Electrostatic Complementarity as a Fast and Effective Tool to Optimize Binding and Selectivity of Protein-Ligand Complexes
Electrostatic interactions between small molecules and their respective receptors are essential for molecular recognition and are also key contributors to the binding free energy. Assessing the electrostatic match of protein-ligand complexes therefore provides important insights into why ligands bin...
Gespeichert in:
| Veröffentlicht in: | Journal of medicinal chemistry Jg. 62; H. 6; S. 3036 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
28.03.2019
|
| Schlagworte: | |
| ISSN: | 1520-4804, 1520-4804 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Electrostatic interactions between small molecules and their respective receptors are essential for molecular recognition and are also key contributors to the binding free energy. Assessing the electrostatic match of protein-ligand complexes therefore provides important insights into why ligands bind and what can be changed to improve binding. Ideally, the ligand and protein electrostatic potentials at the protein-ligand interaction interface should maximize their complementarity while minimizing desolvation penalties. In this work, we present a fast and efficient tool to calculate and visualize the electrostatic complementarity (EC) of protein-ligand complexes. We compiled benchmark sets demonstrating electrostatically driven structure-activity relationships (SAR) from literature data, including kinase, protein-protein interaction, and GPCR targets, and used these to demonstrate that the EC method can visualize, rationalize, and predict electrostatically driven ligand affinity changes and help to predict compound selectivity. The methodology presented here for the analysis of EC is a powerful and versatile tool for drug design. |
|---|---|
| AbstractList | Electrostatic interactions between small molecules and their respective receptors are essential for molecular recognition and are also key contributors to the binding free energy. Assessing the electrostatic match of protein-ligand complexes therefore provides important insights into why ligands bind and what can be changed to improve binding. Ideally, the ligand and protein electrostatic potentials at the protein-ligand interaction interface should maximize their complementarity while minimizing desolvation penalties. In this work, we present a fast and efficient tool to calculate and visualize the electrostatic complementarity (EC) of protein-ligand complexes. We compiled benchmark sets demonstrating electrostatically driven structure-activity relationships (SAR) from literature data, including kinase, protein-protein interaction, and GPCR targets, and used these to demonstrate that the EC method can visualize, rationalize, and predict electrostatically driven ligand affinity changes and help to predict compound selectivity. The methodology presented here for the analysis of EC is a powerful and versatile tool for drug design. Electrostatic interactions between small molecules and their respective receptors are essential for molecular recognition and are also key contributors to the binding free energy. Assessing the electrostatic match of protein-ligand complexes therefore provides important insights into why ligands bind and what can be changed to improve binding. Ideally, the ligand and protein electrostatic potentials at the protein-ligand interaction interface should maximize their complementarity while minimizing desolvation penalties. In this work, we present a fast and efficient tool to calculate and visualize the electrostatic complementarity (EC) of protein-ligand complexes. We compiled benchmark sets demonstrating electrostatically driven structure-activity relationships (SAR) from literature data, including kinase, protein-protein interaction, and GPCR targets, and used these to demonstrate that the EC method can visualize, rationalize, and predict electrostatically driven ligand affinity changes and help to predict compound selectivity. The methodology presented here for the analysis of EC is a powerful and versatile tool for drug design.Electrostatic interactions between small molecules and their respective receptors are essential for molecular recognition and are also key contributors to the binding free energy. Assessing the electrostatic match of protein-ligand complexes therefore provides important insights into why ligands bind and what can be changed to improve binding. Ideally, the ligand and protein electrostatic potentials at the protein-ligand interaction interface should maximize their complementarity while minimizing desolvation penalties. In this work, we present a fast and efficient tool to calculate and visualize the electrostatic complementarity (EC) of protein-ligand complexes. We compiled benchmark sets demonstrating electrostatically driven structure-activity relationships (SAR) from literature data, including kinase, protein-protein interaction, and GPCR targets, and used these to demonstrate that the EC method can visualize, rationalize, and predict electrostatically driven ligand affinity changes and help to predict compound selectivity. The methodology presented here for the analysis of EC is a powerful and versatile tool for drug design. |
| Author | Bauer, Matthias R Mackey, Mark D |
| Author_xml | – sequence: 1 givenname: Matthias R orcidid: 0000-0003-4015-6483 surname: Bauer fullname: Bauer, Matthias R organization: Cresset, New Cambridge House , Bassingbourn Road , Litlington , Cambridgeshire SG8 0SS , U.K – sequence: 2 givenname: Mark D surname: Mackey fullname: Mackey, Mark D organization: Cresset, New Cambridge House , Bassingbourn Road , Litlington , Cambridgeshire SG8 0SS , U.K |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30807144$$D View this record in MEDLINE/PubMed |
| BookMark | eNpN0NtKAzEQBuAgFXvQNxDJpTdbk-wh6aWWVoVCBev1ks1Oaspusm5SsX16twfBqxmYj3_gH6KedRYQuqVkTAmjD1L58aaGUn1CPRYFoROWXqABTRmJEkGS3r-9j4bebwghMWXxFerHRBBOk2SA9rMKVGidDzIYhaeubiqowQbZmrDD0mOJ59IHLG2JZ1p32HwDXjlX4eDwsgmmNnvAT8aWxq6P7B2qIzsEOI3fWhfA2Ghh1ofr6cUP-Gt0qWXl4eY8R-hjPltNX6LF8vl1-riIZJKREIks4VpIJbTUKtYpUzEHrTglqeKsYCrholQlnXCutKBCi4KDLOJJmvJOx2yE7k-5Teu-tuBDXhuvoKqkBbf1OaMiyxjNRNrRuzPdFl21edOaWra7_K8v9gtjPHM9 |
| CitedBy_id | crossref_primary_10_1002_ajoc_202500018 crossref_primary_10_3390_ph18020270 crossref_primary_10_1038_s41467_023_44058_5 crossref_primary_10_1002_bit_28863 crossref_primary_10_1038_s41598_023_37130_z crossref_primary_10_3390_molecules25214904 crossref_primary_10_1007_s11030_024_11026_0 crossref_primary_10_3390_molecules30010159 crossref_primary_10_1016_j_jhazmat_2020_124612 crossref_primary_10_3390_ph17010135 crossref_primary_10_3390_ijms241411408 crossref_primary_10_1039_D3RA04720B crossref_primary_10_1007_s44371_025_00266_0 crossref_primary_10_1007_s11144_025_02943_8 crossref_primary_10_1038_s42004_024_01328_7 crossref_primary_10_1093_jxb_eraf092 crossref_primary_10_1093_jxb_eraf094 crossref_primary_10_1186_s13321_025_01011_6 crossref_primary_10_1016_j_scitotenv_2023_167028 crossref_primary_10_1007_s11259_025_10742_8 crossref_primary_10_1080_07391102_2023_2203254 crossref_primary_10_1039_D5MD00111K crossref_primary_10_2174_1381612826666201210092736 crossref_primary_10_3389_fphar_2020_00397 crossref_primary_10_1016_j_cej_2024_153818 crossref_primary_10_1038_s41598_020_79284_0 crossref_primary_10_2478_ebtj_2023_0009 crossref_primary_10_3390_molecules29112697 crossref_primary_10_1016_j_molstruc_2025_142191 crossref_primary_10_3390_ijms22041609 crossref_primary_10_1002_jhet_4215 crossref_primary_10_1016_j_jbc_2025_110407 crossref_primary_10_1080_1062936X_2023_2165146 crossref_primary_10_1002_jhet_4579 crossref_primary_10_1016_j_bioorg_2025_108861 crossref_primary_10_1016_j_molstruc_2022_134128 crossref_primary_10_1016_j_molstruc_2023_136129 crossref_primary_10_1080_07391102_2021_1981451 crossref_primary_10_1002_chem_202303570 crossref_primary_10_3390_ijms23115876 crossref_primary_10_3390_ijms23158405 crossref_primary_10_1002_jcc_27373 crossref_primary_10_1039_D4OB01953A crossref_primary_10_1007_s40291_024_00706_0 crossref_primary_10_1038_s43586_025_00421_y crossref_primary_10_1002_ps_6813 crossref_primary_10_1016_j_jhazmat_2023_132856 crossref_primary_10_3390_electrochem2020021 crossref_primary_10_1038_s41598_022_13923_6 crossref_primary_10_1021_jacs_0c10105 crossref_primary_10_1002_jhet_4419 crossref_primary_10_3390_v15040847 crossref_primary_10_1038_s41598_024_57506_z crossref_primary_10_1016_j_ejmech_2021_113932 crossref_primary_10_1080_10406638_2022_2149568 crossref_primary_10_1002_cbic_202500433 crossref_primary_10_1080_17460441_2022_2079632 crossref_primary_10_1016_j_ejmech_2023_115716 crossref_primary_10_1007_s11030_022_10574_7 crossref_primary_10_1080_07391102_2025_2499671 crossref_primary_10_1007_s11227_024_06006_y crossref_primary_10_1039_D5RA01781E crossref_primary_10_3390_chemistry4020044 crossref_primary_10_1002_chem_202301603 crossref_primary_10_1016_j_pscia_2025_100076 crossref_primary_10_1080_17568919_2024_2389767 crossref_primary_10_1002_advs_202508318 crossref_primary_10_1016_j_inoche_2022_109218 crossref_primary_10_1016_j_pestbp_2024_105771 crossref_primary_10_1016_j_jaim_2020_05_009 crossref_primary_10_1080_07391102_2024_2335292 crossref_primary_10_1021_acsmedchemlett_5c00105 crossref_primary_10_1016_j_csbj_2020_06_029 crossref_primary_10_1021_acs_jafc_5c02641 crossref_primary_10_1002_med_21862 crossref_primary_10_1063_5_0200458 crossref_primary_10_3390_molecules26092742 crossref_primary_10_3390_molecules27092977 crossref_primary_10_1016_j_sajb_2025_03_040 crossref_primary_10_1080_10406638_2023_2282642 crossref_primary_10_1016_j_bioorg_2025_108685 crossref_primary_10_1016_j_bmcl_2021_128134 crossref_primary_10_1134_S1063774522020080 crossref_primary_10_1038_s42004_020_0261_x crossref_primary_10_1016_j_drudis_2019_07_013 crossref_primary_10_1002_ardp_202200108 crossref_primary_10_1002_slct_202202872 crossref_primary_10_1016_j_matpr_2023_08_119 crossref_primary_10_1021_acs_chemrestox_5c00156 crossref_primary_10_4155_fmc_2020_0249 crossref_primary_10_1016_j_foostr_2025_100415 crossref_primary_10_3390_ijms24021412 crossref_primary_10_3390_v15040948 crossref_primary_10_7774_cevr_2024_13_3_202 crossref_primary_10_3390_chemistry7040132 crossref_primary_10_1016_j_foodchem_2025_143004 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/acs.jmedchem.8b01925 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1520-4804 |
| ExternalDocumentID | 30807144 |
| Genre | Journal Article |
| GroupedDBID | --- -~X .K2 4.4 55A 5GY 5RE 5VS 6P2 7~N AABXI AAHBH ABJNI ABMVS ABOCM ABQRX ABTAH ABUCX ACGFO ACGFS ACJ ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CGR CS3 CUPRZ CUY CVF DU5 EBS ECM ED~ EIF EJD F5P GGK GNL IH2 IH9 IHE JG~ L7B LG6 NPM P2P ROL TN5 UI2 VF5 VG9 W1F WH7 XSW YIN YQT YZZ ZY4 7X8 ABBLG ABLBI |
| ID | FETCH-LOGICAL-a460t-8647f8ac8fafc3f52c37efc7105c72b2c478dcd1977cf818f8b7eab39557f5232 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 135 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000463116900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-4804 |
| IngestDate | Fri Jul 11 11:11:49 EDT 2025 Wed Feb 19 02:30:32 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a460t-8647f8ac8fafc3f52c37efc7105c72b2c478dcd1977cf818f8b7eab39557f5232 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4015-6483 |
| OpenAccessLink | https://doi.org/10.7270/q29z9851 |
| PMID | 30807144 |
| PQID | 2186621685 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2186621685 pubmed_primary_30807144 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-28 |
| PublicationDateYYYYMMDD | 2019-03-28 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of medicinal chemistry |
| PublicationTitleAlternate | J Med Chem |
| PublicationYear | 2019 |
| SSID | ssj0003123 |
| Score | 2.6072004 |
| Snippet | Electrostatic interactions between small molecules and their respective receptors are essential for molecular recognition and are also key contributors to the... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 3036 |
| SubjectTerms | Drug Design Ligands Protein Binding Proteins - chemistry Static Electricity Structure-Activity Relationship |
| Title | Electrostatic Complementarity as a Fast and Effective Tool to Optimize Binding and Selectivity of Protein-Ligand Complexes |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30807144 https://www.proquest.com/docview/2186621685 |
| Volume | 62 |
| WOSCitedRecordID | wos000463116900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWAIsGlQIHSUtBUQj3VbdYfsX2qoOqKAyyRupX2tnImNgS1SSFb1PbX13ay2lOlSlxyiaNE9ujNiz3zHiGftKxcSNtx363KqSiNpBazkhpVGobOKuV9MptQk4mezUwxbLh1Q1nlEhMTUFctxj3yw-idlLNRruXR5R8aXaPi6epgofGYrPFAZWJUq9lKLZyPkr1bSFEZFToTy9Y5Njq02B38jiWQv9zFgS4j0ZH3k8yUbMYv_vczX5L1gWbC5z4uXpFHrtkgz46X7m4bZK_oNatv9mG6asHq9mEPipWa9c1rcnvSG-XEzqMaIeLHUHEebe_AdmBhbLsF2KaCXgs5AChM2_YcFi38CJB0Ud86-FKn_pk07DSZ7yTbCmg9FFErom7ot_pnvNu_4tp1b8jZ-GR6_JUOhg3UijxbUJ0L5bVF7a1H7iVDrpzHQGIkKlYyFEpXWI0C50QfmILXpXK25EZKFUZz9pY8adrGvSOgTcXLwD68rYTgGRo0UUZHOJTM60xtkd3l_M_DzMVTDtu49qqbr1Zgi2z2izi_7JU75jzwYxV-Ibcf8PR78jyQIxPrzZjeIWs-wIH7QJ7iv0Xd_f2YIi1cJ8X3O4BQ4So |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrostatic+Complementarity+as+a+Fast+and+Effective+Tool+to+Optimize+Binding+and+Selectivity+of+Protein-Ligand+Complexes&rft.jtitle=Journal+of+medicinal+chemistry&rft.au=Bauer%2C+Matthias+R&rft.au=Mackey%2C+Mark+D&rft.date=2019-03-28&rft.eissn=1520-4804&rft.volume=62&rft.issue=6&rft.spage=3036&rft_id=info:doi/10.1021%2Facs.jmedchem.8b01925&rft_id=info%3Apmid%2F30807144&rft_id=info%3Apmid%2F30807144&rft.externalDocID=30807144 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4804&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4804&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4804&client=summon |