Electrostatic Complementarity as a Fast and Effective Tool to Optimize Binding and Selectivity of Protein-Ligand Complexes

Electrostatic interactions between small molecules and their respective receptors are essential for molecular recognition and are also key contributors to the binding free energy. Assessing the electrostatic match of protein-ligand complexes therefore provides important insights into why ligands bin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry Jg. 62; H. 6; S. 3036
Hauptverfasser: Bauer, Matthias R, Mackey, Mark D
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 28.03.2019
Schlagworte:
ISSN:1520-4804, 1520-4804
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Electrostatic interactions between small molecules and their respective receptors are essential for molecular recognition and are also key contributors to the binding free energy. Assessing the electrostatic match of protein-ligand complexes therefore provides important insights into why ligands bind and what can be changed to improve binding. Ideally, the ligand and protein electrostatic potentials at the protein-ligand interaction interface should maximize their complementarity while minimizing desolvation penalties. In this work, we present a fast and efficient tool to calculate and visualize the electrostatic complementarity (EC) of protein-ligand complexes. We compiled benchmark sets demonstrating electrostatically driven structure-activity relationships (SAR) from literature data, including kinase, protein-protein interaction, and GPCR targets, and used these to demonstrate that the EC method can visualize, rationalize, and predict electrostatically driven ligand affinity changes and help to predict compound selectivity. The methodology presented here for the analysis of EC is a powerful and versatile tool for drug design.
AbstractList Electrostatic interactions between small molecules and their respective receptors are essential for molecular recognition and are also key contributors to the binding free energy. Assessing the electrostatic match of protein-ligand complexes therefore provides important insights into why ligands bind and what can be changed to improve binding. Ideally, the ligand and protein electrostatic potentials at the protein-ligand interaction interface should maximize their complementarity while minimizing desolvation penalties. In this work, we present a fast and efficient tool to calculate and visualize the electrostatic complementarity (EC) of protein-ligand complexes. We compiled benchmark sets demonstrating electrostatically driven structure-activity relationships (SAR) from literature data, including kinase, protein-protein interaction, and GPCR targets, and used these to demonstrate that the EC method can visualize, rationalize, and predict electrostatically driven ligand affinity changes and help to predict compound selectivity. The methodology presented here for the analysis of EC is a powerful and versatile tool for drug design.
Electrostatic interactions between small molecules and their respective receptors are essential for molecular recognition and are also key contributors to the binding free energy. Assessing the electrostatic match of protein-ligand complexes therefore provides important insights into why ligands bind and what can be changed to improve binding. Ideally, the ligand and protein electrostatic potentials at the protein-ligand interaction interface should maximize their complementarity while minimizing desolvation penalties. In this work, we present a fast and efficient tool to calculate and visualize the electrostatic complementarity (EC) of protein-ligand complexes. We compiled benchmark sets demonstrating electrostatically driven structure-activity relationships (SAR) from literature data, including kinase, protein-protein interaction, and GPCR targets, and used these to demonstrate that the EC method can visualize, rationalize, and predict electrostatically driven ligand affinity changes and help to predict compound selectivity. The methodology presented here for the analysis of EC is a powerful and versatile tool for drug design.Electrostatic interactions between small molecules and their respective receptors are essential for molecular recognition and are also key contributors to the binding free energy. Assessing the electrostatic match of protein-ligand complexes therefore provides important insights into why ligands bind and what can be changed to improve binding. Ideally, the ligand and protein electrostatic potentials at the protein-ligand interaction interface should maximize their complementarity while minimizing desolvation penalties. In this work, we present a fast and efficient tool to calculate and visualize the electrostatic complementarity (EC) of protein-ligand complexes. We compiled benchmark sets demonstrating electrostatically driven structure-activity relationships (SAR) from literature data, including kinase, protein-protein interaction, and GPCR targets, and used these to demonstrate that the EC method can visualize, rationalize, and predict electrostatically driven ligand affinity changes and help to predict compound selectivity. The methodology presented here for the analysis of EC is a powerful and versatile tool for drug design.
Author Bauer, Matthias R
Mackey, Mark D
Author_xml – sequence: 1
  givenname: Matthias R
  orcidid: 0000-0003-4015-6483
  surname: Bauer
  fullname: Bauer, Matthias R
  organization: Cresset, New Cambridge House , Bassingbourn Road , Litlington , Cambridgeshire SG8 0SS , U.K
– sequence: 2
  givenname: Mark D
  surname: Mackey
  fullname: Mackey, Mark D
  organization: Cresset, New Cambridge House , Bassingbourn Road , Litlington , Cambridgeshire SG8 0SS , U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30807144$$D View this record in MEDLINE/PubMed
BookMark eNpN0NtKAzEQBuAgFXvQNxDJpTdbk-wh6aWWVoVCBev1ks1Oaspusm5SsX16twfBqxmYj3_gH6KedRYQuqVkTAmjD1L58aaGUn1CPRYFoROWXqABTRmJEkGS3r-9j4bebwghMWXxFerHRBBOk2SA9rMKVGidDzIYhaeubiqowQbZmrDD0mOJ59IHLG2JZ1p32HwDXjlX4eDwsgmmNnvAT8aWxq6P7B2qIzsEOI3fWhfA2Ghh1ofr6cUP-Gt0qWXl4eY8R-hjPltNX6LF8vl1-riIZJKREIks4VpIJbTUKtYpUzEHrTglqeKsYCrholQlnXCutKBCi4KDLOJJmvJOx2yE7k-5Teu-tuBDXhuvoKqkBbf1OaMiyxjNRNrRuzPdFl21edOaWra7_K8v9gtjPHM9
CitedBy_id crossref_primary_10_1002_ajoc_202500018
crossref_primary_10_3390_ph18020270
crossref_primary_10_1038_s41467_023_44058_5
crossref_primary_10_1002_bit_28863
crossref_primary_10_1038_s41598_023_37130_z
crossref_primary_10_3390_molecules25214904
crossref_primary_10_1007_s11030_024_11026_0
crossref_primary_10_3390_molecules30010159
crossref_primary_10_1016_j_jhazmat_2020_124612
crossref_primary_10_3390_ph17010135
crossref_primary_10_3390_ijms241411408
crossref_primary_10_1039_D3RA04720B
crossref_primary_10_1007_s44371_025_00266_0
crossref_primary_10_1007_s11144_025_02943_8
crossref_primary_10_1038_s42004_024_01328_7
crossref_primary_10_1093_jxb_eraf092
crossref_primary_10_1093_jxb_eraf094
crossref_primary_10_1186_s13321_025_01011_6
crossref_primary_10_1016_j_scitotenv_2023_167028
crossref_primary_10_1007_s11259_025_10742_8
crossref_primary_10_1080_07391102_2023_2203254
crossref_primary_10_1039_D5MD00111K
crossref_primary_10_2174_1381612826666201210092736
crossref_primary_10_3389_fphar_2020_00397
crossref_primary_10_1016_j_cej_2024_153818
crossref_primary_10_1038_s41598_020_79284_0
crossref_primary_10_2478_ebtj_2023_0009
crossref_primary_10_3390_molecules29112697
crossref_primary_10_1016_j_molstruc_2025_142191
crossref_primary_10_3390_ijms22041609
crossref_primary_10_1002_jhet_4215
crossref_primary_10_1016_j_jbc_2025_110407
crossref_primary_10_1080_1062936X_2023_2165146
crossref_primary_10_1002_jhet_4579
crossref_primary_10_1016_j_bioorg_2025_108861
crossref_primary_10_1016_j_molstruc_2022_134128
crossref_primary_10_1016_j_molstruc_2023_136129
crossref_primary_10_1080_07391102_2021_1981451
crossref_primary_10_1002_chem_202303570
crossref_primary_10_3390_ijms23115876
crossref_primary_10_3390_ijms23158405
crossref_primary_10_1002_jcc_27373
crossref_primary_10_1039_D4OB01953A
crossref_primary_10_1007_s40291_024_00706_0
crossref_primary_10_1038_s43586_025_00421_y
crossref_primary_10_1002_ps_6813
crossref_primary_10_1016_j_jhazmat_2023_132856
crossref_primary_10_3390_electrochem2020021
crossref_primary_10_1038_s41598_022_13923_6
crossref_primary_10_1021_jacs_0c10105
crossref_primary_10_1002_jhet_4419
crossref_primary_10_3390_v15040847
crossref_primary_10_1038_s41598_024_57506_z
crossref_primary_10_1016_j_ejmech_2021_113932
crossref_primary_10_1080_10406638_2022_2149568
crossref_primary_10_1002_cbic_202500433
crossref_primary_10_1080_17460441_2022_2079632
crossref_primary_10_1016_j_ejmech_2023_115716
crossref_primary_10_1007_s11030_022_10574_7
crossref_primary_10_1080_07391102_2025_2499671
crossref_primary_10_1007_s11227_024_06006_y
crossref_primary_10_1039_D5RA01781E
crossref_primary_10_3390_chemistry4020044
crossref_primary_10_1002_chem_202301603
crossref_primary_10_1016_j_pscia_2025_100076
crossref_primary_10_1080_17568919_2024_2389767
crossref_primary_10_1002_advs_202508318
crossref_primary_10_1016_j_inoche_2022_109218
crossref_primary_10_1016_j_pestbp_2024_105771
crossref_primary_10_1016_j_jaim_2020_05_009
crossref_primary_10_1080_07391102_2024_2335292
crossref_primary_10_1021_acsmedchemlett_5c00105
crossref_primary_10_1016_j_csbj_2020_06_029
crossref_primary_10_1021_acs_jafc_5c02641
crossref_primary_10_1002_med_21862
crossref_primary_10_1063_5_0200458
crossref_primary_10_3390_molecules26092742
crossref_primary_10_3390_molecules27092977
crossref_primary_10_1016_j_sajb_2025_03_040
crossref_primary_10_1080_10406638_2023_2282642
crossref_primary_10_1016_j_bioorg_2025_108685
crossref_primary_10_1016_j_bmcl_2021_128134
crossref_primary_10_1134_S1063774522020080
crossref_primary_10_1038_s42004_020_0261_x
crossref_primary_10_1016_j_drudis_2019_07_013
crossref_primary_10_1002_ardp_202200108
crossref_primary_10_1002_slct_202202872
crossref_primary_10_1016_j_matpr_2023_08_119
crossref_primary_10_1021_acs_chemrestox_5c00156
crossref_primary_10_4155_fmc_2020_0249
crossref_primary_10_1016_j_foostr_2025_100415
crossref_primary_10_3390_ijms24021412
crossref_primary_10_3390_v15040948
crossref_primary_10_7774_cevr_2024_13_3_202
crossref_primary_10_3390_chemistry7040132
crossref_primary_10_1016_j_foodchem_2025_143004
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.jmedchem.8b01925
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
Pharmacy, Therapeutics, & Pharmacology
EISSN 1520-4804
ExternalDocumentID 30807144
Genre Journal Article
GroupedDBID ---
-~X
.K2
4.4
55A
5GY
5RE
5VS
6P2
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABOCM
ABQRX
ABTAH
ABUCX
ACGFO
ACGFS
ACJ
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CGR
CS3
CUPRZ
CUY
CVF
DU5
EBS
ECM
ED~
EIF
EJD
F5P
GGK
GNL
IH2
IH9
IHE
JG~
L7B
LG6
NPM
P2P
ROL
TN5
UI2
VF5
VG9
W1F
WH7
XSW
YIN
YQT
YZZ
ZY4
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a460t-8647f8ac8fafc3f52c37efc7105c72b2c478dcd1977cf818f8b7eab39557f5232
IEDL.DBID 7X8
ISICitedReferencesCount 135
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000463116900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-4804
IngestDate Fri Jul 11 11:11:49 EDT 2025
Wed Feb 19 02:30:32 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-8647f8ac8fafc3f52c37efc7105c72b2c478dcd1977cf818f8b7eab39557f5232
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4015-6483
OpenAccessLink https://doi.org/10.7270/q29z9851
PMID 30807144
PQID 2186621685
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2186621685
pubmed_primary_30807144
PublicationCentury 2000
PublicationDate 2019-03-28
PublicationDateYYYYMMDD 2019-03-28
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of medicinal chemistry
PublicationTitleAlternate J Med Chem
PublicationYear 2019
SSID ssj0003123
Score 2.6072004
Snippet Electrostatic interactions between small molecules and their respective receptors are essential for molecular recognition and are also key contributors to the...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 3036
SubjectTerms Drug Design
Ligands
Protein Binding
Proteins - chemistry
Static Electricity
Structure-Activity Relationship
Title Electrostatic Complementarity as a Fast and Effective Tool to Optimize Binding and Selectivity of Protein-Ligand Complexes
URI https://www.ncbi.nlm.nih.gov/pubmed/30807144
https://www.proquest.com/docview/2186621685
Volume 62
WOSCitedRecordID wos000463116900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWAIsGlQIHSUtBUQj3VbdYfsX2qoOqKAyyRupX2tnImNgS1SSFb1PbX13ay2lOlSlxyiaNE9ujNiz3zHiGftKxcSNtx363KqSiNpBazkhpVGobOKuV9MptQk4mezUwxbLh1Q1nlEhMTUFctxj3yw-idlLNRruXR5R8aXaPi6epgofGYrPFAZWJUq9lKLZyPkr1bSFEZFToTy9Y5Njq02B38jiWQv9zFgS4j0ZH3k8yUbMYv_vczX5L1gWbC5z4uXpFHrtkgz46X7m4bZK_oNatv9mG6asHq9mEPipWa9c1rcnvSG-XEzqMaIeLHUHEebe_AdmBhbLsF2KaCXgs5AChM2_YcFi38CJB0Ud86-FKn_pk07DSZ7yTbCmg9FFErom7ot_pnvNu_4tp1b8jZ-GR6_JUOhg3UijxbUJ0L5bVF7a1H7iVDrpzHQGIkKlYyFEpXWI0C50QfmILXpXK25EZKFUZz9pY8adrGvSOgTcXLwD68rYTgGRo0UUZHOJTM60xtkd3l_M_DzMVTDtu49qqbr1Zgi2z2izi_7JU75jzwYxV-Ibcf8PR78jyQIxPrzZjeIWs-wIH7QJ7iv0Xd_f2YIi1cJ8X3O4BQ4So
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrostatic+Complementarity+as+a+Fast+and+Effective+Tool+to+Optimize+Binding+and+Selectivity+of+Protein-Ligand+Complexes&rft.jtitle=Journal+of+medicinal+chemistry&rft.au=Bauer%2C+Matthias+R&rft.au=Mackey%2C+Mark+D&rft.date=2019-03-28&rft.eissn=1520-4804&rft.volume=62&rft.issue=6&rft.spage=3036&rft_id=info:doi/10.1021%2Facs.jmedchem.8b01925&rft_id=info%3Apmid%2F30807144&rft_id=info%3Apmid%2F30807144&rft.externalDocID=30807144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4804&client=summon