Fragment Linker Prediction Using the Deep Encoder-Decoder Network for PROTACs Drug Design
A drug discovery and development pipeline is a prolonged and complex process that remains challenging for both computational methods and medicinal chemists and has not been able to be resolved using computational methods. Deep learning has been utilized in various fields and achieved tremendous succ...
Uloženo v:
| Vydáno v: | Journal of chemical information and modeling Ročník 63; číslo 10; s. 2918 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
22.05.2023
|
| Témata: | |
| ISSN: | 1549-960X, 1549-960X |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A drug discovery and development pipeline is a prolonged and complex process that remains challenging for both computational methods and medicinal chemists and has not been able to be resolved using computational methods. Deep learning has been utilized in various fields and achieved tremendous success in designing novel molecules in the pharmaceutical industry. Herein, we use state-of-the-art techniques to propose a deep neural network, AIMLinker, to rapidly design and generate meaningful drug-like proteolysis targeting chimeras (PROTACs) analogs. The model extracts the structural information from the input fragments and generates linkers to incorporate them. We integrate filters in the model to exclude nondruggable structures guided via protein-protein complexes while retaining molecules with potent chemical properties. The novel PROTACs subsequently pass through molecular docking, taking root-mean-square deviation (RMSD), relative Gibbs free energy (
), molecular dynamics (MD) simulation, and free energy perturbation (FEP) calculations as the measurement criteria for testing the robustness and feasibility of the model. The generated novel PROTACs molecules possess similar structural information with superior binding affinity to the binding pockets compared to the existing CRBN-dBET6-BRD4 ternary complexes. We demonstrate the effectiveness of the methodology of leveraging AIMLinker to design novel compounds for PROTACs molecules exhibiting better chemical properties compared to the dBET6 crystal pose. |
|---|---|
| AbstractList | A drug discovery and development pipeline is a prolonged and complex process that remains challenging for both computational methods and medicinal chemists and has not been able to be resolved using computational methods. Deep learning has been utilized in various fields and achieved tremendous success in designing novel molecules in the pharmaceutical industry. Herein, we use state-of-the-art techniques to propose a deep neural network, AIMLinker, to rapidly design and generate meaningful drug-like proteolysis targeting chimeras (PROTACs) analogs. The model extracts the structural information from the input fragments and generates linkers to incorporate them. We integrate filters in the model to exclude nondruggable structures guided via protein-protein complexes while retaining molecules with potent chemical properties. The novel PROTACs subsequently pass through molecular docking, taking root-mean-square deviation (RMSD), relative Gibbs free energy (ΔΔGbinding), molecular dynamics (MD) simulation, and free energy perturbation (FEP) calculations as the measurement criteria for testing the robustness and feasibility of the model. The generated novel PROTACs molecules possess similar structural information with superior binding affinity to the binding pockets compared to the existing CRBN-dBET6-BRD4 ternary complexes. We demonstrate the effectiveness of the methodology of leveraging AIMLinker to design novel compounds for PROTACs molecules exhibiting better chemical properties compared to the dBET6 crystal pose.A drug discovery and development pipeline is a prolonged and complex process that remains challenging for both computational methods and medicinal chemists and has not been able to be resolved using computational methods. Deep learning has been utilized in various