Prior Distributions of Material Parameters for Bayesian Calibration of Growth and Remodeling Computational Model of Abdominal Aortic Wall

For the accurate prediction of the vascular disease progression, there is a crucial need for developing a systematic tool aimed toward patient-specific modeling. Considering the interpatient variations, a prior distribution of model parameters has a strong influence on computational results for arte...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanical engineering Vol. 137; no. 10; p. 101001
Main Authors: Seyedsalehi, Sajjad, Zhang, Liangliang, Choi, Jongeun, Baek, Seungik
Format: Journal Article
Language:English
Published: United States 01.10.2015
Subjects:
ISSN:1528-8951, 1528-8951
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract For the accurate prediction of the vascular disease progression, there is a crucial need for developing a systematic tool aimed toward patient-specific modeling. Considering the interpatient variations, a prior distribution of model parameters has a strong influence on computational results for arterial mechanics. One crucial step toward patient-specific computational modeling is to identify parameters of prior distributions that reflect existing knowledge. In this paper, we present a new systematic method to estimate the prior distribution for the parameters of a constrained mixture model using previous biaxial tests of healthy abdominal aortas (AAs). We investigate the correlation between the estimated parameters for each constituent and the patient's age and gender; however, the results indicate that the parameters are correlated with age only. The parameters are classified into two groups: Group-I in which the parameters ce, ck1, ck2, cm2,Ghc, and ϕe are correlated with age, and Group-II in which the parameters cm1, Ghm, G1e, G2e, and α are not correlated with age. For the parameters in Group-I, we used regression associated with age via linear or inverse relations, in which their prior distributions provide conditional distributions with confidence intervals. For Group-II, the parameter estimated values were subjected to multiple transformations and chosen if the transformed data had a better fit to the normal distribution than the original. This information improves the prior distribution of a subject-specific model by specifying parameters that are correlated with age and their transformed distributions. Therefore, this study is a necessary first step in our group's approach toward a Bayesian calibration of an aortic model. The results from this study will be used as the prior information necessary for the initialization of Bayesian calibration of a computational model for future applications.
AbstractList For the accurate prediction of the vascular disease progression, there is a crucial need for developing a systematic tool aimed toward patient-specific modeling. Considering the interpatient variations, a prior distribution of model parameters has a strong influence on computational results for arterial mechanics. One crucial step toward patient-specific computational modeling is to identify parameters of prior distributions that reflect existing knowledge. In this paper, we present a new systematic method to estimate the prior distribution for the parameters of a constrained mixture model using previous biaxial tests of healthy abdominal aortas (AAs). We investigate the correlation between the estimated parameters for each constituent and the patient's age and gender; however, the results indicate that the parameters are correlated with age only. The parameters are classified into two groups: Group-I in which the parameters ce, ck1, ck2, cm2,Ghc, and ϕe are correlated with age, and Group-II in which the parameters cm1, Ghm, G1e, G2e, and α are not correlated with age. For the parameters in Group-I, we used regression associated with age via linear or inverse relations, in which their prior distributions provide conditional distributions with confidence intervals. For Group-II, the parameter estimated values were subjected to multiple transformations and chosen if the transformed data had a better fit to the normal distribution than the original. This information improves the prior distribution of a subject-specific model by specifying parameters that are correlated with age and their transformed distributions. Therefore, this study is a necessary first step in our group's approach toward a Bayesian calibration of an aortic model. The results from this study will be used as the prior information necessary for the initialization of Bayesian calibration of a computational model for future applications.
For the accurate prediction of the vascular disease progression, there is a crucial need for developing a systematic tool aimed toward patient-specific modeling. Considering the interpatient variations, a prior distribution of model parameters has a strong influence on computational results for arterial mechanics. One crucial step toward patient-specific computational modeling is to identify parameters of prior distributions that reflect existing knowledge. In this paper, we present a new systematic method to estimate the prior distribution for the parameters of a constrained mixture model using previous biaxial tests of healthy abdominal aortas (AAs). We investigate the correlation between the estimated parameters for each constituent and the patient's age and gender; however, the results indicate that the parameters are correlated with age only. The parameters are classified into two groups: Group-I in which the parameters ce, ck1, ck2, cm2,Ghc, and ϕe are correlated with age, and Group-II in which the parameters cm1, Ghm, G1e, G2e, and α are not correlated with age. For the parameters in Group-I, we used regression associated with age via linear or inverse relations, in which their prior distributions provide conditional distributions with confidence intervals. For Group-II, the parameter estimated values were subjected to multiple transformations and chosen if the transformed data had a better fit to the normal distribution than the original. This information improves the prior distribution of a subject-specific model by specifying parameters that are correlated with age and their transformed distributions. Therefore, this study is a necessary first step in our group's approach toward a Bayesian calibration of an aortic model. The results from this study will be used as the prior information necessary for the initialization of Bayesian calibration of a computational model for future applications.For the accurate prediction of the vascular disease progression, there is a crucial need for developing a systematic tool aimed toward patient-specific modeling. Considering the interpatient variations, a prior distribution of model parameters has a strong influence on computational results for arterial mechanics. One crucial step toward patient-specific computational modeling is to identify parameters of prior distributions that reflect existing knowledge. In this paper, we present a new systematic method to estimate the prior distribution for the parameters of a constrained mixture model using previous biaxial tests of healthy abdominal aortas (AAs). We investigate the correlation between the estimated parameters for each constituent and the patient's age and gender; however, the results indicate that the parameters are correlated with age only. The parameters are classified into two groups: Group-I in which the parameters ce, ck1, ck2, cm2,Ghc, and ϕe are correlated with age, and Group-II in which the parameters cm1, Ghm, G1e, G2e, and α are not correlated with age. For the parameters in Group-I, we used regression associated with age via linear or inverse relations, in which their prior distributions provide conditional distributions with confidence intervals. For Group-II, the parameter estimated values were subjected to multiple transformations and chosen if the transformed data had a better fit to the normal distribution than the original. This information improves the prior distribution of a subject-specific model by specifying parameters that are correlated with age and their transformed distributions. Therefore, this study is a necessary first step in our group's approach toward a Bayesian calibration of an aortic model. The results from this study will be used as the prior information necessary for the initialization of Bayesian calibration of a computational model for future applications.
Author Choi, Jongeun
Baek, Seungik
Seyedsalehi, Sajjad
Zhang, Liangliang
Author_xml – sequence: 1
  givenname: Sajjad
  surname: Seyedsalehi
  fullname: Seyedsalehi, Sajjad
– sequence: 2
  givenname: Liangliang
  surname: Zhang
  fullname: Zhang, Liangliang
– sequence: 3
  givenname: Jongeun
  surname: Choi
  fullname: Choi, Jongeun
– sequence: 4
  givenname: Seungik
  surname: Baek
  fullname: Baek, Seungik
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26201289$$D View this record in MEDLINE/PubMed
BookMark eNpNkM1OwzAQhC1URH_gwAsgH7mk2I4dkmMJUJBaUSEQx8iJ12DkxMVOhPoIvDUJFInTzo6-HWlnikaNawChU0rmlFJxQeecxL1KDtCECpZGaSbo6J8eo2kI74RQmnJyhMYsYYSyNJugr403zuNrE1pvyq41rgnYabyWLXgjLd5IL2vol4B1D17JHQQjG5xLa0ovh4OBX3r32b5h2Sj8CLVTYE3zinNXb7v2B-qj1oM9wItSudoM1sL51lT4RVp7jA61tAFO9nOGnm9vnvK7aPWwvM8Xq0jyhLZR_6-usoRWVIGSlVacsDJOWZLFMQgQKdWUa80hyzRRsZCKCE40QFoBZzxhM3T-m7v17qOD0Ba1CRVYKxtwXSjoJRF9U1yQHj3bo11Zgyq23tTS74q_-tg3REJ0FA
CitedBy_id crossref_primary_10_1007_s10237_016_0801_6
crossref_primary_10_1016_j_jmbbm_2022_105081
crossref_primary_10_3389_fbioe_2022_937326
crossref_primary_10_1007_s10659_021_09833_9
crossref_primary_10_1109_JBHI_2019_2896034
crossref_primary_10_1016_j_jmbbm_2018_05_037
crossref_primary_10_1038_s41598_025_95008_8
crossref_primary_10_1016_j_ijengsci_2016_04_002
crossref_primary_10_3389_fphy_2019_00235
crossref_primary_10_1007_s11831_021_09539_0
crossref_primary_10_1016_j_compbiomed_2021_104394
crossref_primary_10_1007_s10659_017_9630_9
crossref_primary_10_1016_j_jmbbm_2021_104448
crossref_primary_10_1016_j_cma_2017_04_017
crossref_primary_10_1080_10255842_2018_1561878
crossref_primary_10_1089_ten_tec_2019_0103
crossref_primary_10_1016_j_ijsolstr_2017_03_007
crossref_primary_10_1007_s10237_023_01750_1
crossref_primary_10_1016_j_jmbbm_2019_04_037
crossref_primary_10_1016_j_cma_2019_112604
crossref_primary_10_1016_j_jmbbm_2023_105705
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1115/1.4031116
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Engineering
Forestry
EISSN 1528-8951
ExternalDocumentID 26201289
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL115185
– fundername: NHLBI NIH HHS
  grantid: R21 HL113857
– fundername: NHLBI NIH HHS
  grantid: R21HL113857
– fundername: NHLBI NIH HHS
  grantid: R01HL115185
GroupedDBID ---
-~X
.DC
.GJ
29J
4.4
53G
5AI
5GY
6TJ
AAYJJ
ABJNI
ACBEA
ACGFO
ACGFS
ACKMT
ACXMS
ADPDT
AGNGV
AI.
ALEEW
ALMA_UNASSIGNED_HOLDINGS
CGR
CS3
CUY
CVF
EBS
ECM
EIF
EJD
F5P
H~9
L7B
NPM
P2P
RAI
RNS
RXW
TAE
TN5
UKR
VH1
WHG
ZE2
7X8
ID FETCH-LOGICAL-a461t-115fc961c1dedacfd402b3826933e5e581f14ff4e99f0d35ad0540fee8ce42462
IEDL.DBID 7X8
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000361385900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1528-8951
IngestDate Fri Jul 11 16:45:09 EDT 2025
Mon Jul 21 05:59:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a461t-115fc961c1dedacfd402b3826933e5e581f14ff4e99f0d35ad0540fee8ce42462
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1115/1.4031116
PMID 26201289
PQID 1705001450
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1705001450
pubmed_primary_26201289
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomechanical engineering
PublicationTitleAlternate J Biomech Eng
PublicationYear 2015
References 15179858 - J Biomech Eng. 2004 Apr;126(2):264-75
20659928 - J R Soc Interface. 2011 Mar 6;8(56):435-50
16532628 - J Biomech Eng. 2006 Feb;128(1):142-9
17482213 - J Theor Biol. 2007 Aug 21;247(4):775-87
17182954 - Ann N Y Acad Sci. 2006 Nov;1085:339-52
22896562 - J R Soc Interface. 2012 Dec 7;9(77):3366-77
17487585 - Ann Biomed Eng. 2007 Sep;35(9):1498-509
22735542 - Biophys J. 2012 Jun 20;102(12):2916-25
20590836 - Geriatr Gerontol Int. 2010 Jul;10 Suppl 1:S213-20
20354752 - Biomech Model Mechanobiol. 2010 Dec;9(6):749-62
20480238 - Ann Biomed Eng. 2010 Oct;38(10):3124-34
25201606 - Ann Biomed Eng. 2014 Dec;42(12):2440-50
10768396 - J Biomech. 2000 Apr;33(4):475-82
19159887 - J Biomech. 2009 Mar 11;42(4):524-30
13215088 - Physiol Rev. 1954 Oct;34(4):619-42
21480019 - Comput Methods Biomech Biomed Engin. 2011 Sep;14(9):803-17
23499251 - J Mech Behav Biomed Mater. 2014 Jan;29:618-34
17207488 - J Biomech. 2007;40(11):2559-63
22189249 - J Biomech. 2012 Mar 15;45(5):805-14
20961796 - Med Eng Phys. 2011 Jan;33(1):80-8
21720536 - Front Physiol. 2011 May 09;2:20
16623206 - Am Fam Physician. 2006 Apr 1;73(7):1198-204
15885699 - J Biomech. 2006;39(7):1324-34
8028090 - J Vasc Surg. 1994 Jul;20(1):6-13
19520879 - Postgrad Med J. 2009 May;85(1003):268-73
19027028 - J Theor Biol. 2009 Mar 7;257(1):73-83
18412510 - J Biomech Eng. 2008 Apr;130(2):021023
3558431 - J Biomech. 1987;20(1):7-17
495769 - Am J Physiol. 1979 Nov;237(5):H620-31
9453297 - Hypertension. 1998 Jan;31(1 Pt 2):162-9
6824497 - Arteriosclerosis. 1983 Jan-Feb;3(1):64-76
19106408 - Circulation. 2008 Dec 16;118(25):2860-3
15796340 - J Biomech Eng. 2004 Dec;126(6):815-22
12663969 - J Vasc Surg. 2003 Apr;37(4):724-32
21333292 - J Biomech. 2011 Apr 7;44(6):1209-11
17200940 - J Pathol. 2007 Jan;211(2):157-72
22711947 - Mech Res Commun. 2012 Jun 1;42:126-133
2795760 - J Vasc Surg. 1989 Oct;10(4):365-73
22955570 - Biomech Model Mechanobiol. 2013 Aug;12(4):717-33
16912884 - Biomech Model Mechanobiol. 2007 Apr;6(3):163-75
17182918 - Ann N Y Acad Sci. 2006 Nov;1085:11-21
10436439 - J Vasc Surg. 1999 Aug;30(2):203-8
19578914 - Biomech Model Mechanobiol. 2010 Apr;9(2):127-39
22491975 - J R Soc Interface. 2012 Sep 7;9(74):2047-58
15452732 - Biomech Model Mechanobiol. 2004 Nov;3(2):98-113
21053043 - Biomech Model Mechanobiol. 2011 Oct;10(5):689-99
16849214 - J R Soc Interface. 2006 Feb 22;3(6):15-35
18058143 - Biomech Model Mechanobiol. 2009 Feb;8(1):25-42
12218986 - J Vasc Surg. 2002 Sep;36(3):589-97
23263935 - Ann Biomed Eng. 2013 Jul;41(7):1554-66
References_xml – reference: 16849214 - J R Soc Interface. 2006 Feb 22;3(6):15-35
– reference: 22955570 - Biomech Model Mechanobiol. 2013 Aug;12(4):717-33
– reference: 16532628 - J Biomech Eng. 2006 Feb;128(1):142-9
– reference: 23499251 - J Mech Behav Biomed Mater. 2014 Jan;29:618-34
– reference: 15796340 - J Biomech Eng. 2004 Dec;126(6):815-22
– reference: 15885699 - J Biomech. 2006;39(7):1324-34
– reference: 8028090 - J Vasc Surg. 1994 Jul;20(1):6-13
– reference: 12218986 - J Vasc Surg. 2002 Sep;36(3):589-97
– reference: 20961796 - Med Eng Phys. 2011 Jan;33(1):80-8
– reference: 20659928 - J R Soc Interface. 2011 Mar 6;8(56):435-50
– reference: 6824497 - Arteriosclerosis. 1983 Jan-Feb;3(1):64-76
– reference: 21480019 - Comput Methods Biomech Biomed Engin. 2011 Sep;14(9):803-17
– reference: 15179858 - J Biomech Eng. 2004 Apr;126(2):264-75
– reference: 17200940 - J Pathol. 2007 Jan;211(2):157-72
– reference: 22735542 - Biophys J. 2012 Jun 20;102(12):2916-25
– reference: 25201606 - Ann Biomed Eng. 2014 Dec;42(12):2440-50
– reference: 19159887 - J Biomech. 2009 Mar 11;42(4):524-30
– reference: 22711947 - Mech Res Commun. 2012 Jun 1;42:126-133
– reference: 17207488 - J Biomech. 2007;40(11):2559-63
– reference: 19027028 - J Theor Biol. 2009 Mar 7;257(1):73-83
– reference: 23263935 - Ann Biomed Eng. 2013 Jul;41(7):1554-66
– reference: 10768396 - J Biomech. 2000 Apr;33(4):475-82
– reference: 22189249 - J Biomech. 2012 Mar 15;45(5):805-14
– reference: 18058143 - Biomech Model Mechanobiol. 2009 Feb;8(1):25-42
– reference: 17482213 - J Theor Biol. 2007 Aug 21;247(4):775-87
– reference: 15452732 - Biomech Model Mechanobiol. 2004 Nov;3(2):98-113
– reference: 17182918 - Ann N Y Acad Sci. 2006 Nov;1085:11-21
– reference: 22896562 - J R Soc Interface. 2012 Dec 7;9(77):3366-77
– reference: 17182954 - Ann N Y Acad Sci. 2006 Nov;1085:339-52
– reference: 2795760 - J Vasc Surg. 1989 Oct;10(4):365-73
– reference: 19520879 - Postgrad Med J. 2009 May;85(1003):268-73
– reference: 10436439 - J Vasc Surg. 1999 Aug;30(2):203-8
– reference: 495769 - Am J Physiol. 1979 Nov;237(5):H620-31
– reference: 16912884 - Biomech Model Mechanobiol. 2007 Apr;6(3):163-75
– reference: 12663969 - J Vasc Surg. 2003 Apr;37(4):724-32
– reference: 21333292 - J Biomech. 2011 Apr 7;44(6):1209-11
– reference: 20480238 - Ann Biomed Eng. 2010 Oct;38(10):3124-34
– reference: 19578914 - Biomech Model Mechanobiol. 2010 Apr;9(2):127-39
– reference: 21053043 - Biomech Model Mechanobiol. 2011 Oct;10(5):689-99
– reference: 21720536 - Front Physiol. 2011 May 09;2:20
– reference: 18412510 - J Biomech Eng. 2008 Apr;130(2):021023
– reference: 9453297 - Hypertension. 1998 Jan;31(1 Pt 2):162-9
– reference: 22491975 - J R Soc Interface. 2012 Sep 7;9(74):2047-58
– reference: 13215088 - Physiol Rev. 1954 Oct;34(4):619-42
– reference: 19106408 - Circulation. 2008 Dec 16;118(25):2860-3
– reference: 17487585 - Ann Biomed Eng. 2007 Sep;35(9):1498-509
– reference: 20590836 - Geriatr Gerontol Int. 2010 Jul;10 Suppl 1:S213-20
– reference: 16623206 - Am Fam Physician. 2006 Apr 1;73(7):1198-204
– reference: 3558431 - J Biomech. 1987;20(1):7-17
– reference: 20354752 - Biomech Model Mechanobiol. 2010 Dec;9(6):749-62
SSID ssj0011840
Score 2.2790225
Snippet For the accurate prediction of the vascular disease progression, there is a crucial need for developing a systematic tool aimed toward patient-specific...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 101001
SubjectTerms Aged
Aorta, Abdominal - growth & development
Aorta, Abdominal - physiology
Bayes Theorem
Biomechanical Phenomena
Calibration
Female
Humans
Male
Middle Aged
Multivariate Analysis
Patient-Specific Modeling
Vascular Remodeling
Young Adult
Title Prior Distributions of Material Parameters for Bayesian Calibration of Growth and Remodeling Computational Model of Abdominal Aortic Wall
URI https://www.ncbi.nlm.nih.gov/pubmed/26201289
https://www.proquest.com/docview/1705001450
Volume 137
WOSCitedRecordID wos000361385900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7eEH3wMu83Ivgabdd0bZ5kXqYPbgxR2dtIkxMcSDu3KfgT_Nee02boiyD4UgpNaUhOc75zTvJ9jJ2oyKJbUKmIlUmETGQgFARGkLtHdFLXUJYLnu6STift9VTXJ9zGflvldE0sF2pbGMqRnxHtC-H5ODgfvgpSjaLqqpfQmGXzEUIZsuqk911FoOil5EutpyJFKOGZhRAEnYWnEs05DBu_I8vSw7RW_9u3NbbisSVvVsawzmYgr7HlH4yDNbZIUpyk74a3bV9W32Cf3dGgGPErItH1-ldjXjje1pPSQHlX0x4uIuLkCHL5hf4AOnzJ6WRXVtkQtb_BmH7yzHVu-T2UGjv4UV4JR_ikIyfxtRdq3MxsUSqK8WZBPeaU099kj63rh8tb4TUahJaNcCJwLJ1RjdCEFqw2zmI8mkUYs6goghjiNHShdE6CUi6wUawtYUQHkBqQddmob7G5vMhhh_EEnwcG4RSlWDCKyqQGIyFTOopNCtEuO56Ofh__ASps6ByKt3H_e_x32XY1hf1hRdbRJ8J99MFq7w9v77MlbBxXe_UO2LzDFQAO2YJ5nwzGo6PSuPDa6ba_AEvd2Zg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prior+Distributions+of+Material+Parameters+for+Bayesian+Calibration+of+Growth+and+Remodeling+Computational+Model+of+Abdominal+Aortic+Wall&rft.jtitle=Journal+of+biomechanical+engineering&rft.au=Seyedsalehi%2C+Sajjad&rft.au=Zhang%2C+Liangliang&rft.au=Choi%2C+Jongeun&rft.au=Baek%2C+Seungik&rft.date=2015-10-01&rft.issn=1528-8951&rft.eissn=1528-8951&rft.volume=137&rft.issue=10&rft.spage=101001&rft_id=info:doi/10.1115%2F1.4031116&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-8951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-8951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-8951&client=summon