Prior Distributions of Material Parameters for Bayesian Calibration of Growth and Remodeling Computational Model of Abdominal Aortic Wall
For the accurate prediction of the vascular disease progression, there is a crucial need for developing a systematic tool aimed toward patient-specific modeling. Considering the interpatient variations, a prior distribution of model parameters has a strong influence on computational results for arte...
Saved in:
| Published in: | Journal of biomechanical engineering Vol. 137; no. 10; p. 101001 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.10.2015
|
| Subjects: | |
| ISSN: | 1528-8951, 1528-8951 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | For the accurate prediction of the vascular disease progression, there is a crucial need for developing a systematic tool aimed toward patient-specific modeling. Considering the interpatient variations, a prior distribution of model parameters has a strong influence on computational results for arterial mechanics. One crucial step toward patient-specific computational modeling is to identify parameters of prior distributions that reflect existing knowledge. In this paper, we present a new systematic method to estimate the prior distribution for the parameters of a constrained mixture model using previous biaxial tests of healthy abdominal aortas (AAs). We investigate the correlation between the estimated parameters for each constituent and the patient's age and gender; however, the results indicate that the parameters are correlated with age only. The parameters are classified into two groups: Group-I in which the parameters ce, ck1, ck2, cm2,Ghc, and ϕe are correlated with age, and Group-II in which the parameters cm1, Ghm, G1e, G2e, and α are not correlated with age. For the parameters in Group-I, we used regression associated with age via linear or inverse relations, in which their prior distributions provide conditional distributions with confidence intervals. For Group-II, the parameter estimated values were subjected to multiple transformations and chosen if the transformed data had a better fit to the normal distribution than the original. This information improves the prior distribution of a subject-specific model by specifying parameters that are correlated with age and their transformed distributions. Therefore, this study is a necessary first step in our group's approach toward a Bayesian calibration of an aortic model. The results from this study will be used as the prior information necessary for the initialization of Bayesian calibration of a computational model for future applications. |
|---|---|
| AbstractList | For the accurate prediction of the vascular disease progression, there is a crucial need for developing a systematic tool aimed toward patient-specific modeling. Considering the interpatient variations, a prior distribution of model parameters has a strong influence on computational results for arterial mechanics. One crucial step toward patient-specific computational modeling is to identify parameters of prior distributions that reflect existing knowledge. In this paper, we present a new systematic method to estimate the prior distribution for the parameters of a constrained mixture model using previous biaxial tests of healthy abdominal aortas (AAs). We investigate the correlation between the estimated parameters for each constituent and the patient's age and gender; however, the results indicate that the parameters are correlated with age only. The parameters are classified into two groups: Group-I in which the parameters ce, ck1, ck2, cm2,Ghc, and ϕe are correlated with age, and Group-II in which the parameters cm1, Ghm, G1e, G2e, and α are not correlated with age. For the parameters in Group-I, we used regression associated with age via linear or inverse relations, in which their prior distributions provide conditional distributions with confidence intervals. For Group-II, the parameter estimated values were subjected to multiple transformations and chosen if the transformed data had a better fit to the normal distribution than the original. This information improves the prior distribution of a subject-specific model by specifying parameters that are correlated with age and their transformed distributions. Therefore, this study is a necessary first step in our group's approach toward a Bayesian calibration of an aortic model. The results from this study will be used as the prior information necessary for the initialization of Bayesian calibration of a computational model for future applications. For the accurate prediction of the vascular disease progression, there is a crucial need for developing a systematic tool aimed toward patient-specific modeling. Considering the interpatient variations, a prior distribution of model parameters has a strong influence on computational results for arterial mechanics. One crucial step toward patient-specific computational modeling is to identify parameters of prior distributions that reflect existing knowledge. In this paper, we present a new systematic method to estimate the prior distribution for the parameters of a constrained mixture model using previous biaxial tests of healthy abdominal aortas (AAs). We investigate the correlation between the estimated parameters for each constituent and the patient's age and gender; however, the results indicate that the parameters are correlated with age only. The parameters are classified into two groups: Group-I in which the parameters ce, ck1, ck2, cm2,Ghc, and ϕe are correlated with age, and Group-II in which the parameters cm1, Ghm, G1e, G2e, and α are not correlated with age. For the parameters in Group-I, we used regression associated with age via linear or inverse relations, in which their prior distributions provide conditional distributions with confidence intervals. For Group-II, the parameter estimated values were subjected to multiple transformations and chosen if the transformed data had a better fit to the normal distribution than the original. This information improves the prior distribution of a subject-specific model by specifying parameters that are correlated with age and their transformed distributions. Therefore, this study is a necessary first step in our group's approach toward a Bayesian calibration of an aortic model. The results from this study will be used as the prior information necessary for the initialization of Bayesian calibration of a computational model for future applications.For the accurate prediction of the vascular disease progression, there is a crucial need for developing a systematic tool aimed toward patient-specific modeling. Considering the interpatient variations, a prior distribution of model parameters has a strong influence on computational results for arterial mechanics. One crucial step toward patient-specific computational modeling is to identify parameters of prior distributions that reflect existing knowledge. In this paper, we present a new systematic method to estimate the prior distribution for the parameters of a constrained mixture model using previous biaxial tests of healthy abdominal aortas (AAs). We investigate the correlation between the estimated parameters for each constituent and the patient's age and gender; however, the results indicate that the parameters are correlated with age only. The parameters are classified into two groups: Group-I in which the parameters ce, ck1, ck2, cm2,Ghc, and ϕe are correlated with age, and Group-II in which the parameters cm1, Ghm, G1e, G2e, and α are not correlated with age. For the parameters in Group-I, we used regression associated with age via linear or inverse relations, in which their prior distributions provide conditional distributions with confidence intervals. For Group-II, the parameter estimated values were subjected to multiple transformations and chosen if the transformed data had a better fit to the normal distribution than the original. This information improves the prior distribution of a subject-specific model by specifying parameters that are correlated with age and their transformed distributions. Therefore, this study is a necessary first step in our group's approach toward a Bayesian calibration of an aortic model. The results from this study will be used as the prior information necessary for the initialization of Bayesian calibration of a computational model for future applications. |
| Author | Choi, Jongeun Baek, Seungik Seyedsalehi, Sajjad Zhang, Liangliang |
| Author_xml | – sequence: 1 givenname: Sajjad surname: Seyedsalehi fullname: Seyedsalehi, Sajjad – sequence: 2 givenname: Liangliang surname: Zhang fullname: Zhang, Liangliang – sequence: 3 givenname: Jongeun surname: Choi fullname: Choi, Jongeun – sequence: 4 givenname: Seungik surname: Baek fullname: Baek, Seungik |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26201289$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkM1OwzAQhC1URH_gwAsgH7mk2I4dkmMJUJBaUSEQx8iJ12DkxMVOhPoIvDUJFInTzo6-HWlnikaNawChU0rmlFJxQeecxL1KDtCECpZGaSbo6J8eo2kI74RQmnJyhMYsYYSyNJugr403zuNrE1pvyq41rgnYabyWLXgjLd5IL2vol4B1D17JHQQjG5xLa0ovh4OBX3r32b5h2Sj8CLVTYE3zinNXb7v2B-qj1oM9wItSudoM1sL51lT4RVp7jA61tAFO9nOGnm9vnvK7aPWwvM8Xq0jyhLZR_6-usoRWVIGSlVacsDJOWZLFMQgQKdWUa80hyzRRsZCKCE40QFoBZzxhM3T-m7v17qOD0Ba1CRVYKxtwXSjoJRF9U1yQHj3bo11Zgyq23tTS74q_-tg3REJ0FA |
| CitedBy_id | crossref_primary_10_1007_s10237_016_0801_6 crossref_primary_10_1016_j_jmbbm_2022_105081 crossref_primary_10_3389_fbioe_2022_937326 crossref_primary_10_1007_s10659_021_09833_9 crossref_primary_10_1109_JBHI_2019_2896034 crossref_primary_10_1016_j_jmbbm_2018_05_037 crossref_primary_10_1038_s41598_025_95008_8 crossref_primary_10_1016_j_ijengsci_2016_04_002 crossref_primary_10_3389_fphy_2019_00235 crossref_primary_10_1007_s11831_021_09539_0 crossref_primary_10_1016_j_compbiomed_2021_104394 crossref_primary_10_1007_s10659_017_9630_9 crossref_primary_10_1016_j_jmbbm_2021_104448 crossref_primary_10_1016_j_cma_2017_04_017 crossref_primary_10_1080_10255842_2018_1561878 crossref_primary_10_1089_ten_tec_2019_0103 crossref_primary_10_1016_j_ijsolstr_2017_03_007 crossref_primary_10_1007_s10237_023_01750_1 crossref_primary_10_1016_j_jmbbm_2019_04_037 crossref_primary_10_1016_j_cma_2019_112604 crossref_primary_10_1016_j_jmbbm_2023_105705 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1115/1.4031116 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Engineering Forestry |
| EISSN | 1528-8951 |
| ExternalDocumentID | 26201289 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL115185 – fundername: NHLBI NIH HHS grantid: R21 HL113857 – fundername: NHLBI NIH HHS grantid: R21HL113857 – fundername: NHLBI NIH HHS grantid: R01HL115185 |
| GroupedDBID | --- -~X .DC .GJ 29J 4.4 53G 5AI 5GY 6TJ AAYJJ ABJNI ACBEA ACGFO ACGFS ACKMT ACXMS ADPDT AGNGV AI. ALEEW ALMA_UNASSIGNED_HOLDINGS CGR CS3 CUY CVF EBS ECM EIF EJD F5P H~9 L7B NPM P2P RAI RNS RXW TAE TN5 UKR VH1 WHG ZE2 7X8 |
| ID | FETCH-LOGICAL-a461t-115fc961c1dedacfd402b3826933e5e581f14ff4e99f0d35ad0540fee8ce42462 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000361385900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1528-8951 |
| IngestDate | Fri Jul 11 16:45:09 EDT 2025 Mon Jul 21 05:59:23 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a461t-115fc961c1dedacfd402b3826933e5e581f14ff4e99f0d35ad0540fee8ce42462 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://doi.org/10.1115/1.4031116 |
| PMID | 26201289 |
| PQID | 1705001450 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1705001450 pubmed_primary_26201289 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-10-01 |
| PublicationDateYYYYMMDD | 2015-10-01 |
| PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of biomechanical engineering |
| PublicationTitleAlternate | J Biomech Eng |
| PublicationYear | 2015 |
| References | 15179858 - J Biomech Eng. 2004 Apr;126(2):264-75 20659928 - J R Soc Interface. 2011 Mar 6;8(56):435-50 16532628 - J Biomech Eng. 2006 Feb;128(1):142-9 17482213 - J Theor Biol. 2007 Aug 21;247(4):775-87 17182954 - Ann N Y Acad Sci. 2006 Nov;1085:339-52 22896562 - J R Soc Interface. 2012 Dec 7;9(77):3366-77 17487585 - Ann Biomed Eng. 2007 Sep;35(9):1498-509 22735542 - Biophys J. 2012 Jun 20;102(12):2916-25 20590836 - Geriatr Gerontol Int. 2010 Jul;10 Suppl 1:S213-20 20354752 - Biomech Model Mechanobiol. 2010 Dec;9(6):749-62 20480238 - Ann Biomed Eng. 2010 Oct;38(10):3124-34 25201606 - Ann Biomed Eng. 2014 Dec;42(12):2440-50 10768396 - J Biomech. 2000 Apr;33(4):475-82 19159887 - J Biomech. 2009 Mar 11;42(4):524-30 13215088 - Physiol Rev. 1954 Oct;34(4):619-42 21480019 - Comput Methods Biomech Biomed Engin. 2011 Sep;14(9):803-17 23499251 - J Mech Behav Biomed Mater. 2014 Jan;29:618-34 17207488 - J Biomech. 2007;40(11):2559-63 22189249 - J Biomech. 2012 Mar 15;45(5):805-14 20961796 - Med Eng Phys. 2011 Jan;33(1):80-8 21720536 - Front Physiol. 2011 May 09;2:20 16623206 - Am Fam Physician. 2006 Apr 1;73(7):1198-204 15885699 - J Biomech. 2006;39(7):1324-34 8028090 - J Vasc Surg. 1994 Jul;20(1):6-13 19520879 - Postgrad Med J. 2009 May;85(1003):268-73 19027028 - J Theor Biol. 2009 Mar 7;257(1):73-83 18412510 - J Biomech Eng. 2008 Apr;130(2):021023 3558431 - J Biomech. 1987;20(1):7-17 495769 - Am J Physiol. 1979 Nov;237(5):H620-31 9453297 - Hypertension. 1998 Jan;31(1 Pt 2):162-9 6824497 - Arteriosclerosis. 1983 Jan-Feb;3(1):64-76 19106408 - Circulation. 2008 Dec 16;118(25):2860-3 15796340 - J Biomech Eng. 2004 Dec;126(6):815-22 12663969 - J Vasc Surg. 2003 Apr;37(4):724-32 21333292 - J Biomech. 2011 Apr 7;44(6):1209-11 17200940 - J Pathol. 2007 Jan;211(2):157-72 22711947 - Mech Res Commun. 2012 Jun 1;42:126-133 2795760 - J Vasc Surg. 1989 Oct;10(4):365-73 22955570 - Biomech Model Mechanobiol. 2013 Aug;12(4):717-33 16912884 - Biomech Model Mechanobiol. 2007 Apr;6(3):163-75 17182918 - Ann N Y Acad Sci. 2006 Nov;1085:11-21 10436439 - J Vasc Surg. 1999 Aug;30(2):203-8 19578914 - Biomech Model Mechanobiol. 2010 Apr;9(2):127-39 22491975 - J R Soc Interface. 2012 Sep 7;9(74):2047-58 15452732 - Biomech Model Mechanobiol. 2004 Nov;3(2):98-113 21053043 - Biomech Model Mechanobiol. 2011 Oct;10(5):689-99 16849214 - J R Soc Interface. 2006 Feb 22;3(6):15-35 18058143 - Biomech Model Mechanobiol. 2009 Feb;8(1):25-42 12218986 - J Vasc Surg. 2002 Sep;36(3):589-97 23263935 - Ann Biomed Eng. 2013 Jul;41(7):1554-66 |
| References_xml | – reference: 16849214 - J R Soc Interface. 2006 Feb 22;3(6):15-35 – reference: 22955570 - Biomech Model Mechanobiol. 2013 Aug;12(4):717-33 – reference: 16532628 - J Biomech Eng. 2006 Feb;128(1):142-9 – reference: 23499251 - J Mech Behav Biomed Mater. 2014 Jan;29:618-34 – reference: 15796340 - J Biomech Eng. 2004 Dec;126(6):815-22 – reference: 15885699 - J Biomech. 2006;39(7):1324-34 – reference: 8028090 - J Vasc Surg. 1994 Jul;20(1):6-13 – reference: 12218986 - J Vasc Surg. 2002 Sep;36(3):589-97 – reference: 20961796 - Med Eng Phys. 2011 Jan;33(1):80-8 – reference: 20659928 - J R Soc Interface. 2011 Mar 6;8(56):435-50 – reference: 6824497 - Arteriosclerosis. 1983 Jan-Feb;3(1):64-76 – reference: 21480019 - Comput Methods Biomech Biomed Engin. 2011 Sep;14(9):803-17 – reference: 15179858 - J Biomech Eng. 2004 Apr;126(2):264-75 – reference: 17200940 - J Pathol. 2007 Jan;211(2):157-72 – reference: 22735542 - Biophys J. 2012 Jun 20;102(12):2916-25 – reference: 25201606 - Ann Biomed Eng. 2014 Dec;42(12):2440-50 – reference: 19159887 - J Biomech. 2009 Mar 11;42(4):524-30 – reference: 22711947 - Mech Res Commun. 2012 Jun 1;42:126-133 – reference: 17207488 - J Biomech. 2007;40(11):2559-63 – reference: 19027028 - J Theor Biol. 2009 Mar 7;257(1):73-83 – reference: 23263935 - Ann Biomed Eng. 2013 Jul;41(7):1554-66 – reference: 10768396 - J Biomech. 2000 Apr;33(4):475-82 – reference: 22189249 - J Biomech. 2012 Mar 15;45(5):805-14 – reference: 18058143 - Biomech Model Mechanobiol. 2009 Feb;8(1):25-42 – reference: 17482213 - J Theor Biol. 2007 Aug 21;247(4):775-87 – reference: 15452732 - Biomech Model Mechanobiol. 2004 Nov;3(2):98-113 – reference: 17182918 - Ann N Y Acad Sci. 2006 Nov;1085:11-21 – reference: 22896562 - J R Soc Interface. 2012 Dec 7;9(77):3366-77 – reference: 17182954 - Ann N Y Acad Sci. 2006 Nov;1085:339-52 – reference: 2795760 - J Vasc Surg. 1989 Oct;10(4):365-73 – reference: 19520879 - Postgrad Med J. 2009 May;85(1003):268-73 – reference: 10436439 - J Vasc Surg. 1999 Aug;30(2):203-8 – reference: 495769 - Am J Physiol. 1979 Nov;237(5):H620-31 – reference: 16912884 - Biomech Model Mechanobiol. 2007 Apr;6(3):163-75 – reference: 12663969 - J Vasc Surg. 2003 Apr;37(4):724-32 – reference: 21333292 - J Biomech. 2011 Apr 7;44(6):1209-11 – reference: 20480238 - Ann Biomed Eng. 2010 Oct;38(10):3124-34 – reference: 19578914 - Biomech Model Mechanobiol. 2010 Apr;9(2):127-39 – reference: 21053043 - Biomech Model Mechanobiol. 2011 Oct;10(5):689-99 – reference: 21720536 - Front Physiol. 2011 May 09;2:20 – reference: 18412510 - J Biomech Eng. 2008 Apr;130(2):021023 – reference: 9453297 - Hypertension. 1998 Jan;31(1 Pt 2):162-9 – reference: 22491975 - J R Soc Interface. 2012 Sep 7;9(74):2047-58 – reference: 13215088 - Physiol Rev. 1954 Oct;34(4):619-42 – reference: 19106408 - Circulation. 2008 Dec 16;118(25):2860-3 – reference: 17487585 - Ann Biomed Eng. 2007 Sep;35(9):1498-509 – reference: 20590836 - Geriatr Gerontol Int. 2010 Jul;10 Suppl 1:S213-20 – reference: 16623206 - Am Fam Physician. 2006 Apr 1;73(7):1198-204 – reference: 3558431 - J Biomech. 1987;20(1):7-17 – reference: 20354752 - Biomech Model Mechanobiol. 2010 Dec;9(6):749-62 |
| SSID | ssj0011840 |
| Score | 2.2790225 |
| Snippet | For the accurate prediction of the vascular disease progression, there is a crucial need for developing a systematic tool aimed toward patient-specific... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 101001 |
| SubjectTerms | Aged Aorta, Abdominal - growth & development Aorta, Abdominal - physiology Bayes Theorem Biomechanical Phenomena Calibration Female Humans Male Middle Aged Multivariate Analysis Patient-Specific Modeling Vascular Remodeling Young Adult |
| Title | Prior Distributions of Material Parameters for Bayesian Calibration of Growth and Remodeling Computational Model of Abdominal Aortic Wall |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26201289 https://www.proquest.com/docview/1705001450 |
| Volume | 137 |
| WOSCitedRecordID | wos000361385900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7eEH3wMu83Ivgabdd0bZ5kXqYPbgxR2dtIkxMcSDu3KfgT_Nee02boiyD4UgpNaUhOc75zTvJ9jJ2oyKJbUKmIlUmETGQgFARGkLtHdFLXUJYLnu6STift9VTXJ9zGflvldE0sF2pbGMqRnxHtC-H5ODgfvgpSjaLqqpfQmGXzEUIZsuqk911FoOil5EutpyJFKOGZhRAEnYWnEs05DBu_I8vSw7RW_9u3NbbisSVvVsawzmYgr7HlH4yDNbZIUpyk74a3bV9W32Cf3dGgGPErItH1-ldjXjje1pPSQHlX0x4uIuLkCHL5hf4AOnzJ6WRXVtkQtb_BmH7yzHVu-T2UGjv4UV4JR_ikIyfxtRdq3MxsUSqK8WZBPeaU099kj63rh8tb4TUahJaNcCJwLJ1RjdCEFqw2zmI8mkUYs6goghjiNHShdE6CUi6wUawtYUQHkBqQddmob7G5vMhhh_EEnwcG4RSlWDCKyqQGIyFTOopNCtEuO56Ofh__ASps6ByKt3H_e_x32XY1hf1hRdbRJ8J99MFq7w9v77MlbBxXe_UO2LzDFQAO2YJ5nwzGo6PSuPDa6ba_AEvd2Zg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prior+Distributions+of+Material+Parameters+for+Bayesian+Calibration+of+Growth+and+Remodeling+Computational+Model+of+Abdominal+Aortic+Wall&rft.jtitle=Journal+of+biomechanical+engineering&rft.au=Seyedsalehi%2C+Sajjad&rft.au=Zhang%2C+Liangliang&rft.au=Choi%2C+Jongeun&rft.au=Baek%2C+Seungik&rft.date=2015-10-01&rft.issn=1528-8951&rft.eissn=1528-8951&rft.volume=137&rft.issue=10&rft.spage=101001&rft_id=info:doi/10.1115%2F1.4031116&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-8951&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-8951&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-8951&client=summon |