fields and achieved tremendous success in designing novel molecules in the pharmaceutical industry. Herein, we use state-of-the-art techniques to propose a deep neural network, AIMLinker, to rapidly design and generate meaningful drug-like proteolysis targeting chimeras (PROTACs) analogs. The model extracts the structural information from the input fragments and generates linkers to incorporate them. We integrate filters in the model to exclude nondruggable structures guided via protein-protein complexes while retaining molecules with potent chemical properties. The novel PROTACs subsequently pass through molecular docking, taking root-mean-square deviation (RMSD), relative Gibbs free energy (ΔΔGbinding), molecular dynamics (MD) simulation, and free energy perturbation (FEP) calculations as the measurement criteria for testing the robustness and feasibility of the model. The generated novel PROTACs molecules possess similar structural information with superior binding affinity to the binding pockets compared to the existing CRBN-dBET6-BRD4 ternary complexes. We demonstrate the effectiveness of the methodology of leveraging AIMLinker to design novel compounds for PROTACs molecules exhibiting better chemical properties compared to the dBET6 crystal pose. A drug discovery and development pipeline is a prolonged and complex process that remains challenging for both computational methods and medicinal chemists and has not been able to be resolved using computational methods. Deep learning has been utilized in various fields and achieved tremendous success in designing novel molecules in the pharmaceutical industry. Herein, we use state-of-the-art techniques to propose a deep neural network, AIMLinker, to rapidly design and generate meaningful drug-like proteolysis targeting chimeras (PROTACs) analogs. The model extracts the structural information from the input fragments and generates linkers to incorporate them. We integrate filters in the model to exclude nondruggable structures guided via protein-protein complexes while retaining molecules with potent chemical properties. The novel PROTACs subsequently pass through molecular docking, taking root-mean-square deviation (RMSD), relative Gibbs free energy ( ), molecular dynamics (MD) simulation, and free energy perturbation (FEP) calculations as the measurement criteria for testing the robustness and feasibility of the model. The generated novel PROTACs molecules possess similar structural information with superior binding affinity to the binding pockets compared to the existing CRBN-dBET6-BRD4 ternary complexes. We demonstrate the effectiveness of the methodology of leveraging AIMLinker to design novel compounds for PROTACs molecules exhibiting better chemical properties compared to the dBET6 crystal pose. |
| Author | Lin, Chu-Chung Lin, Chieh-Te Kao, Chien-Ting Chou, Cheng-Li |
| Author_xml | – sequence: 1 givenname: Chien-Ting surname: Kao fullname: Kao, Chien-Ting organization: AnHorn Medicines Co., Ltd., Taipei 115202, Taiwan – sequence: 2 givenname: Chieh-Te orcidid: 0000-0001-5262-1050 surname: Lin fullname: Lin, Chieh-Te organization: Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States – sequence: 3 givenname: Cheng-Li surname: Chou fullname: Chou, Cheng-Li organization: AnHorn Medicines Co., Ltd., Taipei 115202, Taiwan – sequence: 4 givenname: Chu-Chung surname: Lin fullname: Lin, Chu-Chung organization: AnHorn Medicines Co., Ltd., Taipei 115202, Taiwan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37150933$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkDtPwzAYRS0Eog_YmZBHlhS_4jRj1QcgVRShIsEUOfbn4LZxip0I8e-poEhM5w7n3uEO0KlvPCB0RcmIEkZvlY6jjXb1iGlC2Tg7QX2aijzJJXk9_Zd7aBDjhhDOc8nOUY9nNCU55330tgiqqsG3eOn8FgJ-CmCcbl3j8Ut0vsLtO-AZwB7PvW4MhGQGP8SP0H42YYttc2g9r9aTacSz0FUHO7rKX6Azq3YRLo8covVivp7eJ8vV3cN0skyUkKxNjEgFJaUep5kRVuuylFaxUnNjcpDKCmIMt2bMMiOJBUolV0Rzm2lFU6nYEN38zu5D89FBbIvaRQ27nfLQdLFgY0oZFUzkB_X6qHZlDabYB1er8FX8vcG-AYPvZQY |
| CitedBy_id | crossref_primary_10_1021_acs_chemrev_4c00969 crossref_primary_10_1002_mco2_70258 crossref_primary_10_1016_j_apsb_2024_04_007 crossref_primary_10_3390_pharmaceutics17091160 crossref_primary_10_1016_j_tips_2024_10_006 crossref_primary_10_3390_ph16121649 crossref_primary_10_1002_wcms_70013 crossref_primary_10_1016_j_cmpb_2025_108687 crossref_primary_10_1016_j_ijbiomac_2024_134293 crossref_primary_10_1016_j_ejmech_2025_117432 crossref_primary_10_1016_j_sbi_2025_102995 crossref_primary_10_1016_j_ejmech_2023_115793 crossref_primary_10_1016_j_bioorg_2025_108985 crossref_primary_10_1016_j_eswa_2023_123127 crossref_primary_10_1093_bioinformatics_btaf191 crossref_primary_10_2174_0113852728361926250123092017 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/acs.jcim.2c01287 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1549-960X |
| ExternalDocumentID | 37150933 |
| Genre | Journal Article |
| GroupedDBID | --- -~X 4.4 55A 5GY 5VS 7~N AABXI ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACIWK ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CGR CUPRZ CUY CVF D0L DU5 EBS ECM ED~ EIF F5P GGK GNL IH9 JG~ NPM P2P PQQKQ RNS ROL UI2 VF5 VG9 W1F 7X8 |
| ID | FETCH-LOGICAL-a462t-d45410bc857d4fccbb6fa2bc3dd9e6af40dd3fd827d60fe1163a0c3f7ca156a2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000986540300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-960X |
| IngestDate | Tue Dec 16 12:36:35 EST 2025 Sat Aug 02 01:41:17 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a462t-d45410bc857d4fccbb6fa2bc3dd9e6af40dd3fd827d60fe1163a0c3f7ca156a2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-5262-1050 |
| OpenAccessLink | https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.2c01287 |
| PMID | 37150933 |
| PQID | 2811214249 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2811214249 pubmed_primary_37150933 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-22 |
| PublicationDateYYYYMMDD | 2023-05-22 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of chemical information and modeling |
| PublicationTitleAlternate | J Chem Inf Model |
| PublicationYear | 2023 |
| SSID | ssj0033962 |
| Score | 2.532517 |
| Snippet | A drug discovery and development pipeline is a prolonged and complex process that remains challenging for both computational methods and medicinal chemists and... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2918 |
| SubjectTerms | Drug Design Molecular Docking Simulation Molecular Dynamics Simulation Proteolysis |
| Title | Fragment Linker Prediction Using the Deep Encoder-Decoder Network for PROTACs Drug Design |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37150933 https://www.proquest.com/docview/2811214249 |
| Volume | 63 |
| WOSCitedRecordID | wos000986540300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELXYJLiwL2WTkbi6TTxJnJwQakEcoFSoh3KqvFZFIi1Jy_czTlM4ISFxSS6xlIydmed543mEXGuhIUkNMIgEsIi7kGVGZkwJFVsRh8qYaqYfRbebDgZZr064lXVZ5dInVo7aTLTPkbd4isjAH8vKbqYfzKtGeXa1ltBYJesQQuJ754vBN4sAkFWCor4LGUOkPqhpSgxrLanL5psevze59i5a_A4wq0Bzv_PfV9wl2zXEpLeLNbFHVmy-TzbbS2W3A_KKaHXks4LU70RtQXuFp2v8FNGqhIAiKqQda6f0Lvdn3gvWsdWddhdV4xShLu29PPdv2yXtFPMRPu0rQQ5J__6u335gtcQCk1HCZ8xEcRQGSqexMJHTWqnESa40GJPZRLooMAacSbkwSeBsiOhNBhqc0BI3fpIfkbV8ktsTQkP0quB4bBECRg63ZTJIlQFQMjYYh22DXC2NNsTP9bSEzO1kXg5_zNYgxwvLD6eLVhtDEAhYM4DTP4w-I1teC95T-5yfk3WH_6-9IBv6czYui8tqaeC123v6AvcExKs |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fragment+Linker+Prediction+Using+the+Deep+Encoder-Decoder+Network+for+PROTACs+Drug+Design&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Kao%2C+Chien-Ting&rft.au=Lin%2C+Chieh-Te&rft.au=Chou%2C+Cheng-Li&rft.au=Lin%2C+Chu-Chung&rft.date=2023-05-22&rft.eissn=1549-960X&rft.volume=63&rft.issue=10&rft.spage=2918&rft_id=info:doi/10.1021%2Facs.jcim.2c01287&rft_id=info%3Apmid%2F37150933&rft_id=info%3Apmid%2F37150933&rft.externalDocID=37150933 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-960X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-960X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-960X&client=summon |