353481
https://doaj.org/article/e4fbe6a91e5f47a1aa433370e4657c1b
Volume 60
WOSCitedRecordID wos001247327200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: PCBAR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: M7S
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: PATMY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: M2O
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: 24P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dj9MwDLfgQIIXxKfo3TEFCZ6gIk3apnm8G5t4OMbUY-wQD1XapNxJozutGxL_PXbWjvEAvPAStalVRY7t_Cw7NsCLks7t0vIwSaUIY6tlaFBQUPESkVheRc63e_t0piaT7OJCT_dafVFO2LY88JZxb1xcly41OnJJHSsTGRNLKRV3cZqoKirJ-nKle2eqix8gLFB9bJkwTpfyzoUmb1_OczTcKdnhvcPI1-z_DWjuw1V_3ozvw70OKLKT7QIfwA3XPIQ7_T3iFp-7_uWXPx7Bl-GvIt6srzPCljU731yTMWidZb79JSUG-b1gJ4uvy9XV-vJbyxC3stxR384G9X3B5og_V2zUWDZrXfsYZuPRx-G7sGubEBpqHRKqkiODbRlFlRJWGeUclyrjoq5LnuqEXCwXmUjJtBISJ521mckkN4RPcPoJHDTLxj0FZhyvlNPKmNTEtU3KKtK6ErZE1IGWIQvgVc-_oupqilNri0XhY9tCF_vcDuDljvp6W0vjD3SntBU7GqqA7SdQLopOLop_yUUAx_1GFp1atgUaNMHRRUxkAM93n1GhKEpiGrfcII2vEUv3kwN47QXgr4st5vkwF4gC48P_sewjuIt_j7fJaMdwsF5t3DO4XX1fX7WrAdwU8RRHNf88gFuno8k0H3jBx7e3-Xh2hm_v-ZBG8YFGdf4T42IDAg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5BhzRe-I0oDDASPEGEEydx8jjKqiFKhcJKJ_EQObGzTSrJlLRI_PfcuU7oHkBCvEXOJbLiu_PnnP19AC8LmrcLzb0oFoEX6lR4Ch0FAy8KIs1L31i5t68zOZ8np6fpZ6dzSmdhtvwQww83igybrynA6Ye0YxsgkkwS_l5mmIFxgXcd9kL0pGgEe--z6WI2FBIQH8i-yExgx-19xze83X3-yqxkyfuvIM5d3Gonnunt_-7yHbjlMCc73DrJXbhm6nuw3x9J7vDaSaGf_7wP3ya_-cBZT1nCmop92VxSXumMZlZJk_YY2WFlh6uzpr1Yn3_vGEJglhmSAK0xdazYEqFsy45qzRad6R7AYnp0Mjn2nAKDp0iFxJMFx7HShe-XMtBSSWO4kAkPqqrgcRrRas34ypciLgOBjUbrRCWCK4I62PwQRnVTm0fAlOGlNKlUKlZhpaOi9NO0DHSBAAaTTDKG1_0I5KWjJyeVjFVuy-RBmu9-vDG8Gqwvt7Qcf7B7R4M52BCZtm1o2rPcxWZuQux4rFLfRFUola9UKISQ3IRxJEu_GMNB7wq5i_Aux9wYcFxtRmIML4bbGJtUcFG1aTZoY-lm6ajzGN5Yx_hrZ_NlNskCBJTh438zfw77xyefZvnsw_zjE7iJRuF2N9sBjNbtxjyFG-WP9UXXPnPh8QsucQxx
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL2CgYAXvhGBDYwETxDNiZ04edy6VSCmqiqMTuIhcmJnm1SSKmmR-Pfc6yZZ9wAS4i1yriUr98PHsX0OwNuc5u3ccD-KRehLkwpfY6Bg4kVhZHgRWCf39u1ETSbJ2Vk67XRO6S7Mhh9i-OFGmeHqNSW4XZqyYxsgkkwS_p7PsALjAu8m3JIRllmidpbTYRsB0YHqt5gJ6nQn37H__nbva3OSo-6_hje3UaubdsYP_nvAD-F-hzjZwSZEHsENWz2Gu_2F5BafOyH0i19P4Pvoig2c9YQlrC7Zl_WSqkprDXM6mnTCyDmVHSzO6-ZydfGjZQiA2cySAGiFhWPB5ghkG3ZcGXba2vYpnI6Pv44--p3-gq9Jg8RXOUdPmTwIChUapZW1XKiEh2WZ8ziNaK1mAx0oERehwEZrTKITwTUBHWx-BjtVXdnnwLTlhbKp0jrWsjRRXgRpWoQmR_iCJSbx4H3vgazoyMlJI2ORuU3yMM22P54H7wbr5YaU4w92h-TMwYaotF1D3ZxnXWZmVuLAY50GNiql0oHWUgihuJVxpIog92C3D4Wsy-82w8oYclxrRsKDN8NrzEzabtGVrddo48hm6aKzBx9cYPx1sNl8NpqFCCfli38zfw13pkfj7OTT5PNLuIc2cnOUbRd2Vs3a7sHt4ufqsm1eudz4DdW_Clo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analysis+of+Supervised+Classification+Algorithms+for+Residential+Water+End+Uses&rft.jtitle=Water+resources+research&rft.au=Heydari%2C+Zahra&rft.au=Stillwell%2C+Ashlynn+S&rft.date=2024-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=60&rft.issue=6&rft_id=info:doi/10.1029%2F2023WR036690&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon