Hydrologic and biotic control of nitrogen export during snowmelt: a combined conservative and reactive tracer approach
1 Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) stored in the snowpack are important sources of N in snow-covered ecosystems, yet we have limited knowledge of their fate during the melt period. Our objective was to quantify the role of hydrologic and biogeochemical processe...
Gespeichert in:
| Veröffentlicht in: | Water resources research Jg. 43; H. 6 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Blackwell Publishing Ltd
01.06.2007
|
| Schlagworte: | |
| ISSN: | 0043-1397, 1944-7973 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | 1 Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) stored in the snowpack are important sources of N in snow-covered ecosystems, yet we have limited knowledge of their fate during the melt period. Our objective was to quantify the role of hydrologic and biogeochemical processes in regulating stream fluxes of DIN (NO3(-) + NH4(+)) and DON in a forest-dominated and a wetland-dominated catchment during the snowmelt period. We combined isotopic hydrograph separation with concurrent measurements of meltwater DIN and DON to calculate "conservative" N export (hydrologic mixing only) and compared it with "reactive" N export (i.e., observed fluxes that include biogeochemical processes). On balance, N was retained in the catchments during snowmelt because of storage of meltwater N in soils, but our N export comparison revealed N generation (mostly as DON) from the mobilization of dissolved organic matter. In contrast, NO3(-), which was highly enriched in snowpack meltwater, remained below detection in streams, and both catchments were sinks for NO3(-), suggesting that denitrification and/or uptake may be important at the catchment scale. Over the melt period, the forest catchment was a greater total N source because of the convergence of lateral flow and near-stream riparian N sources in surface soils, which elevated stream DON and to a lesser extent NH4(+). In contrast, preferential flow in the wetland catchment tended to dilute DIN in saturated peatland soils and in the stream, whereas DON varied little over time. These findings highlight the importance of hydrologic processes that store meltwater N in catchment soils but at the same time deliver DON from riparian sources to the stream. Further, model results suggest that biotic uptake and/or sorption effectively retain much of the meltwater DIN from the snowpack. Collectively, hydrologic storage and biogeochemical processes act to retain N that is likely important for boreal ecosystem production later in the spring and summer seasons. |
|---|---|
| AbstractList | Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) stored in the snowpack are important sources of N in snow‐covered ecosystems, yet we have limited knowledge of their fate during the melt period. Our objective was to quantify the role of hydrologic and biogeochemical processes in regulating stream fluxes of DIN (NO3− + NH4+) and DON in a forest‐dominated and a wetland‐dominated catchment during the snowmelt period. We combined isotopic hydrograph separation with concurrent measurements of meltwater DIN and DON to calculate “conservative” N export (hydrologic mixing only) and compared it with “reactive” N export (i.e., observed fluxes that include biogeochemical processes). On balance, N was retained in the catchments during snowmelt because of storage of meltwater N in soils, but our N export comparison revealed N generation (mostly as DON) from the mobilization of dissolved organic matter. In contrast, NO3−, which was highly enriched in snowpack meltwater, remained below detection in streams, and both catchments were sinks for NO3−, suggesting that denitrification and/or uptake may be important at the catchment scale. Over the melt period, the forest catchment was a greater total N source because of the convergence of lateral flow and near‐stream riparian N sources in surface soils, which elevated stream DON and to a lesser extent NH4+. In contrast, preferential flow in the wetland catchment tended to dilute DIN in saturated peatland soils and in the stream, whereas DON varied little over time. These findings highlight the importance of hydrologic processes that store meltwater N in catchment soils but at the same time deliver DON from riparian sources to the stream. Further, model results suggest that biotic uptake and/or sorption effectively retain much of the meltwater DIN from the snowpack. Collectively, hydrologic storage and biogeochemical processes act to retain N that is likely important for boreal ecosystem production later in the spring and summer seasons. 1 Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) stored in the snowpack are important sources of N in snow-covered ecosystems, yet we have limited knowledge of their fate during the melt period. Our objective was to quantify the role of hydrologic and biogeochemical processes in regulating stream fluxes of DIN (NO3(-) + NH4(+)) and DON in a forest-dominated and a wetland-dominated catchment during the snowmelt period. We combined isotopic hydrograph separation with concurrent measurements of meltwater DIN and DON to calculate "conservative" N export (hydrologic mixing only) and compared it with "reactive" N export (i.e., observed fluxes that include biogeochemical processes). On balance, N was retained in the catchments during snowmelt because of storage of meltwater N in soils, but our N export comparison revealed N generation (mostly as DON) from the mobilization of dissolved organic matter. In contrast, NO3(-), which was highly enriched in snowpack meltwater, remained below detection in streams, and both catchments were sinks for NO3(-), suggesting that denitrification and/or uptake may be important at the catchment scale. Over the melt period, the forest catchment was a greater total N source because of the convergence of lateral flow and near-stream riparian N sources in surface soils, which elevated stream DON and to a lesser extent NH4(+). In contrast, preferential flow in the wetland catchment tended to dilute DIN in saturated peatland soils and in the stream, whereas DON varied little over time. These findings highlight the importance of hydrologic processes that store meltwater N in catchment soils but at the same time deliver DON from riparian sources to the stream. Further, model results suggest that biotic uptake and/or sorption effectively retain much of the meltwater DIN from the snowpack. Collectively, hydrologic storage and biogeochemical processes act to retain N that is likely important for boreal ecosystem production later in the spring and summer seasons. Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) stored in the snowpack are important sources of N in snow-covered ecosystems, yet we have limited knowledge of their fate during the melt period. Our objective was to quantify the role of hydrologic and biogeochemical processes in regulating stream fluxes of DIN (NO sub(3) super(-) + NH sub(4) super(+)) and DON in a forest-dominated and a wetland-dominated catchment during the snowmelt period. We combined isotopic hydrograph separation with concurrent measurements of meltwater DIN and DON to calculate conservative N export (hydrologic mixing only) and compared it with reactive N export (i.e., observed fluxes that include biogeochemical processes). On balance, N was retained in the catchments during snowmelt because of storage of meltwater N in soils, but our N export comparison revealed N generation (mostly as DON) from the mobilization of dissolved organic matter. In contrast, NO sub(3) super(-), which was highly enriched in snowpack meltwater, remained below detection in streams, and both catchments were sinks for NO sub(3) super(-), suggesting that denitrification and/or uptake may be important at the catchment scale. Over the melt period, the forest catchment was a greater total N source because of the convergence of lateral flow and near-stream riparian N sources in surface soils, which elevated stream DON and to a lesser extent NH sub(4) super(+). In contrast, preferential flow in the wetland catchment tended to dilute DIN in saturated peatland soils and in the stream, whereas DON varied little over time. These findings highlight the importance of hydrologic processes that store meltwater N in catchment soils but at the same time deliver DON from riparian sources to the stream. Further, model results suggest that biotic uptake and/or sorption effectively retain much of the meltwater DIN from the snowpack. Collectively, hydrologic storage and biogeochemical processes act to retain N that is likely important for boreal ecosystem production later in the spring and summer seasons. Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) stored in the snowpack are important sources of N in snow‐covered ecosystems, yet we have limited knowledge of their fate during the melt period. Our objective was to quantify the role of hydrologic and biogeochemical processes in regulating stream fluxes of DIN (NO 3 − + NH 4 + ) and DON in a forest‐dominated and a wetland‐dominated catchment during the snowmelt period. We combined isotopic hydrograph separation with concurrent measurements of meltwater DIN and DON to calculate “conservative” N export (hydrologic mixing only) and compared it with “reactive” N export (i.e., observed fluxes that include biogeochemical processes). On balance, N was retained in the catchments during snowmelt because of storage of meltwater N in soils, but our N export comparison revealed N generation (mostly as DON) from the mobilization of dissolved organic matter. In contrast, NO 3 − , which was highly enriched in snowpack meltwater, remained below detection in streams, and both catchments were sinks for NO 3 − , suggesting that denitrification and/or uptake may be important at the catchment scale. Over the melt period, the forest catchment was a greater total N source because of the convergence of lateral flow and near‐stream riparian N sources in surface soils, which elevated stream DON and to a lesser extent NH 4 + . In contrast, preferential flow in the wetland catchment tended to dilute DIN in saturated peatland soils and in the stream, whereas DON varied little over time. These findings highlight the importance of hydrologic processes that store meltwater N in catchment soils but at the same time deliver DON from riparian sources to the stream. Further, model results suggest that biotic uptake and/or sorption effectively retain much of the meltwater DIN from the snowpack. Collectively, hydrologic storage and biogeochemical processes act to retain N that is likely important for boreal ecosystem production later in the spring and summer seasons. |
| Author | Petrone, Kevin Laudon, Hjalmar Buffam, Ishi |
| Author_xml | – sequence: 1 fullname: Petrone, K – sequence: 2 fullname: Buffam, I – sequence: 3 fullname: Laudon, H |
| BookMark | eNp9kEFv1DAQRi1UJLaFG3dy4kRgbCd2zA0ttEUqIBaqPVqOM1kMWXtrZ7fdf4_TIISQ4OSx9d7M-DslJz54JOQphZcUmHrFAMR6BVCzRjwgC6qqqpRK8hOyAKh4SbmSj8hpSt8BaFULuSCHy2MXwxA2zhbGd0XrwphLG_yYn4vQF97laoO-wLtdiGPR7aPzmyL5cLvFYXxdmExvW-exm7SE8WBGd8D7dhGNvb-M0ViMhdntYjD222PysDdDwie_zjNyff7u6_KyvPp08X755qo0laCipE3X8JoaWSmpLHRWsaoVwKGRLfKmVcxQgZRhjZWpgLdge4WtmWysmeVn5PncN4-92WMa9dYli8NgPIZ90gxU0ygpM_hiBm0MKUXs9S66rYlHTUFP4eo_w804-wu3bszfnmIzbviXxGfp1g14_O8AvV4tVzQvN1nlbLk04t1vy8QfWkgua73-eKHFir-l58vP-kPmn818b4I2m-iSvv7CgHKAhjWKAv8J_4KnfQ |
| CitedBy_id | crossref_primary_10_1002_2015JG003228 crossref_primary_10_1007_s10533_020_00752_w crossref_primary_10_1029_2017WR021749 crossref_primary_10_1029_2024WR039024 crossref_primary_10_1111_j_1752_1688_2009_00338_x crossref_primary_10_1002_hyp_13413 crossref_primary_10_1007_s10021_011_9452_8 crossref_primary_10_1007_s10750_015_2636_z crossref_primary_10_1155_2014_823424 crossref_primary_10_1039_c2em30267e crossref_primary_10_3390_geosciences9040174 crossref_primary_10_1002_lno_12205 crossref_primary_10_2980_15_3_3141 crossref_primary_10_1016_j_scitotenv_2020_142906 crossref_primary_10_5194_hess_23_3571_2019 crossref_primary_10_1002_2015JG002946 crossref_primary_10_1002_2016JG003535 crossref_primary_10_1016_j_jhydrol_2013_09_006 crossref_primary_10_5194_hess_22_4295_2018 crossref_primary_10_1007_s10533_010_9426_5 crossref_primary_10_1002_hyp_15324 crossref_primary_10_5194_hess_26_2245_2022 crossref_primary_10_1139_as_2015_0009 crossref_primary_10_1088_1748_9326_ab9d3c crossref_primary_10_1007_s10533_010_9534_2 crossref_primary_10_1016_j_jhydrol_2009_04_012 crossref_primary_10_1016_j_atmosenv_2015_07_043 crossref_primary_10_1007_s00248_008_9423_6 crossref_primary_10_1007_s10533_009_9384_y crossref_primary_10_5194_hess_13_2287_2009 crossref_primary_10_1007_s10021_017_0133_0 crossref_primary_10_1016_j_envpol_2011_02_050 crossref_primary_10_5194_essd_8_439_2016 crossref_primary_10_1029_2023JG007532 crossref_primary_10_1007_s10021_011_9483_1 crossref_primary_10_1021_es900996z crossref_primary_10_1002_hyp_9686 crossref_primary_10_1007_s00442_011_2092_z crossref_primary_10_1007_s10021_016_0094_8 crossref_primary_10_1016_j_jhydrol_2007_07_010 crossref_primary_10_1080_15230430_2022_2104001 crossref_primary_10_1007_s10021_017_0149_5 crossref_primary_10_1111_j_1365_2486_2012_02731_x crossref_primary_10_5194_bg_10_3849_2013 crossref_primary_10_1002_hyp_7615 crossref_primary_10_1007_s10533_007_9170_7 crossref_primary_10_1111_gcb_12872 crossref_primary_10_1016_j_scitotenv_2016_03_230 crossref_primary_10_1007_s10533_008_9238_z crossref_primary_10_1016_j_gca_2014_03_033 crossref_primary_10_1007_s00382_014_2124_6 crossref_primary_10_5194_hess_20_5015_2016 crossref_primary_10_3390_w14121936 crossref_primary_10_1111_jawr_12012 crossref_primary_10_1038_ismej_2009_120 crossref_primary_10_1002_hyp_10412 crossref_primary_10_1002_hyp_11346 crossref_primary_10_5194_hess_20_3831_2016 crossref_primary_10_1111_oik_02392 crossref_primary_10_1007_s10584_017_1977_1 |
| Cites_doi | 10.1002/hyp.5209 10.1023/A:1013076609950 10.1007/BF02178059 10.1007/s11270-005-4641-8 10.1029/97GB01961 10.1029/WR022i010p01444 10.1029/2003WR002455 10.1007/s100210000039 10.1097/00010694-198401000-00004 10.1029/95WR02037 10.1029/2004WR003076 10.4319/lo.2000.45.6.1298 10.1111/j.1365-2435.2006.01127.x 10.1029/2002WR001510 10.1007/s10021-003-0175-3 10.1002/(SICI)1099-1085(19971015)11:12<1635::AID-HYP494>3.0.CO;2-H 10.1029/97WR01033 10.1007/s10533-004-4723-5 10.4319/lo.2004.49.4.0910 10.1007/s10021-002-0175-8 10.1029/2005JG000055 10.1007/s10533-005-5071-9 10.1023/A:1005947511910 10.1007/BF00000354 10.1016/S0378-1127(96)03920-5 10.1023/B:WAFO.0000028349.82505.39 10.1029/90WR02774 10.2134/jeq1996.00472425002500040014x 10.1029/2001WR000485 10.1023/A:1006383731753 10.1016/0160-4120(96)00036-0 10.2307/1941208 10.1007/s10533-005-6897-x 10.2136/sssaj1992.03615995005600020038x 10.1016/j.jhydrol.2005.06.034 10.1017/S002531540003352X 10.1515/CCLM.2001.148 10.1111/j.1469-8137.1966.tb06356.x 10.1007/BF00024390 10.1007/s00027-004-0700-2 10.1029/2004GB002438 10.1023/A:1013024603959 10.1007/s10021-005-0022-9 10.1890/04-1184 10.1023/A:1006414517212 10.4319/lo.1969.14.5.0799 10.1139/b96-134 10.1002/hyp.256 10.1029/98WR00010 10.1029/2002WR001525 10.1029/2000WR900030 10.1029/2004GL020908 10.1080/02827581.2003.10383138 10.4319/lo.1979.24.5.0960 10.2134/jeq2000.00472425002900030026x |
| ContentType | Journal Article |
| Copyright | Copyright 2007 by the American Geophysical Union. |
| Copyright_xml | – notice: Copyright 2007 by the American Geophysical Union. |
| DBID | FBQ BSCLL AAYXX CITATION 7QH 7TG 7UA C1K F1W H96 KL. L.G |
| DOI | 10.1029/2006WR005286 |
| DatabaseName | AGRIS Istex CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics |
| EISSN | 1944-7973 |
| EndPage | n/a |
| ExternalDocumentID | 10_1029_2006WR005286 WRCR10986 ark_67375_WNG_6R3D1FCQ_M US201300828910 |
| Genre | article |
| GeographicLocations | Sweden |
| GeographicLocations_xml | – name: Sweden |
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A6W AAESR AAHBH AAHHS AAIHA AAIKC AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AETEA AEUYN AEUYR AFBPY AFGKR AFKRA AFRAH AFWVQ AFZJQ AIDBO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FBQ FEDTE FRNLG G-S GNUQQ GODZA GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAMMB ADXHL AEFGJ AGQPQ AGXDD AIDQK AIDYY AIQQE BSCLL GROUPED_DOAJ PHGZM PQGLB PUEGO WIN 3V. A00 AFPWT GROUPED_ABI_INFORM_COMPLETE WYJ AAYXX AFFHD CITATION 7QH 7TG 7UA C1K F1W H96 KL. L.G |
| ID | FETCH-LOGICAL-a4616-18d8351a74979c0dc924b603087be38b92a16e12e5e4a403b0cf9ebaa461e52c3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 72 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000247697700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1397 |
| IngestDate | Tue Oct 07 09:56:00 EDT 2025 Tue Nov 18 21:47:45 EST 2025 Sat Nov 29 04:01:04 EST 2025 Wed Jan 22 16:26:00 EST 2025 Sun Sep 21 06:17:54 EDT 2025 Thu Apr 03 09:41:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4616-18d8351a74979c0dc924b603087be38b92a16e12e5e4a403b0cf9ebaa461e52c3 |
| Notes | Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3. ArticleID:2006WR005286 istex:084ACF2DEE9E299BF4B122AA16C17211D82DC464 ark:/67375/WNG-6R3D1FCQ-M ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 20988977 |
| PQPubID | 23462 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_20988977 crossref_primary_10_1029_2006WR005286 crossref_citationtrail_10_1029_2006WR005286 wiley_primary_10_1029_2006WR005286_WRCR10986 istex_primary_ark_67375_WNG_6R3D1FCQ_M fao_agris_US201300828910 |
| PublicationCentury | 2000 |
| PublicationDate | June 2007 |
| PublicationDateYYYYMMDD | 2007-06-01 |
| PublicationDate_xml | – month: 06 year: 2007 text: June 2007 |
| PublicationDecade | 2000 |
| PublicationTitle | Water resources research |
| PublicationTitleAlternate | Water Resour. Res |
| PublicationYear | 2007 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | McGlynn, B. L., and J. J. McDonnell (2003), Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics, Water Resour. Res., 39(4), 1090, doi:10.1029/2002WR001525. Williams, M. W., and J. M. Melack (1991), Solute chemistry of snowmelt and runoff in an alpine basin, Sierra Nevada, Water Resour. Res., 27, 1575-1588. Nyberg, L., M. Stahli, P. E. Mellander, and K. H. Bishop (2001), Soil frost effects on soil water and runoff dynamics along a boreal forest transect: 1. Field investigations, Hydrol. Processes, 15, 909-926. Campbell, J. L., J. W. Hornbeck, W. H. McDowell, D. C. Buso, J. B. Shanley, and G. E. Likens (2000), Dissolved organic nitrogen budgets for upland forested ecosystems in New England, Biogeochemistry, 49, 123-142. McNamara, J. P., D. L. Kane, and L. D. Hinzman (1997), Hydrograph separations in an Arctic watershed using mixing model and graphical techniques, Water Resour. Res., 33, 1707-1719. Campbell, D. H., D. W. Clow, G. P. Ingersoll, M. A. Mast, N. E. Spahr, and J. T. Turk (1995), Processes controlling the chemistry of two snowmelt-dominated streams in the Rocky Mountains, Water Resour. Res., 31, 2811-2821. Hooper, R. P., and C. A. Shoemaker (1986), A comparison of chemical and isotopic hydrograph separation, Water Resour. Res., 22, 1444-1454. Brooks, P. D., M. W. Williams, and S. K. Schmidt (1998), Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt, Biogeochemistry, 43, 1-15. Woolgrove, C. E., and S. J. Woodin (1996), Ecophysiology of snow-bed bryophyte Kiaeria starkei during snowmelt and uptake of nitrate from meltwater, Can. J. Bot., 74, 1095-1103. Kaushal, S. S., and W. M. Lewis (2005), Fate and transport of organic nitrogen in minimally disturbed montane streams of Colorado, USA, Biogeochemistry, 74, 303-321. Mulholland, P. J., and E. J. Kuenzler (1979), Organic carbon export from upland and forested wetland watersheds, Limnol. Oceanogr., 24, 960-966. Binkley, D., and P. Högberg (1997), Does atmospheric deposition of nitrogen threaten Swedish forests? For. Ecol. Manage., 92, 52-119. Stottlemyer, R., and D. Toczydlowski (1996), Precipitation, snowpack, stream-water ion chemistry, and flux in a northern Michigan watershed, 1982-1991, Can. J. Fish. Aquat. Sci., 53, 2659-2672. Petrone, K. C., J. B. Jones, L. D. Hinzman, and R. D. Boone (2006), Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost, J. Geophys. Res., 111, G02020, doi:10.1029/2005JG000055. Lepisto, A., K. Granlund, and K. Rankinen (2004), Integrated nitrogen modeling in a boreal forestry dominated river basin: N fluxes and retention in lakes and peatlands, Water Air Soil Pollut. Focus, 4, 113-123. McDowell, W. H., and T. Wood (1984), Podzolization: Soil processes control dissolved organic carbon concentrations in stream water, Soil Sci., 137, 23-32. Liu, F. L., M. W. Williams, and N. Caine (2004), Source waters and flow paths in an alpine catchment, Colorado Front Range, United States, Water Resour. Res., 40, W09401, doi:10.1029/2004WR003076. Stepanauskas, R., H. Laudon, and N. O. G. Jorgensen (2000), High DON bioavailability in boreal streams during a spring flood, Limnol. Oceanogr., 45, 1298-1307. Hedin, L. O., J. J. Armesto, and A. H. Johnson (1995), Patterns of nutrient loss from unpolluted old-growth temperate forests: Evaluation of biogeochemical theory, Ecology, 76, 493-509. Jowsey, P. C. (1966), An improved peat sampler, New Phytol., 65, 245-248. Kortelainen, P. S., S. Saukkonen, and T. Mattsson (1997), Leaching of nitrogen from forested catchments in Finland, Global Biogeochem. Cycles, 11, 627-638. Laudon, H., S. Köhler, and I. Buffam (2004a), Seasonal dependence of DOC export in five Boreal catchments in northern Sweden, Aquat. Sci., 66, 223-230. Hood, E. W., M. W. Williams, and N. Caine (2003), Landscape controls on organic and inorganic nitrogen leaching across an alpine-subalpine ecotone, Green Lakes Valley, Colorado Front Range, Ecosystems, 6, 31-45. Schleppi, P., P. A. Waldner, and M. Stähli (2006), Errors of flux integration methods for solutes in grab samples of runoff water, as compared to flow-proportional sampling, J. Hydrol., 319, 266-281. Kristiansen, J. (2001), Description of a generally applicable model for the evaluation of uncertainty of measurement in clinical chemistry, Clin. Chem. Lab. Med., 39, 920-931. Qualls, R. G., and B. L. Haines (1992), Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water, Soil Sci. Soc. Am. J., 56, 578-586. Brooks, P. D., M. W. Williams, and S. K. Schmidt (1996), Microbial activity under alpine snowpacks, Niwot Ridge, Colorado, Biogeochemistry, 32, 93-113. Neff, J. C., S. E. Hobbie, and P. M. Vitousek (2001), Nutrient and mineralogical control on dissolved organic C, N, and P fluxes and stoichiometry in Hawaiian soils, Biogeochemistry, 51, 283-302. Fitzhugh, R. D., C. T. Driscoll, P. M. Groffman, G. L. Tierney, T. J. Fahey, and J. P. Hardy (2001), Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem, Biogeochemistry, 56, 215-238. Brookshire, E. N. J., H. M. Valett, S. A. Thomas, and J. R. Webster (2005), Coupled cycling of dissolved organic nitrogen and carbon in a forest stream, Ecology, 86, 2487-2496. Laudon, K., H. F. Hemond, R. Krouse, and K. H. Bishop (2002), Oxygen 18 fractionation during snowmelt: Implications for spring flood hydrograph separation, Water Resour. Res., 38(11), 1258, doi:10.1029/2002WR001510. Ohte, N., S. D. Sebestyen, J. B. Shanley, D. H. Doctor, C. Kendall, S. D. Wankel, and E. W. Boyer (2004), Tracing sources of nitrate in snowmelt runoff using a high-resolution isotopic technique, Geophys. Res. Lett., 31, L21506, doi:10.1029/2004GL020908. Yano, Y., K. Lajtha, P. Sollins, and B. A. Cladwell (2005), Chemistry and dynamics of dissolved organic matter in a temperate coniferous forest on andic soils: Effects of litter quality, Ecosystems, 8, 286-300. Piatek, K. B., M. J. Mitchell, S. R. Silva, and C. Kendall (2005), Sources of nitrate in snowmelt discharge: Evidence from water chemistry and stable isotopes of nitrate, Water Air Soil Pollut., 165, 13-35. Mattsson, T., P. Kortelainen, and A. Raïke (2005), Export of DOM from boreal catchments: Impacts of land use cover and climate, Biogeochemistry, 76, 373-394. Hornberger, G. M., K. E. Bencala, and D. M. McKnight (1994), Hydrological controls on dissolved organic carbon during snowmelt in the Snake River near Montezuma, Colorado, Biogeochemistry, 25, 65-147. Lajtha, K., S. E. Crowl, Y. Yano, S. S. Kaushal, E. Sulzman, P. Sollins, and J. D. H. Spears (2005), Detrital controls on soil solution N and dissolved organic matter in soils: A field experiment, Biogeochemistry, 76, 261-281. Williams, M. W., E. Hood, and N. Caine (2001), Role of organic nitrogen in the nitrogen cycle of a high-elevation catchment, Colorado Front Range, Water Resour. Res., 37, 2569-2581. Aitkenhead-Peterson, J. A., J. E. Alexander, and T. A. Clair (2005), Dissolved organic carbon and dissolved organic nitrogen export from forested watersheds in Nova Scotia: Identifying controlling factors, Global Biogeochem. Cycles, 19, GB4016, doi:10.1029/2004GB002438. Laudon, H., H. F. Hemond, R. Krouse, and K. H. Bishop (2004b), Hydrological flow paths during snowmelt: Congruence between hydrometric measurements and oxygen 18 in melt water, soil water, and runoff, Water Resour. Res., 40, W03102, doi:10.1029/2003WR002455. Bishop, K., J. Seibert, S. Kohler, and H. Laudon (2004), Resolving the double paradox of rapidly mobilized oldwater with highly variable responses in runoff chemistry, Hydrol. Processes, 18, 185-189, doi:10.1002/hyp.5209. Bishop, K., H. Laudon, and S. Kohler (2000), Separating the natural and anthropogenic components of spring flood pH decline: A method for areas that are not chronically acidified, Water Resour. Res., 36, 1873-1884. Ottosson Löfvenius, M., M. Kluge, and T. Lundmark (2003), Snow and soil frost depth in two types of shelterwood and a clear-cut area, Scand. J. For. Res., 18, 54-63. Kaushal, S. S., and W. M. Lewis (2003), Patterns in the chemical fractionation of organic nitrogen in Rocky Mountain streams, Ecosystems, 6, 483-492. Solorzano, L. (1969), Determination of ammonia in natural waters by the phenolhypochlorite method, Limnol. Oceanogr., 14, 799-801. Williams, M. W., R. C. Bales, J. Melack, and A. Brown (1995), Fluxes and transformations of nitrogen in a high-elevation catchment, Biogeochemistry, 28, 1-31. Wood, E. D., F. A. J. Armstrong, and F. A. Richards (1967), Determination of nitrate in seawater by cadmium-copper reduction to nitrite, J. Ma. Biol. Assoc. U. K., 47, 23-31. Groffman, P. M., C. T. Driscoll, T. J. Fahey, J. P. Hardy, R. D. Fitzhugh, and G. L. Tierney (2001), Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest, Biogeochemistry, 56, 191-213. Fölster, J. (2000), The near-stream zone is a source of nitrogen in a Swedish forested catchment, J. Environ. Qual., 29, 883-893. Pellerin, B. A., W. M. Wollheim, C. S. Hopkinson, W. H. McDowell, M. R. Williams, C. J. Vörösmarty, and M. L. Daley (2004), Role of wetlands and developed land use on dissolved organic nitrogen concentrations and DON/TDN in northeastern U.S. rivers and streams, Limnol. Oceanogr., 49, 910-918. Genereux, D. (1998), Quantifying uncertainty in tracer-based hydrograph separations, Water Resour. Res., 34, 915-919. Boyer, E. W., G. M. Hornberger, K. E. Bencala, and D. M. McKnight (1997), Response characteristics of DOC flushing in an alpine catchment, Hydrol. Processes, 11, 1635-1647. Goodale, C. L., J. D. Aber, and W. H. McDowell (2000), The long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire, Ecosystems, 3, 433-450. Hill, A. (1996), Nitrate removal in stream riparian zones, J. Environ. Qual., 25, 743-755. Bishop, K., and C. Pettersson (1996), Or 1995; 31 2004; 66 2000; 49 2000; 45 2000; 3 1995; 76 2004; 4 1994; 25 1996; 74 2003; 18 1998; 43 1992; 56 1996; 32 2004; 31 1979; 24 2006; 20 1997; 92 1997; 11 1995; 28 2003; 6 2005; 74 2005; 76 2001; 15 1996; 25 2001; 56 1966; 65 2001; 51 1996; 22 2002; 38 2000; 29 2004; 40 2006; 319 2004; 49 2005; 86 1969; 14 2003; 39 1967; 47 2006; 111 1996; 53 2005; 19 1991; 27 2000; 36 2004; 18 1997; 33 2005; 165 1986; 22 2005; 8 1984; 137 2001; 37 2001; 39 1998; 34 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Stottlemyer R. (e_1_2_8_51_1) 1996; 53 Ottosson Löfvenius M. (e_1_2_8_43_1) 2003; 18 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – reference: Lajtha, K., S. E. Crowl, Y. Yano, S. S. Kaushal, E. Sulzman, P. Sollins, and J. D. H. Spears (2005), Detrital controls on soil solution N and dissolved organic matter in soils: A field experiment, Biogeochemistry, 76, 261-281. – reference: Williams, M. W., R. C. Bales, J. Melack, and A. Brown (1995), Fluxes and transformations of nitrogen in a high-elevation catchment, Biogeochemistry, 28, 1-31. – reference: Bishop, K., H. Laudon, and S. Kohler (2000), Separating the natural and anthropogenic components of spring flood pH decline: A method for areas that are not chronically acidified, Water Resour. Res., 36, 1873-1884. – reference: Campbell, J. L., J. W. Hornbeck, W. H. McDowell, D. C. Buso, J. B. Shanley, and G. E. Likens (2000), Dissolved organic nitrogen budgets for upland forested ecosystems in New England, Biogeochemistry, 49, 123-142. – reference: Lepisto, A., K. Granlund, and K. Rankinen (2004), Integrated nitrogen modeling in a boreal forestry dominated river basin: N fluxes and retention in lakes and peatlands, Water Air Soil Pollut. Focus, 4, 113-123. – reference: Stottlemyer, R., and D. Toczydlowski (1996), Precipitation, snowpack, stream-water ion chemistry, and flux in a northern Michigan watershed, 1982-1991, Can. J. Fish. Aquat. Sci., 53, 2659-2672. – reference: Stepanauskas, R., H. Laudon, and N. O. G. Jorgensen (2000), High DON bioavailability in boreal streams during a spring flood, Limnol. Oceanogr., 45, 1298-1307. – reference: Mattsson, T., P. Kortelainen, and A. Raïke (2005), Export of DOM from boreal catchments: Impacts of land use cover and climate, Biogeochemistry, 76, 373-394. – reference: Schleppi, P., P. A. Waldner, and M. Stähli (2006), Errors of flux integration methods for solutes in grab samples of runoff water, as compared to flow-proportional sampling, J. Hydrol., 319, 266-281. – reference: Hornberger, G. M., K. E. Bencala, and D. M. McKnight (1994), Hydrological controls on dissolved organic carbon during snowmelt in the Snake River near Montezuma, Colorado, Biogeochemistry, 25, 65-147. – reference: Qualls, R. G., and B. L. Haines (1992), Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water, Soil Sci. Soc. Am. J., 56, 578-586. – reference: Binkley, D., and P. Högberg (1997), Does atmospheric deposition of nitrogen threaten Swedish forests? For. Ecol. Manage., 92, 52-119. – reference: Ohte, N., S. D. Sebestyen, J. B. Shanley, D. H. Doctor, C. Kendall, S. D. Wankel, and E. W. Boyer (2004), Tracing sources of nitrate in snowmelt runoff using a high-resolution isotopic technique, Geophys. Res. Lett., 31, L21506, doi:10.1029/2004GL020908. – reference: Bishop, K., J. Seibert, S. Kohler, and H. Laudon (2004), Resolving the double paradox of rapidly mobilized oldwater with highly variable responses in runoff chemistry, Hydrol. Processes, 18, 185-189, doi:10.1002/hyp.5209. – reference: McGlynn, B. L., and J. J. McDonnell (2003), Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics, Water Resour. Res., 39(4), 1090, doi:10.1029/2002WR001525. – reference: Brooks, P. D., M. W. Williams, and S. K. Schmidt (1998), Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt, Biogeochemistry, 43, 1-15. – reference: Neff, J. C., S. E. Hobbie, and P. M. Vitousek (2001), Nutrient and mineralogical control on dissolved organic C, N, and P fluxes and stoichiometry in Hawaiian soils, Biogeochemistry, 51, 283-302. – reference: Solorzano, L. (1969), Determination of ammonia in natural waters by the phenolhypochlorite method, Limnol. Oceanogr., 14, 799-801. – reference: Brooks, P. D., M. W. Williams, and S. K. Schmidt (1996), Microbial activity under alpine snowpacks, Niwot Ridge, Colorado, Biogeochemistry, 32, 93-113. – reference: Woolgrove, C. E., and S. J. Woodin (1996), Ecophysiology of snow-bed bryophyte Kiaeria starkei during snowmelt and uptake of nitrate from meltwater, Can. J. Bot., 74, 1095-1103. – reference: McDowell, W. H., and T. Wood (1984), Podzolization: Soil processes control dissolved organic carbon concentrations in stream water, Soil Sci., 137, 23-32. – reference: Kaushal, S. S., and W. M. Lewis (2005), Fate and transport of organic nitrogen in minimally disturbed montane streams of Colorado, USA, Biogeochemistry, 74, 303-321. – reference: Brookshire, E. N. J., H. M. Valett, S. A. Thomas, and J. R. Webster (2005), Coupled cycling of dissolved organic nitrogen and carbon in a forest stream, Ecology, 86, 2487-2496. – reference: Jowsey, P. C. (1966), An improved peat sampler, New Phytol., 65, 245-248. – reference: Pellerin, B. A., W. M. Wollheim, C. S. Hopkinson, W. H. McDowell, M. R. Williams, C. J. Vörösmarty, and M. L. Daley (2004), Role of wetlands and developed land use on dissolved organic nitrogen concentrations and DON/TDN in northeastern U.S. rivers and streams, Limnol. Oceanogr., 49, 910-918. – reference: Fölster, J. (2000), The near-stream zone is a source of nitrogen in a Swedish forested catchment, J. Environ. Qual., 29, 883-893. – reference: Campbell, D. H., D. W. Clow, G. P. Ingersoll, M. A. Mast, N. E. Spahr, and J. T. Turk (1995), Processes controlling the chemistry of two snowmelt-dominated streams in the Rocky Mountains, Water Resour. Res., 31, 2811-2821. – reference: Piatek, K. B., M. J. Mitchell, S. R. Silva, and C. Kendall (2005), Sources of nitrate in snowmelt discharge: Evidence from water chemistry and stable isotopes of nitrate, Water Air Soil Pollut., 165, 13-35. – reference: Wood, E. D., F. A. J. Armstrong, and F. A. Richards (1967), Determination of nitrate in seawater by cadmium-copper reduction to nitrite, J. Ma. Biol. Assoc. U. K., 47, 23-31. – reference: Bishop, K., and C. Pettersson (1996), Organic carbon in the boreal spring flood from adjacent subcatchments, Environ. Int., 22, 535-540. – reference: Williams, M. W., and J. M. Melack (1991), Solute chemistry of snowmelt and runoff in an alpine basin, Sierra Nevada, Water Resour. Res., 27, 1575-1588. – reference: Laudon, K., H. F. Hemond, R. Krouse, and K. H. Bishop (2002), Oxygen 18 fractionation during snowmelt: Implications for spring flood hydrograph separation, Water Resour. Res., 38(11), 1258, doi:10.1029/2002WR001510. – reference: Laudon, H., H. F. Hemond, R. Krouse, and K. H. Bishop (2004b), Hydrological flow paths during snowmelt: Congruence between hydrometric measurements and oxygen 18 in melt water, soil water, and runoff, Water Resour. Res., 40, W03102, doi:10.1029/2003WR002455. – reference: Williams, M. W., E. Hood, and N. Caine (2001), Role of organic nitrogen in the nitrogen cycle of a high-elevation catchment, Colorado Front Range, Water Resour. Res., 37, 2569-2581. – reference: Yano, Y., K. Lajtha, P. Sollins, and B. A. Cladwell (2005), Chemistry and dynamics of dissolved organic matter in a temperate coniferous forest on andic soils: Effects of litter quality, Ecosystems, 8, 286-300. – reference: Goodale, C. L., J. D. Aber, and W. H. McDowell (2000), The long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire, Ecosystems, 3, 433-450. – reference: Kristiansen, J. (2001), Description of a generally applicable model for the evaluation of uncertainty of measurement in clinical chemistry, Clin. Chem. Lab. Med., 39, 920-931. – reference: McNamara, J. P., D. L. Kane, and L. D. Hinzman (1997), Hydrograph separations in an Arctic watershed using mixing model and graphical techniques, Water Resour. Res., 33, 1707-1719. – reference: Aitkenhead-Peterson, J. A., J. E. Alexander, and T. A. Clair (2005), Dissolved organic carbon and dissolved organic nitrogen export from forested watersheds in Nova Scotia: Identifying controlling factors, Global Biogeochem. Cycles, 19, GB4016, doi:10.1029/2004GB002438. – reference: Hedin, L. O., J. J. Armesto, and A. H. Johnson (1995), Patterns of nutrient loss from unpolluted old-growth temperate forests: Evaluation of biogeochemical theory, Ecology, 76, 493-509. – reference: Hill, A. (1996), Nitrate removal in stream riparian zones, J. Environ. Qual., 25, 743-755. – reference: Mulholland, P. J., and E. J. Kuenzler (1979), Organic carbon export from upland and forested wetland watersheds, Limnol. Oceanogr., 24, 960-966. – reference: Hood, E. W., M. W. Williams, and N. Caine (2003), Landscape controls on organic and inorganic nitrogen leaching across an alpine-subalpine ecotone, Green Lakes Valley, Colorado Front Range, Ecosystems, 6, 31-45. – reference: Liu, F. L., M. W. Williams, and N. Caine (2004), Source waters and flow paths in an alpine catchment, Colorado Front Range, United States, Water Resour. Res., 40, W09401, doi:10.1029/2004WR003076. – reference: Kortelainen, P. S., S. Saukkonen, and T. Mattsson (1997), Leaching of nitrogen from forested catchments in Finland, Global Biogeochem. Cycles, 11, 627-638. – reference: Groffman, P. M., C. T. Driscoll, T. J. Fahey, J. P. Hardy, R. D. Fitzhugh, and G. L. Tierney (2001), Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest, Biogeochemistry, 56, 191-213. – reference: Boyer, E. W., G. M. Hornberger, K. E. Bencala, and D. M. McKnight (1997), Response characteristics of DOC flushing in an alpine catchment, Hydrol. Processes, 11, 1635-1647. – reference: Forsum, Å., L. Dahlman, T. Näsholm, and A. Nordin (2006), Nitrogen utilization by Hylocomium splendens in a boreal forest fertilization experiment, Funct. Ecol., 20, 421-426. – reference: Kaushal, S. S., and W. M. Lewis (2003), Patterns in the chemical fractionation of organic nitrogen in Rocky Mountain streams, Ecosystems, 6, 483-492. – reference: Fitzhugh, R. D., C. T. Driscoll, P. M. Groffman, G. L. Tierney, T. J. Fahey, and J. P. Hardy (2001), Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem, Biogeochemistry, 56, 215-238. – reference: Nyberg, L., M. Stahli, P. E. Mellander, and K. H. Bishop (2001), Soil frost effects on soil water and runoff dynamics along a boreal forest transect: 1. Field investigations, Hydrol. Processes, 15, 909-926. – reference: Genereux, D. (1998), Quantifying uncertainty in tracer-based hydrograph separations, Water Resour. Res., 34, 915-919. – reference: Petrone, K. C., J. B. Jones, L. D. Hinzman, and R. D. Boone (2006), Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost, J. Geophys. Res., 111, G02020, doi:10.1029/2005JG000055. – reference: Hooper, R. P., and C. A. Shoemaker (1986), A comparison of chemical and isotopic hydrograph separation, Water Resour. Res., 22, 1444-1454. – reference: Laudon, H., S. Köhler, and I. Buffam (2004a), Seasonal dependence of DOC export in five Boreal catchments in northern Sweden, Aquat. Sci., 66, 223-230. – reference: Ottosson Löfvenius, M., M. Kluge, and T. Lundmark (2003), Snow and soil frost depth in two types of shelterwood and a clear-cut area, Scand. J. For. Res., 18, 54-63. – volume: 11 start-page: 627 year: 1997 end-page: 638 article-title: Leaching of nitrogen from forested catchments in Finland publication-title: Global Biogeochem. Cycles – volume: 38 issue: 11 year: 2002 article-title: Oxygen 18 fractionation during snowmelt: Implications for spring flood hydrograph separation publication-title: Water Resour. Res. – volume: 92 start-page: 52 year: 1997 end-page: 119 article-title: Does atmospheric deposition of nitrogen threaten Swedish forests? publication-title: For. Ecol. Manage. – volume: 74 start-page: 303 year: 2005 end-page: 321 article-title: Fate and transport of organic nitrogen in minimally disturbed montane streams of Colorado, USA publication-title: Biogeochemistry – volume: 76 start-page: 493 year: 1995 end-page: 509 article-title: Patterns of nutrient loss from unpolluted old‐growth temperate forests: Evaluation of biogeochemical theory publication-title: Ecology – volume: 49 start-page: 910 year: 2004 end-page: 918 article-title: Role of wetlands and developed land use on dissolved organic nitrogen concentrations and DON/TDN in northeastern U.S. rivers and streams publication-title: Limnol. Oceanogr. – volume: 34 start-page: 915 year: 1998 end-page: 919 article-title: Quantifying uncertainty in tracer‐based hydrograph separations publication-title: Water Resour. Res. – volume: 22 start-page: 535 year: 1996 end-page: 540 article-title: Organic carbon in the boreal spring flood from adjacent subcatchments publication-title: Environ. Int. – volume: 165 start-page: 13 year: 2005 end-page: 35 article-title: Sources of nitrate in snowmelt discharge: Evidence from water chemistry and stable isotopes of nitrate publication-title: Water Air Soil Pollut. – volume: 28 start-page: 1 year: 1995 end-page: 31 article-title: Fluxes and transformations of nitrogen in a high‐elevation catchment publication-title: Biogeochemistry – volume: 45 start-page: 1298 year: 2000 end-page: 1307 article-title: High DON bioavailability in boreal streams during a spring flood publication-title: Limnol. Oceanogr. – volume: 14 start-page: 799 year: 1969 end-page: 801 article-title: Determination of ammonia in natural waters by the phenolhypochlorite method publication-title: Limnol. Oceanogr. – volume: 51 start-page: 283 year: 2001 end-page: 302 article-title: Nutrient and mineralogical control on dissolved organic C, N, and P fluxes and stoichiometry in Hawaiian soils publication-title: Biogeochemistry – volume: 8 start-page: 286 year: 2005 end-page: 300 article-title: Chemistry and dynamics of dissolved organic matter in a temperate coniferous forest on andic soils: Effects of litter quality publication-title: Ecosystems – volume: 18 start-page: 185 year: 2004 end-page: 189 article-title: Resolving the double paradox of rapidly mobilized oldwater with highly variable responses in runoff chemistry publication-title: Hydrol. Processes – volume: 24 start-page: 960 year: 1979 end-page: 966 article-title: Organic carbon export from upland and forested wetland watersheds publication-title: Limnol. Oceanogr. – volume: 19 year: 2005 article-title: Dissolved organic carbon and dissolved organic nitrogen export from forested watersheds in Nova Scotia: Identifying controlling factors publication-title: Global Biogeochem. Cycles – volume: 25 start-page: 743 year: 1996 end-page: 755 article-title: Nitrate removal in stream riparian zones publication-title: J. Environ. Qual. – volume: 33 start-page: 1707 year: 1997 end-page: 1719 article-title: Hydrograph separations in an Arctic watershed using mixing model and graphical techniques publication-title: Water Resour. Res. – volume: 76 start-page: 373 year: 2005 end-page: 394 article-title: Export of DOM from boreal catchments: Impacts of land use cover and climate publication-title: Biogeochemistry – volume: 31 year: 2004 article-title: Tracing sources of nitrate in snowmelt runoff using a high‐resolution isotopic technique publication-title: Geophys. Res. Lett. – volume: 40 year: 2004 article-title: Source waters and flow paths in an alpine catchment, Colorado Front Range, United States publication-title: Water Resour. Res. – volume: 29 start-page: 883 year: 2000 end-page: 893 article-title: The near‐stream zone is a source of nitrogen in a Swedish forested catchment publication-title: J. Environ. Qual. – volume: 20 start-page: 421 year: 2006 end-page: 426 article-title: Nitrogen utilization by Hylocomium splendens in a boreal forest fertilization experiment publication-title: Funct. Ecol. – volume: 56 start-page: 215 year: 2001 end-page: 238 article-title: Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem publication-title: Biogeochemistry – volume: 86 start-page: 2487 year: 2005 end-page: 2496 article-title: Coupled cycling of dissolved organic nitrogen and carbon in a forest stream publication-title: Ecology – volume: 47 start-page: 23 year: 1967 end-page: 31 article-title: Determination of nitrate in seawater by cadmium‐copper reduction to nitrite publication-title: J. Ma. Biol. Assoc. U. K. – volume: 18 start-page: 54 year: 2003 end-page: 63 article-title: Snow and soil frost depth in two types of shelterwood and a clear‐cut area publication-title: Scand. J. For. Res. – volume: 76 start-page: 261 year: 2005 end-page: 281 article-title: Detrital controls on soil solution N and dissolved organic matter in soils: A field experiment publication-title: Biogeochemistry – volume: 25 start-page: 65 year: 1994 end-page: 147 article-title: Hydrological controls on dissolved organic carbon during snowmelt in the Snake River near Montezuma, Colorado publication-title: Biogeochemistry – volume: 39 start-page: 920 year: 2001 end-page: 931 article-title: Description of a generally applicable model for the evaluation of uncertainty of measurement in clinical chemistry publication-title: Clin. Chem. Lab. Med. – volume: 40 year: 2004 article-title: Hydrological flow paths during snowmelt: Congruence between hydrometric measurements and oxygen 18 in melt water, soil water, and runoff publication-title: Water Resour. Res. – volume: 319 start-page: 266 year: 2006 end-page: 281 article-title: Errors of flux integration methods for solutes in grab samples of runoff water, as compared to flow‐proportional sampling publication-title: J. Hydrol. – volume: 6 start-page: 31 year: 2003 end-page: 45 article-title: Landscape controls on organic and inorganic nitrogen leaching across an alpine‐subalpine ecotone, Green Lakes Valley, Colorado Front Range publication-title: Ecosystems – volume: 11 start-page: 1635 year: 1997 end-page: 1647 article-title: Response characteristics of DOC flushing in an alpine catchment publication-title: Hydrol. Processes – volume: 43 start-page: 1 year: 1998 end-page: 15 article-title: Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt publication-title: Biogeochemistry – volume: 49 start-page: 123 year: 2000 end-page: 142 article-title: Dissolved organic nitrogen budgets for upland forested ecosystems in New England publication-title: Biogeochemistry – volume: 15 start-page: 909 year: 2001 end-page: 926 article-title: Soil frost effects on soil water and runoff dynamics along a boreal forest transect: 1. Field investigations publication-title: Hydrol. Processes – volume: 27 start-page: 1575 year: 1991 end-page: 1588 article-title: Solute chemistry of snowmelt and runoff in an alpine basin, Sierra Nevada publication-title: Water Resour. Res. – volume: 4 start-page: 113 year: 2004 end-page: 123 article-title: Integrated nitrogen modeling in a boreal forestry dominated river basin: N fluxes and retention in lakes and peatlands publication-title: Water Air Soil Pollut. Focus – volume: 22 start-page: 1444 year: 1986 end-page: 1454 article-title: A comparison of chemical and isotopic hydrograph separation publication-title: Water Resour. Res. – volume: 137 start-page: 23 year: 1984 end-page: 32 article-title: Podzolization: Soil processes control dissolved organic carbon concentrations in stream water publication-title: Soil Sci. – volume: 66 start-page: 223 year: 2004 end-page: 230 article-title: Seasonal dependence of DOC export in five Boreal catchments in northern Sweden publication-title: Aquat. Sci. – volume: 56 start-page: 191 year: 2001 end-page: 213 article-title: Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest publication-title: Biogeochemistry – volume: 6 start-page: 483 year: 2003 end-page: 492 article-title: Patterns in the chemical fractionation of organic nitrogen in Rocky Mountain streams publication-title: Ecosystems – volume: 39 issue: 4 year: 2003 article-title: Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics publication-title: Water Resour. Res. – volume: 65 start-page: 245 year: 1966 end-page: 248 article-title: An improved peat sampler publication-title: New Phytol. – volume: 36 start-page: 1873 year: 2000 end-page: 1884 article-title: Separating the natural and anthropogenic components of spring flood pH decline: A method for areas that are not chronically acidified publication-title: Water Resour. Res. – volume: 3 start-page: 433 year: 2000 end-page: 450 article-title: The long‐term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire publication-title: Ecosystems – volume: 32 start-page: 93 year: 1996 end-page: 113 article-title: Microbial activity under alpine snowpacks, Niwot Ridge, Colorado publication-title: Biogeochemistry – volume: 31 start-page: 2811 year: 1995 end-page: 2821 article-title: Processes controlling the chemistry of two snowmelt‐dominated streams in the Rocky Mountains publication-title: Water Resour. Res. – volume: 111 year: 2006 article-title: Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost publication-title: J. Geophys. Res. – volume: 53 start-page: 2659 year: 1996 end-page: 2672 article-title: Precipitation, snowpack, stream‐water ion chemistry, and flux in a northern Michigan watershed, 1982–1991 publication-title: Can. J. Fish. Aquat. Sci. – volume: 37 start-page: 2569 year: 2001 end-page: 2581 article-title: Role of organic nitrogen in the nitrogen cycle of a high‐elevation catchment, Colorado Front Range publication-title: Water Resour. Res. – volume: 74 start-page: 1095 year: 1996 end-page: 1103 article-title: Ecophysiology of snow‐bed bryophyte during snowmelt and uptake of nitrate from meltwater publication-title: Can. J. Bot. – volume: 56 start-page: 578 year: 1992 end-page: 586 article-title: Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water publication-title: Soil Sci. Soc. Am. J. – ident: e_1_2_8_6_1 doi: 10.1002/hyp.5209 – ident: e_1_2_8_13_1 doi: 10.1023/A:1013076609950 – volume: 53 start-page: 2659 year: 1996 ident: e_1_2_8_51_1 article-title: Precipitation, snowpack, stream‐water ion chemistry, and flux in a northern Michigan watershed, 1982–1991 publication-title: Can. J. Fish. Aquat. Sci. – ident: e_1_2_8_53_1 doi: 10.1007/BF02178059 – ident: e_1_2_8_46_1 doi: 10.1007/s11270-005-4641-8 – ident: e_1_2_8_27_1 doi: 10.1029/97GB01961 – ident: e_1_2_8_22_1 doi: 10.1029/WR022i010p01444 – ident: e_1_2_8_32_1 doi: 10.1029/2003WR002455 – ident: e_1_2_8_17_1 doi: 10.1007/s100210000039 – ident: e_1_2_8_36_1 doi: 10.1097/00010694-198401000-00004 – ident: e_1_2_8_11_1 doi: 10.1029/95WR02037 – ident: e_1_2_8_34_1 doi: 10.1029/2004WR003076 – ident: e_1_2_8_50_1 doi: 10.4319/lo.2000.45.6.1298 – ident: e_1_2_8_15_1 doi: 10.1111/j.1365-2435.2006.01127.x – ident: e_1_2_8_30_1 doi: 10.1029/2002WR001510 – ident: e_1_2_8_25_1 doi: 10.1007/s10021-003-0175-3 – ident: e_1_2_8_7_1 doi: 10.1002/(SICI)1099-1085(19971015)11:12<1635::AID-HYP494>3.0.CO;2-H – ident: e_1_2_8_38_1 doi: 10.1029/97WR01033 – ident: e_1_2_8_26_1 doi: 10.1007/s10533-004-4723-5 – ident: e_1_2_8_44_1 doi: 10.4319/lo.2004.49.4.0910 – ident: e_1_2_8_21_1 doi: 10.1007/s10021-002-0175-8 – ident: e_1_2_8_45_1 doi: 10.1029/2005JG000055 – ident: e_1_2_8_29_1 doi: 10.1007/s10533-005-5071-9 – ident: e_1_2_8_9_1 doi: 10.1023/A:1005947511910 – ident: e_1_2_8_8_1 doi: 10.1007/BF00000354 – ident: e_1_2_8_3_1 doi: 10.1016/S0378-1127(96)03920-5 – ident: e_1_2_8_33_1 doi: 10.1023/B:WAFO.0000028349.82505.39 – ident: e_1_2_8_52_1 doi: 10.1029/90WR02774 – ident: e_1_2_8_20_1 doi: 10.2134/jeq1996.00472425002500040014x – ident: e_1_2_8_54_1 doi: 10.1029/2001WR000485 – ident: e_1_2_8_12_1 doi: 10.1023/A:1006383731753 – ident: e_1_2_8_4_1 doi: 10.1016/0160-4120(96)00036-0 – ident: e_1_2_8_19_1 doi: 10.2307/1941208 – ident: e_1_2_8_35_1 doi: 10.1007/s10533-005-6897-x – ident: e_1_2_8_47_1 doi: 10.2136/sssaj1992.03615995005600020038x – ident: e_1_2_8_48_1 doi: 10.1016/j.jhydrol.2005.06.034 – ident: e_1_2_8_55_1 doi: 10.1017/S002531540003352X – ident: e_1_2_8_28_1 doi: 10.1515/CCLM.2001.148 – ident: e_1_2_8_24_1 doi: 10.1111/j.1469-8137.1966.tb06356.x – ident: e_1_2_8_23_1 doi: 10.1007/BF00024390 – ident: e_1_2_8_31_1 doi: 10.1007/s00027-004-0700-2 – ident: e_1_2_8_2_1 doi: 10.1029/2004GB002438 – ident: e_1_2_8_18_1 doi: 10.1023/A:1013024603959 – ident: e_1_2_8_57_1 doi: 10.1007/s10021-005-0022-9 – ident: e_1_2_8_10_1 doi: 10.1890/04-1184 – ident: e_1_2_8_40_1 doi: 10.1023/A:1006414517212 – ident: e_1_2_8_49_1 doi: 10.4319/lo.1969.14.5.0799 – ident: e_1_2_8_56_1 doi: 10.1139/b96-134 – ident: e_1_2_8_41_1 doi: 10.1002/hyp.256 – ident: e_1_2_8_16_1 doi: 10.1029/98WR00010 – ident: e_1_2_8_37_1 doi: 10.1029/2002WR001525 – ident: e_1_2_8_5_1 doi: 10.1029/2000WR900030 – ident: e_1_2_8_42_1 doi: 10.1029/2004GL020908 – volume: 18 start-page: 54 year: 2003 ident: e_1_2_8_43_1 article-title: Snow and soil frost depth in two types of shelterwood and a clear‐cut area publication-title: Scand. J. For. Res. doi: 10.1080/02827581.2003.10383138 – ident: e_1_2_8_39_1 doi: 10.4319/lo.1979.24.5.0960 – ident: e_1_2_8_14_1 doi: 10.2134/jeq2000.00472425002900030026x |
| SSID | ssj0014567 |
| Score | 2.1535118 |
| Snippet | 1 Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) stored in the snowpack are important sources of N in snow-covered ecosystems, yet we... Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) stored in the snowpack are important sources of N in snow‐covered ecosystems, yet we... Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) stored in the snowpack are important sources of N in snow-covered ecosystems, yet we... |
| SourceID | proquest crossref wiley istex fao |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | biogeochemical cycles boreal denitrification environmental impact environmental protection forest ecosystems hydrologic cycle hydrologic flow path hydrologic models inorganic nitrogen nitrogen organic nitrogen riparian areas riparian buffers snow snowmelt Snowmelt Runoff Model snowpack soil soil water soil water content soil water retention sorption streams temporal variation water flow watershed hydrology watersheds wetland wetlands |
| Title | Hydrologic and biotic control of nitrogen export during snowmelt: a combined conservative and reactive tracer approach |
| URI | https://api.istex.fr/ark:/67375/WNG-6R3D1FCQ-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2006WR005286 https://www.proquest.com/docview/20988977 |
| Volume | 43 |
| WOSCitedRecordID | wos000247697700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-7973 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQaIX3qjhUXwALhARJ86LW7VlKVJZQWC1vVm2M4GqbYKS7dL-e8ZOstoeQELcEsWTWM7M-LNn5jPAC5rFSx3ngVVe4QvNja-rAH0tFFd0SyjWFQofprNZdnSUfx423GwtTM8Psd5ws5bh_LU1cKW7gWzAcmTatfCisNuamWXc5sLZ5eLjbB1EIGyQjgFmC3SGvHcSf7spfGVGul6phnCqHeKLK6BzE7q6uWd65397fRduD6iT7fVqcg-uYX0fbo1FyR1dD4eh_7h8AKuDy7LtfSJTdcn0cUNibEhqZ03FyA20DWkewwsL31lf68i6uvl1hqfLd2yPWp_RmhtLKzZs_K7QvY5QqvOxbNkqgy0bWc0fwnz6_tvkwB-OZ_CVSHji86wk-MZVKvI0N0FpaCmnE0cxqDHKdB4qniAPMUahRBDpwFQ5amWlMQ5N9Ai26qbGHWD0JMgqLXiWIuE7RSA6rqooFsYIQkzowevxF0kzcJfbIzROpYuhh7ncHFcPXq5b_-w5O_7Qbof-tlTfyZ3K-dfQBnEtox8hKA9eORVYy6v2xKbApbFczD7IpIj2-XTyRX7y4PmoI5IM00ZbVI3NeUdfyrOM0LUHb5xC_LUrclFMCk4SyeN_a_4EtscMxoA_ha1le47P4KZZLY-7dhdu7BfT-eGus4vfzpEInQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLVK58EYNr_oAXCAiTpwXt2rLsojtCkJX25tlOw6t2iYou13af8_YcVbbA0iIW6J4HMueGX_22N8AvMJZvJRxHhjlZT6TVPmyCrQvmaACXxHF2ovCk3Q6zY6P868uz6m5C9PxQ6w33IxlWH9tDNxsSDu2AUOSaRbD88Lsa2bJFmwz1KR4ANsHxWg2WQcSEB-kfZDZgB139h1reL8pf2NW2qpEg1jVdPPVDeC5CV_t_DO6998tvw93HfQk-52uPIBbun4IO_3N5AU-u4zoJ9ePYDW-LtvOMRJRl0SeNihG3Ml20lQEfUHboPoRfWUwPOkuPJJF3fy60OfLD2QfS1_gwluXRszt_q60rQ6hqnW0ZNkKpVvSU5s_htno49Fw7LscDb5gCU18mpWI4ahIWZ7mKigVrudkYnkGpY4ymYeCJpqGOtZMsCCSgapyLYWR1nGooicwqJta7wLBL0FWSUazVCPIE4ik46qKYqYUQ9ikPXjbjxFXjsDc5NE45zaQHuZ8s189eL0u_bMj7vhDuV0cbi5-oE_ls--hieQaWj-EUR68sTqwlhftmTkHl8Z8Pv3EkyI6oKPhN37owV6vJByt04RcRK2bywX-Kc8yhNgevLMa8dem8HkxLChKJE__rfge7IyPDid88nn65Rnc6Y80BvQ5DJbtpX4Bt9VqebpoXzrz-A1VWAxJ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoi4ALb9Twqg_ABSLixHlxq3YJRSyrElhtb5btTKCiTarsdmn_PWPHWW0PICFuiTLjWPbM-LPnYUJe4CpeqTgPjPBynyumfVUH4CsumcRXRLE2UXiSTqfZ0VF-6O45NbkwfX2I9YGb0Qxrr42Cw1lVu2oDpkim2QzPS3OumSVbZIfHeYKauTMui9lk7UhAfJAOTmYDdlzsO7bwdpP_yqq0VcsWsaoZ5osrwHMTvtr1p7jz3z2_S2476En3e1m5R65Bc5_cHDKTF_jsbkT_cfmArA4uq643jFQ2FVXHLbJRF9lO25qiLehaFD8KFwbD0z7hkS6a9tcpnCzf0X2kPsWNN1SGzZ3-rsA2h1DVGlq67KSGjg6lzR-SWfH-2-jAd3c0-JInLPFZViGGYzLleZrroNK4n1OJrTOoIMpUHkqWAAshBi55EKlA1zkoabghDnX0iGw3bQO7hOKXIKsVZ1kKCPIkIum4rqOYa80RNoFHXg9zJLQrYG7u0TgR1pEe5mJzXD3yck191hfu-APdLk63kN_RporZ19B4ck1ZP4RRHnllZWDNL7ufJg4ujcV8-kEkZTRmxeiL-OyRvUFIBGqncbnIBtrzBf4pzzKE2B55YyXir10R83JUMuRIHv8b-R65cTguxOTj9NMTcmuIaAzYU7K97M7hGbmuV8vjRffcacdvy_0LxA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrologic+and+biotic+control+of+nitrogen+export+during+snowmelt%3A+A+combined+conservative+and+reactive+tracer+approach&rft.jtitle=Water+resources+research&rft.au=Petrone%2C+Kevin&rft.au=Buffam%2C+Ishi&rft.au=Laudon%2C+Hjalmar&rft.date=2007-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=43&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2006WR005286&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_6R3D1FCQ_M |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |