Analysis of Microplastics in Human Feces Reveals a Correlation between Fecal Microplastics and Inflammatory Bowel Disease Status

Human ingestion of microplastics (MPs) is inevitable due to the ubiquity of MPs in various foods and drinking water. Whether the ingestion of MPs poses a substantial risk to human health is far from understood. Here, by analyzing the characteristics of MPs in the feces of patients with inflammatory...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Environmental science & technology Ročník 56; číslo 1; s. 414
Hlavní autori: Yan, Zehua, Liu, Yafei, Zhang, Ting, Zhang, Faming, Ren, Hongqiang, Zhang, Yan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 04.01.2022
Predmet:
ISSN:1520-5851, 1520-5851
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Human ingestion of microplastics (MPs) is inevitable due to the ubiquity of MPs in various foods and drinking water. Whether the ingestion of MPs poses a substantial risk to human health is far from understood. Here, by analyzing the characteristics of MPs in the feces of patients with inflammatory bowel disease (IBD) and healthy people, for the first time, we found that the fecal MP concentration in IBD patients (41.8 items/g dm) was significantly higher than that in healthy people (28.0 items/g dm). In total, 15 types of MPs were detected in feces, with poly(ethylene terephthalate) (22.3-34.0%) and polyamide (8.9-12.4%) being dominant, and their primary shapes were sheets and fibers, respectively. We present evidence indicating that a positive correlation exists between the concentration of fecal MPs and the severity of IBD. Combining a questionnaire survey and the characteristics of fecal MPs, we conclude that the plastic packaging of drinking water and food and dust exposure are important sources of human exposure to MPs. Furthermore, the positive correlation between fecal MPs and IBD status suggests that MP exposure may be related to the disease process or that IBD exacerbates the retention of MPs. The relative mechanisms deserve further studies. Our results also highlight that fecal MPs are useful for assessing human MP exposure and potential health risks.
AbstractList Human ingestion of microplastics (MPs) is inevitable due to the ubiquity of MPs in various foods and drinking water. Whether the ingestion of MPs poses a substantial risk to human health is far from understood. Here, by analyzing the characteristics of MPs in the feces of patients with inflammatory bowel disease (IBD) and healthy people, for the first time, we found that the fecal MP concentration in IBD patients (41.8 items/g dm) was significantly higher than that in healthy people (28.0 items/g dm). In total, 15 types of MPs were detected in feces, with poly(ethylene terephthalate) (22.3-34.0%) and polyamide (8.9-12.4%) being dominant, and their primary shapes were sheets and fibers, respectively. We present evidence indicating that a positive correlation exists between the concentration of fecal MPs and the severity of IBD. Combining a questionnaire survey and the characteristics of fecal MPs, we conclude that the plastic packaging of drinking water and food and dust exposure are important sources of human exposure to MPs. Furthermore, the positive correlation between fecal MPs and IBD status suggests that MP exposure may be related to the disease process or that IBD exacerbates the retention of MPs. The relative mechanisms deserve further studies. Our results also highlight that fecal MPs are useful for assessing human MP exposure and potential health risks.
Human ingestion of microplastics (MPs) is inevitable due to the ubiquity of MPs in various foods and drinking water. Whether the ingestion of MPs poses a substantial risk to human health is far from understood. Here, by analyzing the characteristics of MPs in the feces of patients with inflammatory bowel disease (IBD) and healthy people, for the first time, we found that the fecal MP concentration in IBD patients (41.8 items/g dm) was significantly higher than that in healthy people (28.0 items/g dm). In total, 15 types of MPs were detected in feces, with poly(ethylene terephthalate) (22.3-34.0%) and polyamide (8.9-12.4%) being dominant, and their primary shapes were sheets and fibers, respectively. We present evidence indicating that a positive correlation exists between the concentration of fecal MPs and the severity of IBD. Combining a questionnaire survey and the characteristics of fecal MPs, we conclude that the plastic packaging of drinking water and food and dust exposure are important sources of human exposure to MPs. Furthermore, the positive correlation between fecal MPs and IBD status suggests that MP exposure may be related to the disease process or that IBD exacerbates the retention of MPs. The relative mechanisms deserve further studies. Our results also highlight that fecal MPs are useful for assessing human MP exposure and potential health risks.Human ingestion of microplastics (MPs) is inevitable due to the ubiquity of MPs in various foods and drinking water. Whether the ingestion of MPs poses a substantial risk to human health is far from understood. Here, by analyzing the characteristics of MPs in the feces of patients with inflammatory bowel disease (IBD) and healthy people, for the first time, we found that the fecal MP concentration in IBD patients (41.8 items/g dm) was significantly higher than that in healthy people (28.0 items/g dm). In total, 15 types of MPs were detected in feces, with poly(ethylene terephthalate) (22.3-34.0%) and polyamide (8.9-12.4%) being dominant, and their primary shapes were sheets and fibers, respectively. We present evidence indicating that a positive correlation exists between the concentration of fecal MPs and the severity of IBD. Combining a questionnaire survey and the characteristics of fecal MPs, we conclude that the plastic packaging of drinking water and food and dust exposure are important sources of human exposure to MPs. Furthermore, the positive correlation between fecal MPs and IBD status suggests that MP exposure may be related to the disease process or that IBD exacerbates the retention of MPs. The relative mechanisms deserve further studies. Our results also highlight that fecal MPs are useful for assessing human MP exposure and potential health risks.
Author Zhang, Faming
Ren, Hongqiang
Zhang, Ting
Zhang, Yan
Yan, Zehua
Liu, Yafei
Author_xml – sequence: 1
  givenname: Zehua
  surname: Yan
  fullname: Yan, Zehua
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
– sequence: 2
  givenname: Yafei
  surname: Liu
  fullname: Liu, Yafei
  organization: Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
– sequence: 3
  givenname: Ting
  surname: Zhang
  fullname: Zhang, Ting
  organization: Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
– sequence: 4
  givenname: Faming
  surname: Zhang
  fullname: Zhang, Faming
  organization: Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
– sequence: 5
  givenname: Hongqiang
  orcidid: 0000-0002-6434-692X
  surname: Ren
  fullname: Ren, Hongqiang
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
– sequence: 6
  givenname: Yan
  orcidid: 0000-0002-4762-6639
  surname: Zhang
  fullname: Zhang, Yan
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34935363$$D View this record in MEDLINE/PubMed
BookMark eNpdkDtPwzAURi1URB8wsyGPLCl-xU3GUihFKkLiMUc3zo1k5NglTqi68dOpoEiI6fuGozOcMRn44JGQc86mnAl-BSZOMXZTbpjMhToiI54KlqRZygd__pCMY3xjjAnJshMylCqXqdRyRD7nHtwu2khDTR-sacPGQeysidR6uuob8HSJBiN9wg8EFynQRWhbdNDZ4GmJ3RbxmwH3TwC-ove-dtA00IV2R6_DFh29sREhIn3uoOvjKTmu91o8O-yEvC5vXxarZP14d7-YrxNQmnUJR8lqyWuZSya1RolSaMWqVFeQ8xnLs0pVCk1ZZ1WpeGo0y5HVtVAiLcHkYkIuf7ybNrz3-2ZFY6NB58Bj6GMhNBczKflM7dGLA9qXDVbFprUNtLvit5r4AhDGctQ
CitedBy_id crossref_primary_10_1016_j_ecoenv_2023_114574
crossref_primary_10_3390_biology12111430
crossref_primary_10_1016_j_tox_2022_153391
crossref_primary_10_1016_j_envres_2025_122735
crossref_primary_10_1016_j_jhazmat_2025_137410
crossref_primary_10_1016_j_jhazmat_2023_132640
crossref_primary_10_1016_j_scitotenv_2022_158111
crossref_primary_10_1016_j_tox_2025_154090
crossref_primary_10_1007_s12178_024_09932_9
crossref_primary_10_1016_j_jhazmat_2025_138748
crossref_primary_10_1080_19490976_2024_2410476
crossref_primary_10_1016_j_jhazmat_2023_132404
crossref_primary_10_1039_D2EN00019A
crossref_primary_10_1016_j_scitotenv_2024_176228
crossref_primary_10_1039_D5EN00661A
crossref_primary_10_1039_D5RA00409H
crossref_primary_10_1016_j_envpol_2023_121376
crossref_primary_10_1016_j_envres_2025_122867
crossref_primary_10_3389_fpubh_2023_1103289
crossref_primary_10_1007_s13762_022_04261_1
crossref_primary_10_1016_j_aquatox_2024_106894
crossref_primary_10_1016_j_envres_2025_122621
crossref_primary_10_1016_j_scitotenv_2023_167215
crossref_primary_10_1016_j_jhazmat_2023_132537
crossref_primary_10_1016_j_scitotenv_2023_166003
crossref_primary_10_1021_acsestengg_4c00972
crossref_primary_10_1016_j_scitotenv_2023_165031
crossref_primary_10_1016_j_marpolbul_2023_114580
crossref_primary_10_1111_1541_4337_70079
crossref_primary_10_1007_s11356_025_36196_8
crossref_primary_10_1016_j_ecoenv_2025_118119
crossref_primary_10_1016_j_watres_2023_119794
crossref_primary_10_1016_j_envpol_2023_122015
crossref_primary_10_3390_toxics13060438
crossref_primary_10_1016_j_scitotenv_2023_169627
crossref_primary_10_3390_toxics12080553
crossref_primary_10_1016_j_jhazmat_2025_139614
crossref_primary_10_1007_s44339_025_00034_w
crossref_primary_10_1002_fft2_437
crossref_primary_10_1016_j_ecoenv_2022_114030
crossref_primary_10_1007_s10311_023_01593_3
crossref_primary_10_1016_j_scitotenv_2024_174026
crossref_primary_10_1016_j_envint_2024_108701
crossref_primary_10_1016_j_envpol_2023_121153
crossref_primary_10_1016_j_scitotenv_2024_175350
crossref_primary_10_1126_science_adl2746
crossref_primary_10_1016_j_ebiom_2025_105918
crossref_primary_10_1016_j_envres_2024_119181
crossref_primary_10_1016_j_jclepro_2024_142281
crossref_primary_10_1186_s12943_025_02230_z
crossref_primary_10_1021_acssuschemeng_4c10238
crossref_primary_10_1016_j_scitotenv_2023_166585
crossref_primary_10_3390_app15168813
crossref_primary_10_1007_s10668_023_03565_7
crossref_primary_10_1016_j_envres_2023_116966
crossref_primary_10_1016_j_jare_2025_06_074
crossref_primary_10_1007_s44462_025_00021_9
crossref_primary_10_1016_j_toxlet_2022_07_159
crossref_primary_10_1002_jat_4765
crossref_primary_10_1002_fft2_70108
crossref_primary_10_1016_j_envint_2024_108617
crossref_primary_10_1002_jat_4760
crossref_primary_10_1007_s00204_025_04092_2
crossref_primary_10_1007_s11270_024_07292_1
crossref_primary_10_1016_j_foodchem_2024_139002
crossref_primary_10_1016_j_aquatox_2024_106842
crossref_primary_10_1016_j_jhazmat_2022_130146
crossref_primary_10_1289_EHP13435
crossref_primary_10_1038_s41538_025_00517_5
crossref_primary_10_1021_envhealth_4c00209
crossref_primary_10_1016_j_ecoenv_2025_119021
crossref_primary_10_3389_fimmu_2024_1382655
crossref_primary_10_1007_s11356_022_22101_0
crossref_primary_10_1016_j_jhazmat_2024_135266
crossref_primary_10_1016_j_envres_2025_120887
crossref_primary_10_1016_j_ecoenv_2023_115738
crossref_primary_10_1016_j_envint_2023_108225
crossref_primary_10_1016_j_envpol_2024_124742
crossref_primary_10_1016_j_tox_2024_153883
crossref_primary_10_1007_s11270_024_07589_1
crossref_primary_10_1093_eurheartj_ehae552
crossref_primary_10_1016_j_jhazmat_2025_139809
crossref_primary_10_7189_jogh_14_04179
crossref_primary_10_1016_j_jhazmat_2022_130010
crossref_primary_10_3390_ijms26157035
crossref_primary_10_1016_j_scitotenv_2023_167017
crossref_primary_10_1016_j_ecoenv_2022_114385
crossref_primary_10_1893_BIOS_D_23_00010
crossref_primary_10_3390_foods13101564
crossref_primary_10_1016_j_ecoenv_2024_117099
crossref_primary_10_1016_j_microc_2023_109629
crossref_primary_10_1016_j_pcl_2024_07_030
crossref_primary_10_1093_nsr_nwad227
crossref_primary_10_1007_s42452_025_07121_y
crossref_primary_10_1016_j_envint_2024_108751
crossref_primary_10_1016_j_ecoenv_2025_118159
crossref_primary_10_1016_j_ebiom_2024_105369
crossref_primary_10_1016_j_envpol_2024_123546
crossref_primary_10_1016_j_envpol_2024_124632
crossref_primary_10_1016_j_envpol_2023_122178
crossref_primary_10_1016_j_spc_2024_10_009
crossref_primary_10_1007_s10924_023_02818_w
crossref_primary_10_1038_s41581_025_00971_0
crossref_primary_10_1371_journal_pone_0280594
crossref_primary_10_1016_j_jhazmat_2024_136028
crossref_primary_10_1016_j_aquatox_2024_106944
crossref_primary_10_1016_j_jhazmat_2023_132702
crossref_primary_10_1016_j_ebiom_2024_105360
crossref_primary_10_1016_j_jhazmat_2025_139816
crossref_primary_10_1016_j_jhazmat_2022_129361
crossref_primary_10_1016_j_envres_2022_113230
crossref_primary_10_1016_j_reprotox_2023_108515
crossref_primary_10_1016_j_envres_2024_119498
crossref_primary_10_3389_fnut_2022_910094
crossref_primary_10_1016_j_tifs_2024_104841
crossref_primary_10_7759_cureus_85696
crossref_primary_10_1016_j_imlet_2025_106976
crossref_primary_10_1016_j_isci_2023_108454
crossref_primary_10_1016_j_jwpe_2024_106736
crossref_primary_10_1016_j_envint_2023_107968
crossref_primary_10_3390_ijms25094724
crossref_primary_10_3390_nano15060465
crossref_primary_10_1016_j_envpol_2024_123321
crossref_primary_10_1016_j_scitotenv_2023_164359
crossref_primary_10_1016_j_etap_2023_104204
crossref_primary_10_1016_j_scitotenv_2023_164596
crossref_primary_10_3390_ma16175906
crossref_primary_10_1016_j_jhazmat_2023_132800
crossref_primary_10_1111_ans_70156
crossref_primary_10_1016_j_envpol_2025_126666
crossref_primary_10_1016_j_jwpe_2024_106620
crossref_primary_10_1016_j_biortech_2023_130132
crossref_primary_10_3390_biology14050523
crossref_primary_10_3390_microplastics4020024
crossref_primary_10_1016_j_pce_2024_103760
crossref_primary_10_1016_j_scitotenv_2024_173111
crossref_primary_10_1016_j_fct_2025_115595
crossref_primary_10_1016_j_freeradbiomed_2025_07_018
crossref_primary_10_1016_j_scitotenv_2023_168946
crossref_primary_10_3390_microplastics4030064
crossref_primary_10_1002_adfm_202418911
crossref_primary_10_1016_j_ijbiomac_2022_03_200
crossref_primary_10_3390_toxics12110793
crossref_primary_10_1016_j_jhazmat_2025_137701
crossref_primary_10_1016_j_jhazmat_2025_138911
crossref_primary_10_1016_j_trac_2024_118114
crossref_primary_10_1016_j_hazadv_2025_100663
crossref_primary_10_1038_s41598_025_98268_6
crossref_primary_10_1016_j_envpol_2025_126416
crossref_primary_10_1016_j_foodcont_2025_111486
crossref_primary_10_1016_j_scitotenv_2022_155333
crossref_primary_10_3389_fpubh_2023_1140786
crossref_primary_10_1016_j_bej_2025_109708
crossref_primary_10_1016_j_fct_2023_113634
crossref_primary_10_1016_j_chemosphere_2024_143736
crossref_primary_10_1016_j_forsciint_2024_112246
crossref_primary_10_1016_j_chemosphere_2024_143993
crossref_primary_10_1016_j_chemosphere_2024_142424
crossref_primary_10_1038_s41598_024_67289_y
crossref_primary_10_2147_IJN_S466258
crossref_primary_10_1007_s13762_024_06083_9
crossref_primary_10_3390_toxics12110779
crossref_primary_10_3390_nano13111804
crossref_primary_10_1016_j_jhazmat_2025_137728
crossref_primary_10_1186_s43591_025_00134_9
crossref_primary_10_1016_j_envpol_2022_120714
crossref_primary_10_1016_j_jhazmat_2024_135125
crossref_primary_10_1016_j_chemosphere_2022_136748
crossref_primary_10_1177_00037028231199772
crossref_primary_10_1016_j_jenvman_2024_123055
crossref_primary_10_1080_10643389_2023_2195798
crossref_primary_10_1016_j_ecoenv_2025_119030
crossref_primary_10_1016_j_fct_2023_113984
crossref_primary_10_1016_j_chemosphere_2023_141060
crossref_primary_10_1016_j_chemosphere_2024_143765
crossref_primary_10_1016_j_trac_2023_117293
crossref_primary_10_1016_j_scitotenv_2024_177743
crossref_primary_10_3390_w16131898
crossref_primary_10_1002_tqem_70082
crossref_primary_10_1007_s11356_024_32832_x
crossref_primary_10_3389_frsus_2024_1399431
crossref_primary_10_3390_toxics10120762
crossref_primary_10_1016_j_ijbiomac_2024_137732
crossref_primary_10_1007_s00204_024_03844_w
crossref_primary_10_1016_j_cclet_2023_108718
crossref_primary_10_1016_j_jece_2025_118079
crossref_primary_10_1007_s12013_024_01436_0
crossref_primary_10_61373_bm025v_0068
crossref_primary_10_1016_j_jhazmat_2022_129439
crossref_primary_10_1016_j_fct_2025_115399
crossref_primary_10_1016_j_envc_2025_101217
crossref_primary_10_3390_w17131996
crossref_primary_10_1016_j_envpol_2024_125437
crossref_primary_10_3389_fenvs_2022_827289
crossref_primary_10_1016_j_envpol_2024_125312
crossref_primary_10_1016_j_oneear_2025_101418
crossref_primary_10_1007_s44169_022_00023_9
crossref_primary_10_1016_j_gastha_2025_100625
crossref_primary_10_1002_smll_202301467
crossref_primary_10_1016_j_jhazmat_2025_139099
crossref_primary_10_1016_j_scitotenv_2024_177966
crossref_primary_10_1111_1751_7915_14182
crossref_primary_10_1007_s11356_024_34470_9
crossref_primary_10_1016_j_hazadv_2022_100175
crossref_primary_10_1016_j_jenvman_2023_118107
crossref_primary_10_3390_toxics11050406
crossref_primary_10_1016_j_ecoenv_2025_117906
crossref_primary_10_1007_s11270_024_07590_8
crossref_primary_10_1016_j_cnd_2022_03_001
crossref_primary_10_1016_j_envpol_2025_126972
crossref_primary_10_1016_j_scitotenv_2023_167529
crossref_primary_10_1016_j_chemosphere_2022_134354
crossref_primary_10_4491_eer_2025_186
crossref_primary_10_3390_toxics13070566
crossref_primary_10_1016_j_biotechadv_2024_108462
crossref_primary_10_1038_s44454_025_00007_z
crossref_primary_10_1016_j_envpol_2022_119884
crossref_primary_10_1016_j_jhazmat_2023_130925
crossref_primary_10_1007_s11270_025_08267_6
crossref_primary_10_3389_fsufs_2024_1491290
crossref_primary_10_1016_j_jece_2024_112021
crossref_primary_10_1016_j_envpol_2025_125753
crossref_primary_10_1016_j_envpol_2025_125875
crossref_primary_10_1021_acsnano_5c08357
crossref_primary_10_1016_j_ebiom_2023_104828
crossref_primary_10_1016_j_ecoenv_2024_116505
crossref_primary_10_3390_cancers16213703
crossref_primary_10_1016_j_coesh_2023_100480
crossref_primary_10_3390_ijms241814391
crossref_primary_10_1088_2515_7620_ad5f7f
crossref_primary_10_3390_ijms25137074
crossref_primary_10_1016_j_mrgentox_2025_503865
crossref_primary_10_1016_j_ecoenv_2025_119077
crossref_primary_10_1016_j_jhazmat_2025_137807
crossref_primary_10_1016_j_jece_2025_118955
crossref_primary_10_1016_j_scitotenv_2024_172775
crossref_primary_10_1016_j_scitotenv_2024_172535
crossref_primary_10_3390_toxics13090782
crossref_primary_10_1007_s15011_022_5640_4
crossref_primary_10_1016_j_envpol_2024_124377
crossref_primary_10_1016_j_trac_2023_117016
crossref_primary_10_3390_ijms26135974
crossref_primary_10_1016_j_jenvman_2023_117824
crossref_primary_10_1016_j_jhazmat_2025_138074
crossref_primary_10_3389_fenvs_2023_1241939
crossref_primary_10_1002_wer_10765
crossref_primary_10_1016_j_jhazmat_2022_129515
crossref_primary_10_1016_j_scitotenv_2024_170004
crossref_primary_10_1016_j_envint_2022_107711
crossref_primary_10_1016_j_heliyon_2023_e20440
crossref_primary_10_1038_s41591_024_02968_x
crossref_primary_10_1007_s11356_024_35741_1
crossref_primary_10_3390_app151810146
crossref_primary_10_3389_fpubh_2024_1285186
crossref_primary_10_1016_j_scitotenv_2025_178378
crossref_primary_10_1016_j_jes_2025_06_029
crossref_primary_10_1016_j_chemosphere_2023_138486
crossref_primary_10_1016_j_envpol_2024_125364
crossref_primary_10_1016_j_oneear_2023_05_015
crossref_primary_10_1016_j_jhazmat_2025_138084
crossref_primary_10_1016_j_scitotenv_2024_170455
crossref_primary_10_1016_j_envres_2024_118535
crossref_primary_10_3390_w14244053
crossref_primary_10_1016_j_envpol_2024_125248
crossref_primary_10_3390_cancers16173079
crossref_primary_10_1016_j_jenvman_2025_125915
crossref_primary_10_1007_s00204_025_04151_8
crossref_primary_10_1016_j_aquatox_2025_107478
crossref_primary_10_3389_fnano_2022_923634
crossref_primary_10_1016_j_scitotenv_2023_163642
crossref_primary_10_3390_toxics12120850
crossref_primary_10_1016_j_envint_2023_108193
crossref_primary_10_1007_s13273_025_00549_8
crossref_primary_10_1021_acs_jafc_5c03215
crossref_primary_10_1289_EHP15472
crossref_primary_10_1016_j_snb_2024_136702
crossref_primary_10_1016_j_envpol_2022_120442
crossref_primary_10_1016_j_chemosphere_2023_140100
crossref_primary_10_3390_jfb16090332
crossref_primary_10_1007_s10311_025_01841_8
crossref_primary_10_1038_s41598_024_81931_9
crossref_primary_10_1016_j_jhazmat_2023_133289
crossref_primary_10_1080_10408398_2025_2538550
crossref_primary_10_3389_fenvs_2024_1437866
crossref_primary_10_1007_s44273_025_00068_x
crossref_primary_10_2147_IJN_S381776
crossref_primary_10_1016_j_scitotenv_2023_169050
crossref_primary_10_1016_j_jhazmat_2025_138380
crossref_primary_10_1038_s41591_025_03902_5
crossref_primary_10_1016_j_ecoenv_2024_116439
crossref_primary_10_1016_j_chemosphere_2025_144211
crossref_primary_10_1016_j_greeac_2022_100042
crossref_primary_10_1016_j_chemosphere_2025_144452
crossref_primary_10_1097_MPG_0000000000003500
crossref_primary_10_1016_j_trac_2024_117618
crossref_primary_10_1097_CM9_0000000000003542
crossref_primary_10_1007_s11270_022_06038_1
crossref_primary_10_1007_s10653_025_02393_0
crossref_primary_10_1073_pnas_2417104122
crossref_primary_10_3389_fimmu_2025_1528502
crossref_primary_10_1016_j_dwt_2024_100673
crossref_primary_10_1016_j_scitotenv_2024_173799
crossref_primary_10_1016_j_envint_2024_109012
crossref_primary_10_2903_fr_efsa_2023_FR_0011
crossref_primary_10_1080_10937404_2024_2330962
crossref_primary_10_1016_j_ecoenv_2024_116208
crossref_primary_10_1016_j_enceco_2024_12_005
crossref_primary_10_1016_j_jece_2025_118807
crossref_primary_10_1016_j_envint_2022_107630
crossref_primary_10_1016_j_scitotenv_2024_170281
crossref_primary_10_1016_j_scitotenv_2023_166722
crossref_primary_10_1016_j_envint_2022_107628
crossref_primary_10_1007_s10661_025_14416_5
crossref_primary_10_1016_j_scitotenv_2024_173522
crossref_primary_10_1016_j_jenvman_2023_119710
crossref_primary_10_1016_j_scitotenv_2024_172795
crossref_primary_10_1007_s11356_024_35208_3
crossref_primary_10_1016_j_jhazmat_2024_135976
crossref_primary_10_3390_biology12091243
crossref_primary_10_1016_j_marenvres_2024_106581
crossref_primary_10_3389_ftox_2022_956885
crossref_primary_10_1016_j_jhazmat_2023_132269
crossref_primary_10_1016_j_jenvman_2025_124995
crossref_primary_10_1021_acsnano_5c00918
crossref_primary_10_1016_j_kjs_2025_100395
crossref_primary_10_1007_s13534_025_00511_6
crossref_primary_10_1016_j_ejim_2025_07_015
crossref_primary_10_3390_w17070916
crossref_primary_10_3389_fenvs_2023_1285536
crossref_primary_10_1007_s11356_022_24132_z
crossref_primary_10_61373_bm025c_0020
crossref_primary_10_1016_j_envpol_2024_125054
crossref_primary_10_1016_j_scitotenv_2024_170262
crossref_primary_10_1016_j_scitotenv_2024_172681
crossref_primary_10_1016_j_envres_2025_121077
crossref_primary_10_1016_j_jhazmat_2023_133128
crossref_primary_10_1016_j_matpr_2023_01_268
crossref_primary_10_1007_s10311_024_01771_x
crossref_primary_10_3390_biomedicines12071500
crossref_primary_10_1016_j_envint_2023_108015
crossref_primary_10_3390_w16111567
crossref_primary_10_3390_ma17246272
crossref_primary_10_1016_j_scitotenv_2022_159164
crossref_primary_10_1016_j_scitotenv_2025_178882
crossref_primary_10_1016_j_tifs_2025_105265
crossref_primary_10_1186_s43591_025_00129_6
crossref_primary_10_1016_j_envint_2024_108884
crossref_primary_10_1039_D3EN00883E
crossref_primary_10_1097_MCG_0000000000002085
crossref_primary_10_1016_j_trac_2024_117817
crossref_primary_10_1016_j_jcis_2025_139058
crossref_primary_10_1016_j_scitotenv_2023_161512
crossref_primary_10_1021_acsnano_5c02307
crossref_primary_10_1021_acs_jpcb_5c00416
crossref_primary_10_1016_j_desal_2025_119418
crossref_primary_10_1016_S0140_6736_25_01447_3
crossref_primary_10_3390_nano14090807
crossref_primary_10_1016_j_jhazmat_2025_139573
crossref_primary_10_1016_j_jwpe_2024_106159
crossref_primary_10_1007_s11367_022_02040_1
crossref_primary_10_3390_cimb46030168
crossref_primary_10_1016_j_scitotenv_2024_176153
crossref_primary_10_3390_cimb46050256
crossref_primary_10_1016_j_toxrep_2024_101844
crossref_primary_10_1007_s10895_025_04152_x
crossref_primary_10_1016_j_ecoenv_2022_114433
crossref_primary_10_1016_j_jhazmat_2023_132108
crossref_primary_10_1007_s10661_025_13874_1
crossref_primary_10_1016_j_scitotenv_2023_167287
crossref_primary_10_1016_j_ecoenv_2024_116098
crossref_primary_10_1016_j_scitotenv_2022_154912
crossref_primary_10_1016_j_tox_2025_154137
crossref_primary_10_1002_cpz1_1104
crossref_primary_10_1016_j_ecoenv_2023_114745
crossref_primary_10_1016_j_jhazmat_2025_138255
crossref_primary_10_1016_j_scitotenv_2024_176163
crossref_primary_10_1021_envhealth_3c00052
crossref_primary_10_1021_envhealth_3c00053
crossref_primary_10_1016_j_watbs_2022_100040
crossref_primary_10_1007_s10311_024_01734_2
crossref_primary_10_1016_j_envpol_2025_127052
crossref_primary_10_1177_11786302241235810
crossref_primary_10_1007_s11270_023_06823_6
crossref_primary_10_1016_j_envres_2024_118437
crossref_primary_10_3390_app15074057
crossref_primary_10_1007_s12291_024_01270_4
crossref_primary_10_3345_cep_2023_01739
crossref_primary_10_1016_j_tox_2023_153513
crossref_primary_10_1016_j_envpol_2023_121225
crossref_primary_10_1016_j_jhazmat_2025_137331
crossref_primary_10_3390_toxics13080701
crossref_primary_10_1016_j_jhazmat_2025_138427
crossref_primary_10_1016_j_jhazmat_2025_138548
crossref_primary_10_1186_s12302_024_00995_6
crossref_primary_10_1016_j_etap_2023_104194
crossref_primary_10_3748_wjg_v31_i18_105472
crossref_primary_10_1016_j_ecoenv_2024_117497
crossref_primary_10_3390_microorganisms12010138
crossref_primary_10_1016_j_envres_2022_114861
crossref_primary_10_1007_s00244_024_01073_x
crossref_primary_10_1080_10643389_2024_2371622
crossref_primary_10_29328_journal_jcmei_1001036
crossref_primary_10_1016_j_envpol_2023_121571
crossref_primary_10_1017_plc_2025_10028
crossref_primary_10_3390_polym17121699
crossref_primary_10_1016_j_scitotenv_2023_163853
crossref_primary_10_3390_atmos15111380
crossref_primary_10_1177_11786302241304539
crossref_primary_10_1016_j_scitotenv_2022_155937
crossref_primary_10_1016_j_scitotenv_2023_167098
crossref_primary_10_1016_j_ecoenv_2025_118680
crossref_primary_10_1016_j_redox_2025_103688
crossref_primary_10_1016_j_onehlt_2025_101002
crossref_primary_10_1016_j_chemosphere_2022_136094
crossref_primary_10_1016_j_cgh_2024_01_020
crossref_primary_10_3389_fmars_2022_1017247
crossref_primary_10_1016_j_scitotenv_2023_164808
crossref_primary_10_1016_j_envres_2025_120934
crossref_primary_10_1016_j_marpolbul_2022_113429
crossref_primary_10_1016_j_jfca_2025_107885
crossref_primary_10_3390_foods12213915
crossref_primary_10_1016_j_scitotenv_2025_179879
crossref_primary_10_3390_antiox14070797
crossref_primary_10_3390_toxics11090730
crossref_primary_10_1016_j_lfs_2024_122937
crossref_primary_10_3390_ijms26157207
crossref_primary_10_1002_fes3_404
crossref_primary_10_1016_j_rsma_2025_104393
crossref_primary_10_1093_toxsci_kfae135
crossref_primary_10_1007_s40201_025_00939_z
crossref_primary_10_1186_s12989_024_00566_w
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.est.1c03924
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
ExternalDocumentID 34935363
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
..I
.DC
.K2
3R3
4.4
4R4
53G
55A
5GY
5VS
6TJ
7~N
85S
AABXI
AAHBH
ABJNI
ABMVS
ABOGM
ABPPZ
ABQRX
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
ADHLV
ADUKH
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CGR
CS3
CUPRZ
CUY
CVF
EBS
ECM
ED~
EIF
F5P
GGK
GNL
IH9
JG~
LG6
MS~
MW2
NPM
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
W1F
WH7
XSW
XZL
YZZ
ZCA
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a460t-1e30f31f3930366e3e32640d56da917098d4d4ecbf8db415c609e0ff2425bac92
IEDL.DBID 7X8
ISICitedReferencesCount 482
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000736494800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-5851
IngestDate Fri Jul 11 10:52:11 EDT 2025
Thu Apr 03 07:09:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords health risk
microplastics
source of exposure
feces
inflammatory bowel disease
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-1e30f31f3930366e3e32640d56da917098d4d4ecbf8db415c609e0ff2425bac92
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4762-6639
0000-0002-6434-692X
PMID 34935363
PQID 2612733174
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2612733174
pubmed_primary_34935363
PublicationCentury 2000
PublicationDate 2022-01-04
PublicationDateYYYYMMDD 2022-01-04
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ Sci Technol
PublicationYear 2022
SSID ssj0002308
Score 2.7351093
Snippet Human ingestion of microplastics (MPs) is inevitable due to the ubiquity of MPs in various foods and drinking water. Whether the ingestion of MPs poses a...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 414
SubjectTerms Environmental Monitoring - methods
Feces - chemistry
Humans
Inflammatory Bowel Diseases
Microplastics
Plastics - analysis
Water Pollutants, Chemical - analysis
Title Analysis of Microplastics in Human Feces Reveals a Correlation between Fecal Microplastics and Inflammatory Bowel Disease Status
URI https://www.ncbi.nlm.nih.gov/pubmed/34935363
https://www.proquest.com/docview/2612733174
Volume 56
WOSCitedRecordID wos000736494800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8IwGG5UPOjBDxTFr9TE62Rdy0ZPRhGiiRBi1HAjpR8JiW7oAK_-dN93G6IHExMvO3Xd0r5tn74fz0PIWeQcE4GNPN2QoSeYRiF3xr26DBUcQNaxTM7n6S7qdhv9vuwVDre0SKuc74nZRm0SjT7yGlJdob5gJC7Grx6qRmF0tZDQWCYlDlAGrTrqL9jCAV5npXB1uCJh-OuL2ofVlE7P8RNM-4AQxO_4Mjtn2pv__cMtslEgTHqZm8Q2WbJxmax_4x0sk0prUd4GTYv1ne6QjzlHCU0c7WCu3hjQNTI501FMM4c_bVtoSu_tDCBmShVtor5HnlFHi6wvbAP9_uxAxYbexg4s8CWL7NOr5N0-0-s8QkQR9U7TXfLYbj00b7xCo8FTIvQnHrPcd5w5LvEsDC23gAeFb-qhUXAT9GXDCCOsHrqGGQJY0KEvre8c3nSGSsugQlbiJLb7hHIT-JFRTA4jJQKFyVzIDxdKJOiBbadKTufjPoA1gIENFdtkmg4WI18le_nkDcY5WceAC8nrPOQHf3j7kKwFWN2AHhZxREoOxtEek1U9m4zSt5PMuODZ7XU-AW7L2jc
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Microplastics+in+Human+Feces+Reveals+a+Correlation+between+Fecal+Microplastics+and+Inflammatory+Bowel+Disease+Status&rft.jtitle=Environmental+science+%26+technology&rft.au=Yan%2C+Zehua&rft.au=Liu%2C+Yafei&rft.au=Zhang%2C+Ting&rft.au=Zhang%2C+Faming&rft.date=2022-01-04&rft.eissn=1520-5851&rft.volume=56&rft.issue=1&rft.spage=414&rft_id=info:doi/10.1021%2Facs.est.1c03924&rft_id=info%3Apmid%2F34935363&rft_id=info%3Apmid%2F34935363&rft.externalDocID=34935363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-5851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-5851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-5851&client=summon