Hydrologic and biotic control of nitrogen export during snowmelt: a combined conservative and reactive tracer approach

1 Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) stored in the snowpack are important sources of N in snow-covered ecosystems, yet we have limited knowledge of their fate during the melt period. Our objective was to quantify the role of hydrologic and biogeochemical processe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research Jg. 43; H. 6
Hauptverfasser: Petrone, K, Buffam, I, Laudon, H
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Blackwell Publishing Ltd 01.06.2007
Schlagworte:
ISSN:0043-1397, 1944-7973
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract 1 Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) stored in the snowpack are important sources of N in snow-covered ecosystems, yet we have limited knowledge of their fate during the melt period. Our objective was to quantify the role of hydrologic and biogeochemical processes in regulating stream fluxes of DIN (NO3(-) + NH4(+)) and DON in a forest-dominated and a wetland-dominated catchment during the snowmelt period. We combined isotopic hydrograph separation with concurrent measurements of meltwater DIN and DON to calculate "conservative" N export (hydrologic mixing only) and compared it with "reactive" N export (i.e., observed fluxes that include biogeochemical processes). On balance, N was retained in the catchments during snowmelt because of storage of meltwater N in soils, but our N export comparison revealed N generation (mostly as DON) from the mobilization of dissolved organic matter. In contrast, NO3(-), which was highly enriched in snowpack meltwater, remained below detection in streams, and both catchments were sinks for NO3(-), suggesting that denitrification and/or uptake may be important at the catchment scale. Over the melt period, the forest catchment was a greater total N source because of the convergence of lateral flow and near-stream riparian N sources in surface soils, which elevated stream DON and to a lesser extent NH4(+). In contrast, preferential flow in the wetland catchment tended to dilute DIN in saturated peatland soils and in the stream, whereas DON varied little over time. These findings highlight the importance of hydrologic processes that store meltwater N in catchment soils but at the same time deliver DON from riparian sources to the stream. Further, model results suggest that biotic uptake and/or sorption effectively retain much of the meltwater DIN from the snowpack. Collectively, hydrologic storage and biogeochemical processes act to retain N that is likely important for boreal ecosystem production later in the spring and summer seasons.
AbstractList Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) stored in the snowpack are important sources of N in snow‐covered ecosystems, yet we have limited knowledge of their fate during the melt period. Our objective was to quantify the role of hydrologic and biogeochemical processes in regulating stream fluxes of DIN (NO3− + NH4+) and DON in a forest‐dominated and a wetland‐dominated catchment during the snowmelt period. We combined isotopic hydrograph separation with concurrent measurements of meltwater DIN and DON to calculate “conservative” N export (hydrologic mixing only) and compared it with “reactive” N export (i.e., observed fluxes that include biogeochemical processes). On balance, N was retained in the catchments during snowmelt because of storage of meltwater N in soils, but our N export comparison revealed N generation (mostly as DON) from the mobilization of dissolved organic matter. In contrast, NO3−, which was highly enriched in snowpack meltwater, remained below detection in streams, and both catchments were sinks for NO3−, suggesting that denitrification and/or uptake may be important at the catchment scale. Over the melt period, the forest catchment was a greater total N source because of the convergence of lateral flow and near‐stream riparian N sources in surface soils, which elevated stream DON and to a lesser extent NH4+. In contrast, preferential flow in the wetland catchment tended to dilute DIN in saturated peatland soils and in the stream, whereas DON varied little over time. These findings highlight the importance of hydrologic processes that store meltwater N in catchment soils but at the same time deliver DON from riparian sources to the stream. Further, model results suggest that biotic uptake and/or sorption effectively retain much of the meltwater DIN from the snowpack. Collectively, hydrologic storage and biogeochemical processes act to retain N that is likely important for boreal ecosystem production later in the spring and summer seasons.
1 Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) stored in the snowpack are important sources of N in snow-covered ecosystems, yet we have limited knowledge of their fate during the melt period. Our objective was to quantify the role of hydrologic and biogeochemical processes in regulating stream fluxes of DIN (NO3(-) + NH4(+)) and DON in a forest-dominated and a wetland-dominated catchment during the snowmelt period. We combined isotopic hydrograph separation with concurrent measurements of meltwater DIN and DON to calculate "conservative" N export (hydrologic mixing only) and compared it with "reactive" N export (i.e., observed fluxes that include biogeochemical processes). On balance, N was retained in the catchments during snowmelt because of storage of meltwater N in soils, but our N export comparison revealed N generation (mostly as DON) from the mobilization of dissolved organic matter. In contrast, NO3(-), which was highly enriched in snowpack meltwater, remained below detection in streams, and both catchments were sinks for NO3(-), suggesting that denitrification and/or uptake may be important at the catchment scale. Over the melt period, the forest catchment was a greater total N source because of the convergence of lateral flow and near-stream riparian N sources in surface soils, which elevated stream DON and to a lesser extent NH4(+). In contrast, preferential flow in the wetland catchment tended to dilute DIN in saturated peatland soils and in the stream, whereas DON varied little over time. These findings highlight the importance of hydrologic processes that store meltwater N in catchment soils but at the same time deliver DON from riparian sources to the stream. Further, model results suggest that biotic uptake and/or sorption effectively retain much of the meltwater DIN from the snowpack. Collectively, hydrologic storage and biogeochemical processes act to retain N that is likely important for boreal ecosystem production later in the spring and summer seasons.
Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) stored in the snowpack are important sources of N in snow-covered ecosystems, yet we have limited knowledge of their fate during the melt period. Our objective was to quantify the role of hydrologic and biogeochemical processes in regulating stream fluxes of DIN (NO sub(3) super(-) + NH sub(4) super(+)) and DON in a forest-dominated and a wetland-dominated catchment during the snowmelt period. We combined isotopic hydrograph separation with concurrent measurements of meltwater DIN and DON to calculate conservative N export (hydrologic mixing only) and compared it with reactive N export (i.e., observed fluxes that include biogeochemical processes). On balance, N was retained in the catchments during snowmelt because of storage of meltwater N in soils, but our N export comparison revealed N generation (mostly as DON) from the mobilization of dissolved organic matter. In contrast, NO sub(3) super(-), which was highly enriched in snowpack meltwater, remained below detection in streams, and both catchments were sinks for NO sub(3) super(-), suggesting that denitrification and/or uptake may be important at the catchment scale. Over the melt period, the forest catchment was a greater total N source because of the convergence of lateral flow and near-stream riparian N sources in surface soils, which elevated stream DON and to a lesser extent NH sub(4) super(+). In contrast, preferential flow in the wetland catchment tended to dilute DIN in saturated peatland soils and in the stream, whereas DON varied little over time. These findings highlight the importance of hydrologic processes that store meltwater N in catchment soils but at the same time deliver DON from riparian sources to the stream. Further, model results suggest that biotic uptake and/or sorption effectively retain much of the meltwater DIN from the snowpack. Collectively, hydrologic storage and biogeochemical processes act to retain N that is likely important for boreal ecosystem production later in the spring and summer seasons.
Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) stored in the snowpack are important sources of N in snow‐covered ecosystems, yet we have limited knowledge of their fate during the melt period. Our objective was to quantify the role of hydrologic and biogeochemical processes in regulating stream fluxes of DIN (NO 3 − + NH 4 + ) and DON in a forest‐dominated and a wetland‐dominated catchment during the snowmelt period. We combined isotopic hydrograph separation with concurrent measurements of meltwater DIN and DON to calculate “conservative” N export (hydrologic mixing only) and compared it with “reactive” N export (i.e., observed fluxes that include biogeochemical processes). On balance, N was retained in the catchments during snowmelt because of storage of meltwater N in soils, but our N export comparison revealed N generation (mostly as DON) from the mobilization of dissolved organic matter. In contrast, NO 3 − , which was highly enriched in snowpack meltwater, remained below detection in streams, and both catchments were sinks for NO 3 − , suggesting that denitrification and/or uptake may be important at the catchment scale. Over the melt period, the forest catchment was a greater total N source because of the convergence of lateral flow and near‐stream riparian N sources in surface soils, which elevated stream DON and to a lesser extent NH 4 + . In contrast, preferential flow in the wetland catchment tended to dilute DIN in saturated peatland soils and in the stream, whereas DON varied little over time. These findings highlight the importance of hydrologic processes that store meltwater N in catchment soils but at the same time deliver DON from riparian sources to the stream. Further, model results suggest that biotic uptake and/or sorption effectively retain much of the meltwater DIN from the snowpack. Collectively, hydrologic storage and biogeochemical processes act to retain N that is likely important for boreal ecosystem production later in the spring and summer seasons.
Author Petrone, Kevin
Laudon, Hjalmar
Buffam, Ishi
Author_xml – sequence: 1
  fullname: Petrone, K
– sequence: 2
  fullname: Buffam, I
– sequence: 3
  fullname: Laudon, H
BookMark eNp9kEFv1DAQRi1UJLaFG3dy4kRgbCd2zA0ttEUqIBaqPVqOM1kMWXtrZ7fdf4_TIISQ4OSx9d7M-DslJz54JOQphZcUmHrFAMR6BVCzRjwgC6qqqpRK8hOyAKh4SbmSj8hpSt8BaFULuSCHy2MXwxA2zhbGd0XrwphLG_yYn4vQF97laoO-wLtdiGPR7aPzmyL5cLvFYXxdmExvW-exm7SE8WBGd8D7dhGNvb-M0ViMhdntYjD222PysDdDwie_zjNyff7u6_KyvPp08X755qo0laCipE3X8JoaWSmpLHRWsaoVwKGRLfKmVcxQgZRhjZWpgLdge4WtmWysmeVn5PncN4-92WMa9dYli8NgPIZ90gxU0ygpM_hiBm0MKUXs9S66rYlHTUFP4eo_w804-wu3bszfnmIzbviXxGfp1g14_O8AvV4tVzQvN1nlbLk04t1vy8QfWkgua73-eKHFir-l58vP-kPmn818b4I2m-iSvv7CgHKAhjWKAv8J_4KnfQ
CitedBy_id crossref_primary_10_1002_2015JG003228
crossref_primary_10_1007_s10533_020_00752_w
crossref_primary_10_1029_2017WR021749
crossref_primary_10_1029_2024WR039024
crossref_primary_10_1111_j_1752_1688_2009_00338_x
crossref_primary_10_1002_hyp_13413
crossref_primary_10_1007_s10021_011_9452_8
crossref_primary_10_1007_s10750_015_2636_z
crossref_primary_10_1155_2014_823424
crossref_primary_10_1039_c2em30267e
crossref_primary_10_3390_geosciences9040174
crossref_primary_10_1002_lno_12205
crossref_primary_10_2980_15_3_3141
crossref_primary_10_1016_j_scitotenv_2020_142906
crossref_primary_10_5194_hess_23_3571_2019
crossref_primary_10_1002_2015JG002946
crossref_primary_10_1002_2016JG003535
crossref_primary_10_1016_j_jhydrol_2013_09_006
crossref_primary_10_5194_hess_22_4295_2018
crossref_primary_10_1007_s10533_010_9426_5
crossref_primary_10_1002_hyp_15324
crossref_primary_10_5194_hess_26_2245_2022
crossref_primary_10_1139_as_2015_0009
crossref_primary_10_1088_1748_9326_ab9d3c
crossref_primary_10_1007_s10533_010_9534_2
crossref_primary_10_1016_j_jhydrol_2009_04_012
crossref_primary_10_1016_j_atmosenv_2015_07_043
crossref_primary_10_1007_s00248_008_9423_6
crossref_primary_10_1007_s10533_009_9384_y
crossref_primary_10_5194_hess_13_2287_2009
crossref_primary_10_1007_s10021_017_0133_0
crossref_primary_10_1016_j_envpol_2011_02_050
crossref_primary_10_5194_essd_8_439_2016
crossref_primary_10_1029_2023JG007532
crossref_primary_10_1007_s10021_011_9483_1
crossref_primary_10_1021_es900996z
crossref_primary_10_1002_hyp_9686
crossref_primary_10_1007_s00442_011_2092_z
crossref_primary_10_1007_s10021_016_0094_8
crossref_primary_10_1016_j_jhydrol_2007_07_010
crossref_primary_10_1080_15230430_2022_2104001
crossref_primary_10_1007_s10021_017_0149_5
crossref_primary_10_1111_j_1365_2486_2012_02731_x
crossref_primary_10_5194_bg_10_3849_2013
crossref_primary_10_1002_hyp_7615
crossref_primary_10_1007_s10533_007_9170_7
crossref_primary_10_1111_gcb_12872
crossref_primary_10_1016_j_scitotenv_2016_03_230
crossref_primary_10_1007_s10533_008_9238_z
crossref_primary_10_1016_j_gca_2014_03_033
crossref_primary_10_1007_s00382_014_2124_6
crossref_primary_10_5194_hess_20_5015_2016
crossref_primary_10_3390_w14121936
crossref_primary_10_1111_jawr_12012
crossref_primary_10_1038_ismej_2009_120
crossref_primary_10_1002_hyp_10412
crossref_primary_10_1002_hyp_11346
crossref_primary_10_5194_hess_20_3831_2016
crossref_primary_10_1111_oik_02392
crossref_primary_10_1007_s10584_017_1977_1
Cites_doi 10.1002/hyp.5209
10.1023/A:1013076609950
10.1007/BF02178059
10.1007/s11270-005-4641-8
10.1029/97GB01961
10.1029/WR022i010p01444
10.1029/2003WR002455
10.1007/s100210000039
10.1097/00010694-198401000-00004
10.1029/95WR02037
10.1029/2004WR003076
10.4319/lo.2000.45.6.1298
10.1111/j.1365-2435.2006.01127.x
10.1029/2002WR001510
10.1007/s10021-003-0175-3
10.1002/(SICI)1099-1085(19971015)11:12<1635::AID-HYP494>3.0.CO;2-H
10.1029/97WR01033
10.1007/s10533-004-4723-5
10.4319/lo.2004.49.4.0910
10.1007/s10021-002-0175-8
10.1029/2005JG000055
10.1007/s10533-005-5071-9
10.1023/A:1005947511910
10.1007/BF00000354
10.1016/S0378-1127(96)03920-5
10.1023/B:WAFO.0000028349.82505.39
10.1029/90WR02774
10.2134/jeq1996.00472425002500040014x
10.1029/2001WR000485
10.1023/A:1006383731753
10.1016/0160-4120(96)00036-0
10.2307/1941208
10.1007/s10533-005-6897-x
10.2136/sssaj1992.03615995005600020038x
10.1016/j.jhydrol.2005.06.034
10.1017/S002531540003352X
10.1515/CCLM.2001.148
10.1111/j.1469-8137.1966.tb06356.x
10.1007/BF00024390
10.1007/s00027-004-0700-2
10.1029/2004GB002438
10.1023/A:1013024603959
10.1007/s10021-005-0022-9
10.1890/04-1184
10.1023/A:1006414517212
10.4319/lo.1969.14.5.0799
10.1139/b96-134
10.1002/hyp.256
10.1029/98WR00010
10.1029/2002WR001525
10.1029/2000WR900030
10.1029/2004GL020908
10.1080/02827581.2003.10383138
10.4319/lo.1979.24.5.0960
10.2134/jeq2000.00472425002900030026x
ContentType Journal Article
Copyright Copyright 2007 by the American Geophysical Union.
Copyright_xml – notice: Copyright 2007 by the American Geophysical Union.
DBID FBQ
BSCLL
AAYXX
CITATION
7QH
7TG
7UA
C1K
F1W
H96
KL.
L.G
DOI 10.1029/2006WR005286
DatabaseName AGRIS
Istex
CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID 10_1029_2006WR005286
WRCR10986
ark_67375_WNG_6R3D1FCQ_M
US201300828910
Genre article
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AETEA
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FBQ
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAMMB
ADXHL
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
BSCLL
GROUPED_DOAJ
PHGZM
PQGLB
PUEGO
WIN
3V.
A00
AFPWT
GROUPED_ABI_INFORM_COMPLETE
WYJ
AAYXX
AFFHD
CITATION
7QH
7TG
7UA
C1K
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-a4616-18d8351a74979c0dc924b603087be38b92a16e12e5e4a403b0cf9ebaa461e52c3
IEDL.DBID WIN
ISICitedReferencesCount 72
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000247697700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Tue Oct 07 09:56:00 EDT 2025
Tue Nov 18 21:47:45 EST 2025
Sat Nov 29 04:01:04 EST 2025
Wed Jan 22 16:26:00 EST 2025
Sun Sep 21 06:17:54 EDT 2025
Thu Apr 03 09:41:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4616-18d8351a74979c0dc924b603087be38b92a16e12e5e4a403b0cf9ebaa461e52c3
Notes Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.
ArticleID:2006WR005286
istex:084ACF2DEE9E299BF4B122AA16C17211D82DC464
ark:/67375/WNG-6R3D1FCQ-M
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 20988977
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_20988977
crossref_primary_10_1029_2006WR005286
crossref_citationtrail_10_1029_2006WR005286
wiley_primary_10_1029_2006WR005286_WRCR10986
istex_primary_ark_67375_WNG_6R3D1FCQ_M
fao_agris_US201300828910
PublicationCentury 2000
PublicationDate June 2007
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: June 2007
PublicationDecade 2000
PublicationTitle Water resources research
PublicationTitleAlternate Water Resour. Res
PublicationYear 2007
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References McGlynn, B. L., and J. J. McDonnell (2003), Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics, Water Resour. Res., 39(4), 1090, doi:10.1029/2002WR001525.
Williams, M. W., and J. M. Melack (1991), Solute chemistry of snowmelt and runoff in an alpine basin, Sierra Nevada, Water Resour. Res., 27, 1575-1588.
Nyberg, L., M. Stahli, P. E. Mellander, and K. H. Bishop (2001), Soil frost effects on soil water and runoff dynamics along a boreal forest transect: 1. Field investigations, Hydrol. Processes, 15, 909-926.
Campbell, J. L., J. W. Hornbeck, W. H. McDowell, D. C. Buso, J. B. Shanley, and G. E. Likens (2000), Dissolved organic nitrogen budgets for upland forested ecosystems in New England, Biogeochemistry, 49, 123-142.
McNamara, J. P., D. L. Kane, and L. D. Hinzman (1997), Hydrograph separations in an Arctic watershed using mixing model and graphical techniques, Water Resour. Res., 33, 1707-1719.
Campbell, D. H., D. W. Clow, G. P. Ingersoll, M. A. Mast, N. E. Spahr, and J. T. Turk (1995), Processes controlling the chemistry of two snowmelt-dominated streams in the Rocky Mountains, Water Resour. Res., 31, 2811-2821.
Hooper, R. P., and C. A. Shoemaker (1986), A comparison of chemical and isotopic hydrograph separation, Water Resour. Res., 22, 1444-1454.
Brooks, P. D., M. W. Williams, and S. K. Schmidt (1998), Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt, Biogeochemistry, 43, 1-15.
Woolgrove, C. E., and S. J. Woodin (1996), Ecophysiology of snow-bed bryophyte Kiaeria starkei during snowmelt and uptake of nitrate from meltwater, Can. J. Bot., 74, 1095-1103.
Kaushal, S. S., and W. M. Lewis (2005), Fate and transport of organic nitrogen in minimally disturbed montane streams of Colorado, USA, Biogeochemistry, 74, 303-321.
Mulholland, P. J., and E. J. Kuenzler (1979), Organic carbon export from upland and forested wetland watersheds, Limnol. Oceanogr., 24, 960-966.
Binkley, D., and P. Högberg (1997), Does atmospheric deposition of nitrogen threaten Swedish forests? For. Ecol. Manage., 92, 52-119.
Stottlemyer, R., and D. Toczydlowski (1996), Precipitation, snowpack, stream-water ion chemistry, and flux in a northern Michigan watershed, 1982-1991, Can. J. Fish. Aquat. Sci., 53, 2659-2672.
Petrone, K. C., J. B. Jones, L. D. Hinzman, and R. D. Boone (2006), Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost, J. Geophys. Res., 111, G02020, doi:10.1029/2005JG000055.
Lepisto, A., K. Granlund, and K. Rankinen (2004), Integrated nitrogen modeling in a boreal forestry dominated river basin: N fluxes and retention in lakes and peatlands, Water Air Soil Pollut. Focus, 4, 113-123.
McDowell, W. H., and T. Wood (1984), Podzolization: Soil processes control dissolved organic carbon concentrations in stream water, Soil Sci., 137, 23-32.
Liu, F. L., M. W. Williams, and N. Caine (2004), Source waters and flow paths in an alpine catchment, Colorado Front Range, United States, Water Resour. Res., 40, W09401, doi:10.1029/2004WR003076.
Stepanauskas, R., H. Laudon, and N. O. G. Jorgensen (2000), High DON bioavailability in boreal streams during a spring flood, Limnol. Oceanogr., 45, 1298-1307.
Hedin, L. O., J. J. Armesto, and A. H. Johnson (1995), Patterns of nutrient loss from unpolluted old-growth temperate forests: Evaluation of biogeochemical theory, Ecology, 76, 493-509.
Jowsey, P. C. (1966), An improved peat sampler, New Phytol., 65, 245-248.
Kortelainen, P. S., S. Saukkonen, and T. Mattsson (1997), Leaching of nitrogen from forested catchments in Finland, Global Biogeochem. Cycles, 11, 627-638.
Laudon, H., S. Köhler, and I. Buffam (2004a), Seasonal dependence of DOC export in five Boreal catchments in northern Sweden, Aquat. Sci., 66, 223-230.
Hood, E. W., M. W. Williams, and N. Caine (2003), Landscape controls on organic and inorganic nitrogen leaching across an alpine-subalpine ecotone, Green Lakes Valley, Colorado Front Range, Ecosystems, 6, 31-45.
Schleppi, P., P. A. Waldner, and M. Stähli (2006), Errors of flux integration methods for solutes in grab samples of runoff water, as compared to flow-proportional sampling, J. Hydrol., 319, 266-281.
Kristiansen, J. (2001), Description of a generally applicable model for the evaluation of uncertainty of measurement in clinical chemistry, Clin. Chem. Lab. Med., 39, 920-931.
Qualls, R. G., and B. L. Haines (1992), Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water, Soil Sci. Soc. Am. J., 56, 578-586.
Brooks, P. D., M. W. Williams, and S. K. Schmidt (1996), Microbial activity under alpine snowpacks, Niwot Ridge, Colorado, Biogeochemistry, 32, 93-113.
Neff, J. C., S. E. Hobbie, and P. M. Vitousek (2001), Nutrient and mineralogical control on dissolved organic C, N, and P fluxes and stoichiometry in Hawaiian soils, Biogeochemistry, 51, 283-302.
Fitzhugh, R. D., C. T. Driscoll, P. M. Groffman, G. L. Tierney, T. J. Fahey, and J. P. Hardy (2001), Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem, Biogeochemistry, 56, 215-238.
Brookshire, E. N. J., H. M. Valett, S. A. Thomas, and J. R. Webster (2005), Coupled cycling of dissolved organic nitrogen and carbon in a forest stream, Ecology, 86, 2487-2496.
Laudon, K., H. F. Hemond, R. Krouse, and K. H. Bishop (2002), Oxygen 18 fractionation during snowmelt: Implications for spring flood hydrograph separation, Water Resour. Res., 38(11), 1258, doi:10.1029/2002WR001510.
Ohte, N., S. D. Sebestyen, J. B. Shanley, D. H. Doctor, C. Kendall, S. D. Wankel, and E. W. Boyer (2004), Tracing sources of nitrate in snowmelt runoff using a high-resolution isotopic technique, Geophys. Res. Lett., 31, L21506, doi:10.1029/2004GL020908.
Yano, Y., K. Lajtha, P. Sollins, and B. A. Cladwell (2005), Chemistry and dynamics of dissolved organic matter in a temperate coniferous forest on andic soils: Effects of litter quality, Ecosystems, 8, 286-300.
Piatek, K. B., M. J. Mitchell, S. R. Silva, and C. Kendall (2005), Sources of nitrate in snowmelt discharge: Evidence from water chemistry and stable isotopes of nitrate, Water Air Soil Pollut., 165, 13-35.
Mattsson, T., P. Kortelainen, and A. Raïke (2005), Export of DOM from boreal catchments: Impacts of land use cover and climate, Biogeochemistry, 76, 373-394.
Hornberger, G. M., K. E. Bencala, and D. M. McKnight (1994), Hydrological controls on dissolved organic carbon during snowmelt in the Snake River near Montezuma, Colorado, Biogeochemistry, 25, 65-147.
Lajtha, K., S. E. Crowl, Y. Yano, S. S. Kaushal, E. Sulzman, P. Sollins, and J. D. H. Spears (2005), Detrital controls on soil solution N and dissolved organic matter in soils: A field experiment, Biogeochemistry, 76, 261-281.
Williams, M. W., E. Hood, and N. Caine (2001), Role of organic nitrogen in the nitrogen cycle of a high-elevation catchment, Colorado Front Range, Water Resour. Res., 37, 2569-2581.
Aitkenhead-Peterson, J. A., J. E. Alexander, and T. A. Clair (2005), Dissolved organic carbon and dissolved organic nitrogen export from forested watersheds in Nova Scotia: Identifying controlling factors, Global Biogeochem. Cycles, 19, GB4016, doi:10.1029/2004GB002438.
Laudon, H., H. F. Hemond, R. Krouse, and K. H. Bishop (2004b), Hydrological flow paths during snowmelt: Congruence between hydrometric measurements and oxygen 18 in melt water, soil water, and runoff, Water Resour. Res., 40, W03102, doi:10.1029/2003WR002455.
Bishop, K., J. Seibert, S. Kohler, and H. Laudon (2004), Resolving the double paradox of rapidly mobilized oldwater with highly variable responses in runoff chemistry, Hydrol. Processes, 18, 185-189, doi:10.1002/hyp.5209.
Bishop, K., H. Laudon, and S. Kohler (2000), Separating the natural and anthropogenic components of spring flood pH decline: A method for areas that are not chronically acidified, Water Resour. Res., 36, 1873-1884.
Ottosson Löfvenius, M., M. Kluge, and T. Lundmark (2003), Snow and soil frost depth in two types of shelterwood and a clear-cut area, Scand. J. For. Res., 18, 54-63.
Kaushal, S. S., and W. M. Lewis (2003), Patterns in the chemical fractionation of organic nitrogen in Rocky Mountain streams, Ecosystems, 6, 483-492.
Solorzano, L. (1969), Determination of ammonia in natural waters by the phenolhypochlorite method, Limnol. Oceanogr., 14, 799-801.
Williams, M. W., R. C. Bales, J. Melack, and A. Brown (1995), Fluxes and transformations of nitrogen in a high-elevation catchment, Biogeochemistry, 28, 1-31.
Wood, E. D., F. A. J. Armstrong, and F. A. Richards (1967), Determination of nitrate in seawater by cadmium-copper reduction to nitrite, J. Ma. Biol. Assoc. U. K., 47, 23-31.
Groffman, P. M., C. T. Driscoll, T. J. Fahey, J. P. Hardy, R. D. Fitzhugh, and G. L. Tierney (2001), Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest, Biogeochemistry, 56, 191-213.
Fölster, J. (2000), The near-stream zone is a source of nitrogen in a Swedish forested catchment, J. Environ. Qual., 29, 883-893.
Pellerin, B. A., W. M. Wollheim, C. S. Hopkinson, W. H. McDowell, M. R. Williams, C. J. Vörösmarty, and M. L. Daley (2004), Role of wetlands and developed land use on dissolved organic nitrogen concentrations and DON/TDN in northeastern U.S. rivers and streams, Limnol. Oceanogr., 49, 910-918.
Genereux, D. (1998), Quantifying uncertainty in tracer-based hydrograph separations, Water Resour. Res., 34, 915-919.
Boyer, E. W., G. M. Hornberger, K. E. Bencala, and D. M. McKnight (1997), Response characteristics of DOC flushing in an alpine catchment, Hydrol. Processes, 11, 1635-1647.
Goodale, C. L., J. D. Aber, and W. H. McDowell (2000), The long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire, Ecosystems, 3, 433-450.
Hill, A. (1996), Nitrate removal in stream riparian zones, J. Environ. Qual., 25, 743-755.
Bishop, K., and C. Pettersson (1996), Or
1995; 31
2004; 66
2000; 49
2000; 45
2000; 3
1995; 76
2004; 4
1994; 25
1996; 74
2003; 18
1998; 43
1992; 56
1996; 32
2004; 31
1979; 24
2006; 20
1997; 92
1997; 11
1995; 28
2003; 6
2005; 74
2005; 76
2001; 15
1996; 25
2001; 56
1966; 65
2001; 51
1996; 22
2002; 38
2000; 29
2004; 40
2006; 319
2004; 49
2005; 86
1969; 14
2003; 39
1967; 47
2006; 111
1996; 53
2005; 19
1991; 27
2000; 36
2004; 18
1997; 33
2005; 165
1986; 22
2005; 8
1984; 137
2001; 37
2001; 39
1998; 34
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Stottlemyer R. (e_1_2_8_51_1) 1996; 53
Ottosson Löfvenius M. (e_1_2_8_43_1) 2003; 18
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – reference: Lajtha, K., S. E. Crowl, Y. Yano, S. S. Kaushal, E. Sulzman, P. Sollins, and J. D. H. Spears (2005), Detrital controls on soil solution N and dissolved organic matter in soils: A field experiment, Biogeochemistry, 76, 261-281.
– reference: Williams, M. W., R. C. Bales, J. Melack, and A. Brown (1995), Fluxes and transformations of nitrogen in a high-elevation catchment, Biogeochemistry, 28, 1-31.
– reference: Bishop, K., H. Laudon, and S. Kohler (2000), Separating the natural and anthropogenic components of spring flood pH decline: A method for areas that are not chronically acidified, Water Resour. Res., 36, 1873-1884.
– reference: Campbell, J. L., J. W. Hornbeck, W. H. McDowell, D. C. Buso, J. B. Shanley, and G. E. Likens (2000), Dissolved organic nitrogen budgets for upland forested ecosystems in New England, Biogeochemistry, 49, 123-142.
– reference: Lepisto, A., K. Granlund, and K. Rankinen (2004), Integrated nitrogen modeling in a boreal forestry dominated river basin: N fluxes and retention in lakes and peatlands, Water Air Soil Pollut. Focus, 4, 113-123.
– reference: Stottlemyer, R., and D. Toczydlowski (1996), Precipitation, snowpack, stream-water ion chemistry, and flux in a northern Michigan watershed, 1982-1991, Can. J. Fish. Aquat. Sci., 53, 2659-2672.
– reference: Stepanauskas, R., H. Laudon, and N. O. G. Jorgensen (2000), High DON bioavailability in boreal streams during a spring flood, Limnol. Oceanogr., 45, 1298-1307.
– reference: Mattsson, T., P. Kortelainen, and A. Raïke (2005), Export of DOM from boreal catchments: Impacts of land use cover and climate, Biogeochemistry, 76, 373-394.
– reference: Schleppi, P., P. A. Waldner, and M. Stähli (2006), Errors of flux integration methods for solutes in grab samples of runoff water, as compared to flow-proportional sampling, J. Hydrol., 319, 266-281.
– reference: Hornberger, G. M., K. E. Bencala, and D. M. McKnight (1994), Hydrological controls on dissolved organic carbon during snowmelt in the Snake River near Montezuma, Colorado, Biogeochemistry, 25, 65-147.
– reference: Qualls, R. G., and B. L. Haines (1992), Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water, Soil Sci. Soc. Am. J., 56, 578-586.
– reference: Binkley, D., and P. Högberg (1997), Does atmospheric deposition of nitrogen threaten Swedish forests? For. Ecol. Manage., 92, 52-119.
– reference: Ohte, N., S. D. Sebestyen, J. B. Shanley, D. H. Doctor, C. Kendall, S. D. Wankel, and E. W. Boyer (2004), Tracing sources of nitrate in snowmelt runoff using a high-resolution isotopic technique, Geophys. Res. Lett., 31, L21506, doi:10.1029/2004GL020908.
– reference: Bishop, K., J. Seibert, S. Kohler, and H. Laudon (2004), Resolving the double paradox of rapidly mobilized oldwater with highly variable responses in runoff chemistry, Hydrol. Processes, 18, 185-189, doi:10.1002/hyp.5209.
– reference: McGlynn, B. L., and J. J. McDonnell (2003), Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics, Water Resour. Res., 39(4), 1090, doi:10.1029/2002WR001525.
– reference: Brooks, P. D., M. W. Williams, and S. K. Schmidt (1998), Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt, Biogeochemistry, 43, 1-15.
– reference: Neff, J. C., S. E. Hobbie, and P. M. Vitousek (2001), Nutrient and mineralogical control on dissolved organic C, N, and P fluxes and stoichiometry in Hawaiian soils, Biogeochemistry, 51, 283-302.
– reference: Solorzano, L. (1969), Determination of ammonia in natural waters by the phenolhypochlorite method, Limnol. Oceanogr., 14, 799-801.
– reference: Brooks, P. D., M. W. Williams, and S. K. Schmidt (1996), Microbial activity under alpine snowpacks, Niwot Ridge, Colorado, Biogeochemistry, 32, 93-113.
– reference: Woolgrove, C. E., and S. J. Woodin (1996), Ecophysiology of snow-bed bryophyte Kiaeria starkei during snowmelt and uptake of nitrate from meltwater, Can. J. Bot., 74, 1095-1103.
– reference: McDowell, W. H., and T. Wood (1984), Podzolization: Soil processes control dissolved organic carbon concentrations in stream water, Soil Sci., 137, 23-32.
– reference: Kaushal, S. S., and W. M. Lewis (2005), Fate and transport of organic nitrogen in minimally disturbed montane streams of Colorado, USA, Biogeochemistry, 74, 303-321.
– reference: Brookshire, E. N. J., H. M. Valett, S. A. Thomas, and J. R. Webster (2005), Coupled cycling of dissolved organic nitrogen and carbon in a forest stream, Ecology, 86, 2487-2496.
– reference: Jowsey, P. C. (1966), An improved peat sampler, New Phytol., 65, 245-248.
– reference: Pellerin, B. A., W. M. Wollheim, C. S. Hopkinson, W. H. McDowell, M. R. Williams, C. J. Vörösmarty, and M. L. Daley (2004), Role of wetlands and developed land use on dissolved organic nitrogen concentrations and DON/TDN in northeastern U.S. rivers and streams, Limnol. Oceanogr., 49, 910-918.
– reference: Fölster, J. (2000), The near-stream zone is a source of nitrogen in a Swedish forested catchment, J. Environ. Qual., 29, 883-893.
– reference: Campbell, D. H., D. W. Clow, G. P. Ingersoll, M. A. Mast, N. E. Spahr, and J. T. Turk (1995), Processes controlling the chemistry of two snowmelt-dominated streams in the Rocky Mountains, Water Resour. Res., 31, 2811-2821.
– reference: Piatek, K. B., M. J. Mitchell, S. R. Silva, and C. Kendall (2005), Sources of nitrate in snowmelt discharge: Evidence from water chemistry and stable isotopes of nitrate, Water Air Soil Pollut., 165, 13-35.
– reference: Wood, E. D., F. A. J. Armstrong, and F. A. Richards (1967), Determination of nitrate in seawater by cadmium-copper reduction to nitrite, J. Ma. Biol. Assoc. U. K., 47, 23-31.
– reference: Bishop, K., and C. Pettersson (1996), Organic carbon in the boreal spring flood from adjacent subcatchments, Environ. Int., 22, 535-540.
– reference: Williams, M. W., and J. M. Melack (1991), Solute chemistry of snowmelt and runoff in an alpine basin, Sierra Nevada, Water Resour. Res., 27, 1575-1588.
– reference: Laudon, K., H. F. Hemond, R. Krouse, and K. H. Bishop (2002), Oxygen 18 fractionation during snowmelt: Implications for spring flood hydrograph separation, Water Resour. Res., 38(11), 1258, doi:10.1029/2002WR001510.
– reference: Laudon, H., H. F. Hemond, R. Krouse, and K. H. Bishop (2004b), Hydrological flow paths during snowmelt: Congruence between hydrometric measurements and oxygen 18 in melt water, soil water, and runoff, Water Resour. Res., 40, W03102, doi:10.1029/2003WR002455.
– reference: Williams, M. W., E. Hood, and N. Caine (2001), Role of organic nitrogen in the nitrogen cycle of a high-elevation catchment, Colorado Front Range, Water Resour. Res., 37, 2569-2581.
– reference: Yano, Y., K. Lajtha, P. Sollins, and B. A. Cladwell (2005), Chemistry and dynamics of dissolved organic matter in a temperate coniferous forest on andic soils: Effects of litter quality, Ecosystems, 8, 286-300.
– reference: Goodale, C. L., J. D. Aber, and W. H. McDowell (2000), The long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire, Ecosystems, 3, 433-450.
– reference: Kristiansen, J. (2001), Description of a generally applicable model for the evaluation of uncertainty of measurement in clinical chemistry, Clin. Chem. Lab. Med., 39, 920-931.
– reference: McNamara, J. P., D. L. Kane, and L. D. Hinzman (1997), Hydrograph separations in an Arctic watershed using mixing model and graphical techniques, Water Resour. Res., 33, 1707-1719.
– reference: Aitkenhead-Peterson, J. A., J. E. Alexander, and T. A. Clair (2005), Dissolved organic carbon and dissolved organic nitrogen export from forested watersheds in Nova Scotia: Identifying controlling factors, Global Biogeochem. Cycles, 19, GB4016, doi:10.1029/2004GB002438.
– reference: Hedin, L. O., J. J. Armesto, and A. H. Johnson (1995), Patterns of nutrient loss from unpolluted old-growth temperate forests: Evaluation of biogeochemical theory, Ecology, 76, 493-509.
– reference: Hill, A. (1996), Nitrate removal in stream riparian zones, J. Environ. Qual., 25, 743-755.
– reference: Mulholland, P. J., and E. J. Kuenzler (1979), Organic carbon export from upland and forested wetland watersheds, Limnol. Oceanogr., 24, 960-966.
– reference: Hood, E. W., M. W. Williams, and N. Caine (2003), Landscape controls on organic and inorganic nitrogen leaching across an alpine-subalpine ecotone, Green Lakes Valley, Colorado Front Range, Ecosystems, 6, 31-45.
– reference: Liu, F. L., M. W. Williams, and N. Caine (2004), Source waters and flow paths in an alpine catchment, Colorado Front Range, United States, Water Resour. Res., 40, W09401, doi:10.1029/2004WR003076.
– reference: Kortelainen, P. S., S. Saukkonen, and T. Mattsson (1997), Leaching of nitrogen from forested catchments in Finland, Global Biogeochem. Cycles, 11, 627-638.
– reference: Groffman, P. M., C. T. Driscoll, T. J. Fahey, J. P. Hardy, R. D. Fitzhugh, and G. L. Tierney (2001), Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest, Biogeochemistry, 56, 191-213.
– reference: Boyer, E. W., G. M. Hornberger, K. E. Bencala, and D. M. McKnight (1997), Response characteristics of DOC flushing in an alpine catchment, Hydrol. Processes, 11, 1635-1647.
– reference: Forsum, Å., L. Dahlman, T. Näsholm, and A. Nordin (2006), Nitrogen utilization by Hylocomium splendens in a boreal forest fertilization experiment, Funct. Ecol., 20, 421-426.
– reference: Kaushal, S. S., and W. M. Lewis (2003), Patterns in the chemical fractionation of organic nitrogen in Rocky Mountain streams, Ecosystems, 6, 483-492.
– reference: Fitzhugh, R. D., C. T. Driscoll, P. M. Groffman, G. L. Tierney, T. J. Fahey, and J. P. Hardy (2001), Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem, Biogeochemistry, 56, 215-238.
– reference: Nyberg, L., M. Stahli, P. E. Mellander, and K. H. Bishop (2001), Soil frost effects on soil water and runoff dynamics along a boreal forest transect: 1. Field investigations, Hydrol. Processes, 15, 909-926.
– reference: Genereux, D. (1998), Quantifying uncertainty in tracer-based hydrograph separations, Water Resour. Res., 34, 915-919.
– reference: Petrone, K. C., J. B. Jones, L. D. Hinzman, and R. D. Boone (2006), Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost, J. Geophys. Res., 111, G02020, doi:10.1029/2005JG000055.
– reference: Hooper, R. P., and C. A. Shoemaker (1986), A comparison of chemical and isotopic hydrograph separation, Water Resour. Res., 22, 1444-1454.
– reference: Laudon, H., S. Köhler, and I. Buffam (2004a), Seasonal dependence of DOC export in five Boreal catchments in northern Sweden, Aquat. Sci., 66, 223-230.
– reference: Ottosson Löfvenius, M., M. Kluge, and T. Lundmark (2003), Snow and soil frost depth in two types of shelterwood and a clear-cut area, Scand. J. For. Res., 18, 54-63.
– volume: 11
  start-page: 627
  year: 1997
  end-page: 638
  article-title: Leaching of nitrogen from forested catchments in Finland
  publication-title: Global Biogeochem. Cycles
– volume: 38
  issue: 11
  year: 2002
  article-title: Oxygen 18 fractionation during snowmelt: Implications for spring flood hydrograph separation
  publication-title: Water Resour. Res.
– volume: 92
  start-page: 52
  year: 1997
  end-page: 119
  article-title: Does atmospheric deposition of nitrogen threaten Swedish forests?
  publication-title: For. Ecol. Manage.
– volume: 74
  start-page: 303
  year: 2005
  end-page: 321
  article-title: Fate and transport of organic nitrogen in minimally disturbed montane streams of Colorado, USA
  publication-title: Biogeochemistry
– volume: 76
  start-page: 493
  year: 1995
  end-page: 509
  article-title: Patterns of nutrient loss from unpolluted old‐growth temperate forests: Evaluation of biogeochemical theory
  publication-title: Ecology
– volume: 49
  start-page: 910
  year: 2004
  end-page: 918
  article-title: Role of wetlands and developed land use on dissolved organic nitrogen concentrations and DON/TDN in northeastern U.S. rivers and streams
  publication-title: Limnol. Oceanogr.
– volume: 34
  start-page: 915
  year: 1998
  end-page: 919
  article-title: Quantifying uncertainty in tracer‐based hydrograph separations
  publication-title: Water Resour. Res.
– volume: 22
  start-page: 535
  year: 1996
  end-page: 540
  article-title: Organic carbon in the boreal spring flood from adjacent subcatchments
  publication-title: Environ. Int.
– volume: 165
  start-page: 13
  year: 2005
  end-page: 35
  article-title: Sources of nitrate in snowmelt discharge: Evidence from water chemistry and stable isotopes of nitrate
  publication-title: Water Air Soil Pollut.
– volume: 28
  start-page: 1
  year: 1995
  end-page: 31
  article-title: Fluxes and transformations of nitrogen in a high‐elevation catchment
  publication-title: Biogeochemistry
– volume: 45
  start-page: 1298
  year: 2000
  end-page: 1307
  article-title: High DON bioavailability in boreal streams during a spring flood
  publication-title: Limnol. Oceanogr.
– volume: 14
  start-page: 799
  year: 1969
  end-page: 801
  article-title: Determination of ammonia in natural waters by the phenolhypochlorite method
  publication-title: Limnol. Oceanogr.
– volume: 51
  start-page: 283
  year: 2001
  end-page: 302
  article-title: Nutrient and mineralogical control on dissolved organic C, N, and P fluxes and stoichiometry in Hawaiian soils
  publication-title: Biogeochemistry
– volume: 8
  start-page: 286
  year: 2005
  end-page: 300
  article-title: Chemistry and dynamics of dissolved organic matter in a temperate coniferous forest on andic soils: Effects of litter quality
  publication-title: Ecosystems
– volume: 18
  start-page: 185
  year: 2004
  end-page: 189
  article-title: Resolving the double paradox of rapidly mobilized oldwater with highly variable responses in runoff chemistry
  publication-title: Hydrol. Processes
– volume: 24
  start-page: 960
  year: 1979
  end-page: 966
  article-title: Organic carbon export from upland and forested wetland watersheds
  publication-title: Limnol. Oceanogr.
– volume: 19
  year: 2005
  article-title: Dissolved organic carbon and dissolved organic nitrogen export from forested watersheds in Nova Scotia: Identifying controlling factors
  publication-title: Global Biogeochem. Cycles
– volume: 25
  start-page: 743
  year: 1996
  end-page: 755
  article-title: Nitrate removal in stream riparian zones
  publication-title: J. Environ. Qual.
– volume: 33
  start-page: 1707
  year: 1997
  end-page: 1719
  article-title: Hydrograph separations in an Arctic watershed using mixing model and graphical techniques
  publication-title: Water Resour. Res.
– volume: 76
  start-page: 373
  year: 2005
  end-page: 394
  article-title: Export of DOM from boreal catchments: Impacts of land use cover and climate
  publication-title: Biogeochemistry
– volume: 31
  year: 2004
  article-title: Tracing sources of nitrate in snowmelt runoff using a high‐resolution isotopic technique
  publication-title: Geophys. Res. Lett.
– volume: 40
  year: 2004
  article-title: Source waters and flow paths in an alpine catchment, Colorado Front Range, United States
  publication-title: Water Resour. Res.
– volume: 29
  start-page: 883
  year: 2000
  end-page: 893
  article-title: The near‐stream zone is a source of nitrogen in a Swedish forested catchment
  publication-title: J. Environ. Qual.
– volume: 20
  start-page: 421
  year: 2006
  end-page: 426
  article-title: Nitrogen utilization by Hylocomium splendens in a boreal forest fertilization experiment
  publication-title: Funct. Ecol.
– volume: 56
  start-page: 215
  year: 2001
  end-page: 238
  article-title: Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem
  publication-title: Biogeochemistry
– volume: 86
  start-page: 2487
  year: 2005
  end-page: 2496
  article-title: Coupled cycling of dissolved organic nitrogen and carbon in a forest stream
  publication-title: Ecology
– volume: 47
  start-page: 23
  year: 1967
  end-page: 31
  article-title: Determination of nitrate in seawater by cadmium‐copper reduction to nitrite
  publication-title: J. Ma. Biol. Assoc. U. K.
– volume: 18
  start-page: 54
  year: 2003
  end-page: 63
  article-title: Snow and soil frost depth in two types of shelterwood and a clear‐cut area
  publication-title: Scand. J. For. Res.
– volume: 76
  start-page: 261
  year: 2005
  end-page: 281
  article-title: Detrital controls on soil solution N and dissolved organic matter in soils: A field experiment
  publication-title: Biogeochemistry
– volume: 25
  start-page: 65
  year: 1994
  end-page: 147
  article-title: Hydrological controls on dissolved organic carbon during snowmelt in the Snake River near Montezuma, Colorado
  publication-title: Biogeochemistry
– volume: 39
  start-page: 920
  year: 2001
  end-page: 931
  article-title: Description of a generally applicable model for the evaluation of uncertainty of measurement in clinical chemistry
  publication-title: Clin. Chem. Lab. Med.
– volume: 40
  year: 2004
  article-title: Hydrological flow paths during snowmelt: Congruence between hydrometric measurements and oxygen 18 in melt water, soil water, and runoff
  publication-title: Water Resour. Res.
– volume: 319
  start-page: 266
  year: 2006
  end-page: 281
  article-title: Errors of flux integration methods for solutes in grab samples of runoff water, as compared to flow‐proportional sampling
  publication-title: J. Hydrol.
– volume: 6
  start-page: 31
  year: 2003
  end-page: 45
  article-title: Landscape controls on organic and inorganic nitrogen leaching across an alpine‐subalpine ecotone, Green Lakes Valley, Colorado Front Range
  publication-title: Ecosystems
– volume: 11
  start-page: 1635
  year: 1997
  end-page: 1647
  article-title: Response characteristics of DOC flushing in an alpine catchment
  publication-title: Hydrol. Processes
– volume: 43
  start-page: 1
  year: 1998
  end-page: 15
  article-title: Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt
  publication-title: Biogeochemistry
– volume: 49
  start-page: 123
  year: 2000
  end-page: 142
  article-title: Dissolved organic nitrogen budgets for upland forested ecosystems in New England
  publication-title: Biogeochemistry
– volume: 15
  start-page: 909
  year: 2001
  end-page: 926
  article-title: Soil frost effects on soil water and runoff dynamics along a boreal forest transect: 1. Field investigations
  publication-title: Hydrol. Processes
– volume: 27
  start-page: 1575
  year: 1991
  end-page: 1588
  article-title: Solute chemistry of snowmelt and runoff in an alpine basin, Sierra Nevada
  publication-title: Water Resour. Res.
– volume: 4
  start-page: 113
  year: 2004
  end-page: 123
  article-title: Integrated nitrogen modeling in a boreal forestry dominated river basin: N fluxes and retention in lakes and peatlands
  publication-title: Water Air Soil Pollut. Focus
– volume: 22
  start-page: 1444
  year: 1986
  end-page: 1454
  article-title: A comparison of chemical and isotopic hydrograph separation
  publication-title: Water Resour. Res.
– volume: 137
  start-page: 23
  year: 1984
  end-page: 32
  article-title: Podzolization: Soil processes control dissolved organic carbon concentrations in stream water
  publication-title: Soil Sci.
– volume: 66
  start-page: 223
  year: 2004
  end-page: 230
  article-title: Seasonal dependence of DOC export in five Boreal catchments in northern Sweden
  publication-title: Aquat. Sci.
– volume: 56
  start-page: 191
  year: 2001
  end-page: 213
  article-title: Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest
  publication-title: Biogeochemistry
– volume: 6
  start-page: 483
  year: 2003
  end-page: 492
  article-title: Patterns in the chemical fractionation of organic nitrogen in Rocky Mountain streams
  publication-title: Ecosystems
– volume: 39
  issue: 4
  year: 2003
  article-title: Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics
  publication-title: Water Resour. Res.
– volume: 65
  start-page: 245
  year: 1966
  end-page: 248
  article-title: An improved peat sampler
  publication-title: New Phytol.
– volume: 36
  start-page: 1873
  year: 2000
  end-page: 1884
  article-title: Separating the natural and anthropogenic components of spring flood pH decline: A method for areas that are not chronically acidified
  publication-title: Water Resour. Res.
– volume: 3
  start-page: 433
  year: 2000
  end-page: 450
  article-title: The long‐term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire
  publication-title: Ecosystems
– volume: 32
  start-page: 93
  year: 1996
  end-page: 113
  article-title: Microbial activity under alpine snowpacks, Niwot Ridge, Colorado
  publication-title: Biogeochemistry
– volume: 31
  start-page: 2811
  year: 1995
  end-page: 2821
  article-title: Processes controlling the chemistry of two snowmelt‐dominated streams in the Rocky Mountains
  publication-title: Water Resour. Res.
– volume: 111
  year: 2006
  article-title: Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost
  publication-title: J. Geophys. Res.
– volume: 53
  start-page: 2659
  year: 1996
  end-page: 2672
  article-title: Precipitation, snowpack, stream‐water ion chemistry, and flux in a northern Michigan watershed, 1982–1991
  publication-title: Can. J. Fish. Aquat. Sci.
– volume: 37
  start-page: 2569
  year: 2001
  end-page: 2581
  article-title: Role of organic nitrogen in the nitrogen cycle of a high‐elevation catchment, Colorado Front Range
  publication-title: Water Resour. Res.
– volume: 74
  start-page: 1095
  year: 1996
  end-page: 1103
  article-title: Ecophysiology of snow‐bed bryophyte during snowmelt and uptake of nitrate from meltwater
  publication-title: Can. J. Bot.
– volume: 56
  start-page: 578
  year: 1992
  end-page: 586
  article-title: Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water
  publication-title: Soil Sci. Soc. Am. J.
– ident: e_1_2_8_6_1
  doi: 10.1002/hyp.5209
– ident: e_1_2_8_13_1
  doi: 10.1023/A:1013076609950
– volume: 53
  start-page: 2659
  year: 1996
  ident: e_1_2_8_51_1
  article-title: Precipitation, snowpack, stream‐water ion chemistry, and flux in a northern Michigan watershed, 1982–1991
  publication-title: Can. J. Fish. Aquat. Sci.
– ident: e_1_2_8_53_1
  doi: 10.1007/BF02178059
– ident: e_1_2_8_46_1
  doi: 10.1007/s11270-005-4641-8
– ident: e_1_2_8_27_1
  doi: 10.1029/97GB01961
– ident: e_1_2_8_22_1
  doi: 10.1029/WR022i010p01444
– ident: e_1_2_8_32_1
  doi: 10.1029/2003WR002455
– ident: e_1_2_8_17_1
  doi: 10.1007/s100210000039
– ident: e_1_2_8_36_1
  doi: 10.1097/00010694-198401000-00004
– ident: e_1_2_8_11_1
  doi: 10.1029/95WR02037
– ident: e_1_2_8_34_1
  doi: 10.1029/2004WR003076
– ident: e_1_2_8_50_1
  doi: 10.4319/lo.2000.45.6.1298
– ident: e_1_2_8_15_1
  doi: 10.1111/j.1365-2435.2006.01127.x
– ident: e_1_2_8_30_1
  doi: 10.1029/2002WR001510
– ident: e_1_2_8_25_1
  doi: 10.1007/s10021-003-0175-3
– ident: e_1_2_8_7_1
  doi: 10.1002/(SICI)1099-1085(19971015)11:12<1635::AID-HYP494>3.0.CO;2-H
– ident: e_1_2_8_38_1
  doi: 10.1029/97WR01033
– ident: e_1_2_8_26_1
  doi: 10.1007/s10533-004-4723-5
– ident: e_1_2_8_44_1
  doi: 10.4319/lo.2004.49.4.0910
– ident: e_1_2_8_21_1
  doi: 10.1007/s10021-002-0175-8
– ident: e_1_2_8_45_1
  doi: 10.1029/2005JG000055
– ident: e_1_2_8_29_1
  doi: 10.1007/s10533-005-5071-9
– ident: e_1_2_8_9_1
  doi: 10.1023/A:1005947511910
– ident: e_1_2_8_8_1
  doi: 10.1007/BF00000354
– ident: e_1_2_8_3_1
  doi: 10.1016/S0378-1127(96)03920-5
– ident: e_1_2_8_33_1
  doi: 10.1023/B:WAFO.0000028349.82505.39
– ident: e_1_2_8_52_1
  doi: 10.1029/90WR02774
– ident: e_1_2_8_20_1
  doi: 10.2134/jeq1996.00472425002500040014x
– ident: e_1_2_8_54_1
  doi: 10.1029/2001WR000485
– ident: e_1_2_8_12_1
  doi: 10.1023/A:1006383731753
– ident: e_1_2_8_4_1
  doi: 10.1016/0160-4120(96)00036-0
– ident: e_1_2_8_19_1
  doi: 10.2307/1941208
– ident: e_1_2_8_35_1
  doi: 10.1007/s10533-005-6897-x
– ident: e_1_2_8_47_1
  doi: 10.2136/sssaj1992.03615995005600020038x
– ident: e_1_2_8_48_1
  doi: 10.1016/j.jhydrol.2005.06.034
– ident: e_1_2_8_55_1
  doi: 10.1017/S002531540003352X
– ident: e_1_2_8_28_1
  doi: 10.1515/CCLM.2001.148
– ident: e_1_2_8_24_1
  doi: 10.1111/j.1469-8137.1966.tb06356.x
– ident: e_1_2_8_23_1
  doi: 10.1007/BF00024390
– ident: e_1_2_8_31_1
  doi: 10.1007/s00027-004-0700-2
– ident: e_1_2_8_2_1
  doi: 10.1029/2004GB002438
– ident: e_1_2_8_18_1
  doi: 10.1023/A:1013024603959
– ident: e_1_2_8_57_1
  doi: 10.1007/s10021-005-0022-9
– ident: e_1_2_8_10_1
  doi: 10.1890/04-1184
– ident: e_1_2_8_40_1
  doi: 10.1023/A:1006414517212
– ident: e_1_2_8_49_1
  doi: 10.4319/lo.1969.14.5.0799
– ident: e_1_2_8_56_1
  doi: 10.1139/b96-134
– ident: e_1_2_8_41_1
  doi: 10.1002/hyp.256
– ident: e_1_2_8_16_1
  doi: 10.1029/98WR00010
– ident: e_1_2_8_37_1
  doi: 10.1029/2002WR001525
– ident: e_1_2_8_5_1
  doi: 10.1029/2000WR900030
– ident: e_1_2_8_42_1
  doi: 10.1029/2004GL020908
– volume: 18
  start-page: 54
  year: 2003
  ident: e_1_2_8_43_1
  article-title: Snow and soil frost depth in two types of shelterwood and a clear‐cut area
  publication-title: Scand. J. For. Res.
  doi: 10.1080/02827581.2003.10383138
– ident: e_1_2_8_39_1
  doi: 10.4319/lo.1979.24.5.0960
– ident: e_1_2_8_14_1
  doi: 10.2134/jeq2000.00472425002900030026x
SSID ssj0014567
Score 2.1535118
Snippet 1 Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) stored in the snowpack are important sources of N in snow-covered ecosystems, yet we...
Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) stored in the snowpack are important sources of N in snow‐covered ecosystems, yet we...
Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) stored in the snowpack are important sources of N in snow-covered ecosystems, yet we...
SourceID proquest
crossref
wiley
istex
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms biogeochemical cycles
boreal
denitrification
environmental impact
environmental protection
forest ecosystems
hydrologic cycle
hydrologic flow path
hydrologic models
inorganic nitrogen
nitrogen
organic nitrogen
riparian areas
riparian buffers
snow
snowmelt
Snowmelt Runoff Model
snowpack
soil
soil water
soil water content
soil water retention
sorption
streams
temporal variation
water flow
watershed hydrology
watersheds
wetland
wetlands
Title Hydrologic and biotic control of nitrogen export during snowmelt: a combined conservative and reactive tracer approach
URI https://api.istex.fr/ark:/67375/WNG-6R3D1FCQ-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2006WR005286
https://www.proquest.com/docview/20988977
Volume 43
WOSCitedRecordID wos000247697700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQaIX3qjhUXwALhARJ86LW7VlKVJZQWC1vVm2M4GqbYKS7dL-e8ZOstoeQELcEsWTWM7M-LNn5jPAC5rFSx3ngVVe4QvNja-rAH0tFFd0SyjWFQofprNZdnSUfx423GwtTM8Psd5ws5bh_LU1cKW7gWzAcmTatfCisNuamWXc5sLZ5eLjbB1EIGyQjgFmC3SGvHcSf7spfGVGul6phnCqHeKLK6BzE7q6uWd65397fRduD6iT7fVqcg-uYX0fbo1FyR1dD4eh_7h8AKuDy7LtfSJTdcn0cUNibEhqZ03FyA20DWkewwsL31lf68i6uvl1hqfLd2yPWp_RmhtLKzZs_K7QvY5QqvOxbNkqgy0bWc0fwnz6_tvkwB-OZ_CVSHji86wk-MZVKvI0N0FpaCmnE0cxqDHKdB4qniAPMUahRBDpwFQ5amWlMQ5N9Ai26qbGHWD0JMgqLXiWIuE7RSA6rqooFsYIQkzowevxF0kzcJfbIzROpYuhh7ncHFcPXq5b_-w5O_7Qbof-tlTfyZ3K-dfQBnEtox8hKA9eORVYy6v2xKbApbFczD7IpIj2-XTyRX7y4PmoI5IM00ZbVI3NeUdfyrOM0LUHb5xC_LUrclFMCk4SyeN_a_4EtscMxoA_ha1le47P4KZZLY-7dhdu7BfT-eGus4vfzpEInQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLVK58EYNr_oAXCAiTpwXt2rLsojtCkJX25tlOw6t2iYou13af8_YcVbbA0iIW6J4HMueGX_22N8AvMJZvJRxHhjlZT6TVPmyCrQvmaACXxHF2ovCk3Q6zY6P868uz6m5C9PxQ6w33IxlWH9tDNxsSDu2AUOSaRbD88Lsa2bJFmwz1KR4ANsHxWg2WQcSEB-kfZDZgB139h1reL8pf2NW2qpEg1jVdPPVDeC5CV_t_DO6998tvw93HfQk-52uPIBbun4IO_3N5AU-u4zoJ9ePYDW-LtvOMRJRl0SeNihG3Ml20lQEfUHboPoRfWUwPOkuPJJF3fy60OfLD2QfS1_gwluXRszt_q60rQ6hqnW0ZNkKpVvSU5s_htno49Fw7LscDb5gCU18mpWI4ahIWZ7mKigVrudkYnkGpY4ymYeCJpqGOtZMsCCSgapyLYWR1nGooicwqJta7wLBL0FWSUazVCPIE4ik46qKYqYUQ9ikPXjbjxFXjsDc5NE45zaQHuZ8s189eL0u_bMj7vhDuV0cbi5-oE_ls--hieQaWj-EUR68sTqwlhftmTkHl8Z8Pv3EkyI6oKPhN37owV6vJByt04RcRK2bywX-Kc8yhNgevLMa8dem8HkxLChKJE__rfge7IyPDid88nn65Rnc6Y80BvQ5DJbtpX4Bt9VqebpoXzrz-A1VWAxJ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoi4ALb9Twqg_ABSLixHlxq3YJRSyrElhtb5btTKCiTarsdmn_PWPHWW0PICFuiTLjWPbM-LPnYUJe4CpeqTgPjPBynyumfVUH4CsumcRXRLE2UXiSTqfZ0VF-6O45NbkwfX2I9YGb0Qxrr42Cw1lVu2oDpkim2QzPS3OumSVbZIfHeYKauTMui9lk7UhAfJAOTmYDdlzsO7bwdpP_yqq0VcsWsaoZ5osrwHMTvtr1p7jz3z2_S2476En3e1m5R65Bc5_cHDKTF_jsbkT_cfmArA4uq643jFQ2FVXHLbJRF9lO25qiLehaFD8KFwbD0z7hkS6a9tcpnCzf0X2kPsWNN1SGzZ3-rsA2h1DVGlq67KSGjg6lzR-SWfH-2-jAd3c0-JInLPFZViGGYzLleZrroNK4n1OJrTOoIMpUHkqWAAshBi55EKlA1zkoabghDnX0iGw3bQO7hOKXIKsVZ1kKCPIkIum4rqOYa80RNoFHXg9zJLQrYG7u0TgR1pEe5mJzXD3yck191hfu-APdLk63kN_RporZ19B4ck1ZP4RRHnllZWDNL7ufJg4ujcV8-kEkZTRmxeiL-OyRvUFIBGqncbnIBtrzBf4pzzKE2B55YyXir10R83JUMuRIHv8b-R65cTguxOTj9NMTcmuIaAzYU7K97M7hGbmuV8vjRffcacdvy_0LxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrologic+and+biotic+control+of+nitrogen+export+during+snowmelt%3A+A+combined+conservative+and+reactive+tracer+approach&rft.jtitle=Water+resources+research&rft.au=Petrone%2C+Kevin&rft.au=Buffam%2C+Ishi&rft.au=Laudon%2C+Hjalmar&rft.date=2007-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=43&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2006WR005286&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_6R3D1FCQ_M
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon