Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells

Passivation of electronic defects at the surface and grain boundaries of perovskite materials has become one of the most important strategies to suppress charge recombination in both polycrystalline and single-crystalline perovskite solar cells. Although many passivation molecules have been reported...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the American Chemical Society Ročník 141; číslo 14; s. 5781
Hlavní autoři: Yang, Shuang, Dai, Jun, Yu, Zhenhua, Shao, Yuchuan, Zhou, Yu, Xiao, Xun, Zeng, Xiao Cheng, Huang, Jinsong
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 10.04.2019
ISSN:1520-5126, 1520-5126
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Passivation of electronic defects at the surface and grain boundaries of perovskite materials has become one of the most important strategies to suppress charge recombination in both polycrystalline and single-crystalline perovskite solar cells. Although many passivation molecules have been reported, it remains very unclear regarding the passivation mechanisms of various functional groups. Here, we systematically engineer the structures of passivation molecular functional groups, including carboxyl, amine, isopropyl, phenethyl, and tert-butylphenethyl groups, and study their passivation capability to perovskites. It reveals the carboxyl and amine groups would heal charged defects via electrostatic interactions, and the neutral iodine related defects can be reduced by the aromatic structures. The judicious control of the interaction between perovskite and molecules can further realize grain boundary passivation, including those that are deep toward substrates. Understanding of the underlining mechanisms allows us to design a new passivation molecule, D-4- tert-butylphenylalanine, yielding high-performance p-i-structure solar cells with a stabilized efficiency of 21.4%. The open-circuit voltage ( V ) of a device with an optical bandgap of 1.57 eV for the perovskite layer reaches 1.23 V, corresponding to a record small V deficit of 0.34 V. Our findings provide a guidance for future design of new passivation molecules to realize multiple facets applications in perovskite electronics.
AbstractList Passivation of electronic defects at the surface and grain boundaries of perovskite materials has become one of the most important strategies to suppress charge recombination in both polycrystalline and single-crystalline perovskite solar cells. Although many passivation molecules have been reported, it remains very unclear regarding the passivation mechanisms of various functional groups. Here, we systematically engineer the structures of passivation molecular functional groups, including carboxyl, amine, isopropyl, phenethyl, and tert-butylphenethyl groups, and study their passivation capability to perovskites. It reveals the carboxyl and amine groups would heal charged defects via electrostatic interactions, and the neutral iodine related defects can be reduced by the aromatic structures. The judicious control of the interaction between perovskite and molecules can further realize grain boundary passivation, including those that are deep toward substrates. Understanding of the underlining mechanisms allows us to design a new passivation molecule, D-4- tert-butylphenylalanine, yielding high-performance p-i-structure solar cells with a stabilized efficiency of 21.4%. The open-circuit voltage ( VOC) of a device with an optical bandgap of 1.57 eV for the perovskite layer reaches 1.23 V, corresponding to a record small VOC deficit of 0.34 V. Our findings provide a guidance for future design of new passivation molecules to realize multiple facets applications in perovskite electronics.Passivation of electronic defects at the surface and grain boundaries of perovskite materials has become one of the most important strategies to suppress charge recombination in both polycrystalline and single-crystalline perovskite solar cells. Although many passivation molecules have been reported, it remains very unclear regarding the passivation mechanisms of various functional groups. Here, we systematically engineer the structures of passivation molecular functional groups, including carboxyl, amine, isopropyl, phenethyl, and tert-butylphenethyl groups, and study their passivation capability to perovskites. It reveals the carboxyl and amine groups would heal charged defects via electrostatic interactions, and the neutral iodine related defects can be reduced by the aromatic structures. The judicious control of the interaction between perovskite and molecules can further realize grain boundary passivation, including those that are deep toward substrates. Understanding of the underlining mechanisms allows us to design a new passivation molecule, D-4- tert-butylphenylalanine, yielding high-performance p-i-structure solar cells with a stabilized efficiency of 21.4%. The open-circuit voltage ( VOC) of a device with an optical bandgap of 1.57 eV for the perovskite layer reaches 1.23 V, corresponding to a record small VOC deficit of 0.34 V. Our findings provide a guidance for future design of new passivation molecules to realize multiple facets applications in perovskite electronics.
Passivation of electronic defects at the surface and grain boundaries of perovskite materials has become one of the most important strategies to suppress charge recombination in both polycrystalline and single-crystalline perovskite solar cells. Although many passivation molecules have been reported, it remains very unclear regarding the passivation mechanisms of various functional groups. Here, we systematically engineer the structures of passivation molecular functional groups, including carboxyl, amine, isopropyl, phenethyl, and tert-butylphenethyl groups, and study their passivation capability to perovskites. It reveals the carboxyl and amine groups would heal charged defects via electrostatic interactions, and the neutral iodine related defects can be reduced by the aromatic structures. The judicious control of the interaction between perovskite and molecules can further realize grain boundary passivation, including those that are deep toward substrates. Understanding of the underlining mechanisms allows us to design a new passivation molecule, D-4- tert-butylphenylalanine, yielding high-performance p-i-structure solar cells with a stabilized efficiency of 21.4%. The open-circuit voltage ( V ) of a device with an optical bandgap of 1.57 eV for the perovskite layer reaches 1.23 V, corresponding to a record small V deficit of 0.34 V. Our findings provide a guidance for future design of new passivation molecules to realize multiple facets applications in perovskite electronics.
Author Yang, Shuang
Zhou, Yu
Dai, Jun
Huang, Jinsong
Yu, Zhenhua
Xiao, Xun
Shao, Yuchuan
Zeng, Xiao Cheng
Author_xml – sequence: 1
  givenname: Shuang
  orcidid: 0000-0002-8244-3002
  surname: Yang
  fullname: Yang, Shuang
  organization: Department of Applied Physical Sciences , University of North Carolina , Chapel Hill , North Carolina 27599 , United States
– sequence: 2
  givenname: Jun
  surname: Dai
  fullname: Dai, Jun
– sequence: 3
  givenname: Zhenhua
  surname: Yu
  fullname: Yu, Zhenhua
  organization: Department of Applied Physical Sciences , University of North Carolina , Chapel Hill , North Carolina 27599 , United States
– sequence: 4
  givenname: Yuchuan
  surname: Shao
  fullname: Shao, Yuchuan
  organization: Department of Applied Physical Sciences , University of North Carolina , Chapel Hill , North Carolina 27599 , United States
– sequence: 5
  givenname: Yu
  surname: Zhou
  fullname: Zhou, Yu
  organization: Department of Applied Physical Sciences , University of North Carolina , Chapel Hill , North Carolina 27599 , United States
– sequence: 6
  givenname: Xun
  orcidid: 0000-0002-9810-2448
  surname: Xiao
  fullname: Xiao, Xun
  organization: Department of Applied Physical Sciences , University of North Carolina , Chapel Hill , North Carolina 27599 , United States
– sequence: 7
  givenname: Xiao Cheng
  orcidid: 0000-0003-4672-8585
  surname: Zeng
  fullname: Zeng, Xiao Cheng
– sequence: 8
  givenname: Jinsong
  orcidid: 0000-0002-0509-8778
  surname: Huang
  fullname: Huang, Jinsong
  organization: Department of Applied Physical Sciences , University of North Carolina , Chapel Hill , North Carolina 27599 , United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30888171$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLAzEUhYNU7EN3riVLN1NzM5nXUkp9QKWFVrdDJnOnpGYmNckU---tqODqnMXHx-GMyaCzHRJyDWwKjMPdTio_zSuIWQFnZAQJZ1ECPB3860My9n7HGBM8hwsyjFme55DBiLiN1MY63W3pSnqvDzJo29EXa1D1Rjq6Dq5XoXfoaWMdnX8Ghy2aI1230hi63GMXzbRTvQ70zZogt0gX1nuqO7pCZw_-XQeka_stm6Ex_pKcN9J4vPrNCXl9mG9mT9Fi-fg8u19EUqQsRFA1WEvWVJkogGFexWmmECXIImOpYEKoOsY0kVAUohY1NhWvZaaSPBEgsppPyO2Pd-_sR48-lK326rRAdmh7X3IoBCRQ5PyE3vyifdViXe6dbqU7ln8_8S-M4W3P
CitedBy_id crossref_primary_10_1038_s41467_023_36229_1
crossref_primary_10_1039_D4RA02191F
crossref_primary_10_1016_j_carbon_2023_118398
crossref_primary_10_1016_j_joule_2024_11_010
crossref_primary_10_1002_adfm_201902600
crossref_primary_10_1016_j_cej_2023_144975
crossref_primary_10_1088_1674_1056_ac8e9f
crossref_primary_10_1002_solr_202000149
crossref_primary_10_1002_solr_202200955
crossref_primary_10_1002_solr_202300692
crossref_primary_10_1002_adma_202102816
crossref_primary_10_1002_cjoc_201900317
crossref_primary_10_1016_j_cej_2022_134899
crossref_primary_10_1002_solr_202000153
crossref_primary_10_1016_j_nanoen_2025_110904
crossref_primary_10_1002_adma_202211257
crossref_primary_10_1063_5_0276784
crossref_primary_10_1002_adfm_202110069
crossref_primary_10_1021_jacs_1c03419
crossref_primary_10_1002_adma_202302143
crossref_primary_10_1002_smll_202001772
crossref_primary_10_1038_s41578_022_00503_3
crossref_primary_10_1002_adfm_202000778
crossref_primary_10_1007_s10854_020_04696_7
crossref_primary_10_1016_j_cej_2023_141573
crossref_primary_10_1002_smll_202305064
crossref_primary_10_1039_D0NR05739H
crossref_primary_10_1016_j_solener_2020_02_025
crossref_primary_10_1002_solr_202000376
crossref_primary_10_1007_s41939_024_00699_7
crossref_primary_10_1016_j_nanoen_2020_105159
crossref_primary_10_1016_j_nanoen_2022_106922
crossref_primary_10_1002_admi_201900413
crossref_primary_10_1007_s11426_022_1445_2
crossref_primary_10_1016_j_cej_2022_141199
crossref_primary_10_1039_D4EE01008F
crossref_primary_10_1093_nsr_nwad305
crossref_primary_10_1021_jacs_0c09560
crossref_primary_10_1002_aenm_202201787
crossref_primary_10_1002_aenm_201904134
crossref_primary_10_1002_solr_202000288
crossref_primary_10_1002_adfm_202307568
crossref_primary_10_1002_solr_202200852
crossref_primary_10_1016_j_cej_2022_135647
crossref_primary_10_1016_j_cjsc_2024_100454
crossref_primary_10_1002_adma_202005570
crossref_primary_10_1016_j_nanoen_2024_109504
crossref_primary_10_1016_j_chempr_2020_04_013
crossref_primary_10_1016_j_cej_2020_127204
crossref_primary_10_1038_s41560_023_01358_w
crossref_primary_10_1002_advs_202509898
crossref_primary_10_1002_aenm_201903053
crossref_primary_10_1016_j_solener_2021_04_053
crossref_primary_10_1002_aenm_202200111
crossref_primary_10_1016_j_nanoen_2020_105491
crossref_primary_10_1016_j_cej_2024_152978
crossref_primary_10_1002_adfm_202204594
crossref_primary_10_1002_anie_202418763
crossref_primary_10_1039_D3EE03435F
crossref_primary_10_1016_j_nanoen_2020_105377
crossref_primary_10_1002_smll_202311673
crossref_primary_10_1016_j_cej_2021_129931
crossref_primary_10_1002_solr_202300766
crossref_primary_10_1016_j_cej_2023_141788
crossref_primary_10_1016_j_cej_2021_133082
crossref_primary_10_1002_solr_202000107
crossref_primary_10_1002_advs_201903331
crossref_primary_10_1016_j_enchem_2020_100032
crossref_primary_10_1021_jacs_9b13418
crossref_primary_10_1016_j_nanoen_2020_105249
crossref_primary_10_1039_C9RA05371A
crossref_primary_10_1039_D2NR05588K
crossref_primary_10_1016_j_nanoen_2021_105882
crossref_primary_10_1016_j_apsusc_2023_157733
crossref_primary_10_1002_advs_202205072
crossref_primary_10_1016_j_jallcom_2025_179076
crossref_primary_10_1021_acs_jpclett_5c00756
crossref_primary_10_1002_smll_202401487
crossref_primary_10_1016_j_jechem_2020_12_035
crossref_primary_10_1038_s41377_022_01027_9
crossref_primary_10_1039_D2NR05565A
crossref_primary_10_1016_j_cej_2022_136760
crossref_primary_10_1016_j_cej_2022_136644
crossref_primary_10_1016_j_nanoen_2020_105237
crossref_primary_10_1002_er_6293
crossref_primary_10_1088_2515_7655_ac975a
crossref_primary_10_1016_j_cej_2022_136405
crossref_primary_10_1002_adfm_202208859
crossref_primary_10_1002_solr_202000582
crossref_primary_10_1002_adfm_202210728
crossref_primary_10_1007_s40042_023_00984_7
crossref_primary_10_1002_adem_202200747
crossref_primary_10_1002_aenm_202500678
crossref_primary_10_1039_D5TA03920G
crossref_primary_10_1002_solr_202000244
crossref_primary_10_1007_s11426_020_9710_7
crossref_primary_10_1002_cphc_202500022
crossref_primary_10_1002_solr_202000490
crossref_primary_10_1002_solr_202200418
crossref_primary_10_1002_adfm_202207554
crossref_primary_10_1007_s10854_022_08435_y
crossref_primary_10_1016_j_nanoen_2024_109423
crossref_primary_10_1002_ange_202204148
crossref_primary_10_1016_j_orgel_2020_105681
crossref_primary_10_1002_solr_202000113
crossref_primary_10_1007_s11426_024_2567_7
crossref_primary_10_1016_j_surfin_2023_103738
crossref_primary_10_1002_solr_202000481
crossref_primary_10_1002_admi_202101881
crossref_primary_10_1016_j_solmat_2021_111400
crossref_primary_10_1039_D0EE02337J
crossref_primary_10_1002_aenm_201903090
crossref_primary_10_1002_solr_202201092
crossref_primary_10_1002_solr_202000308
crossref_primary_10_1016_j_nanoen_2021_106370
crossref_primary_10_1039_D0NR01142H
crossref_primary_10_1002_aelm_202400042
crossref_primary_10_1002_smtd_202400948
crossref_primary_10_1002_eom2_12158
crossref_primary_10_1016_j_solmat_2024_112768
crossref_primary_10_1002_smll_202406960
crossref_primary_10_1016_j_colsurfa_2024_135032
crossref_primary_10_1016_j_apsusc_2022_153716
crossref_primary_10_1002_adfm_202203898
crossref_primary_10_1016_j_nanoen_2022_107988
crossref_primary_10_1016_j_nanoen_2022_107747
crossref_primary_10_1021_acsaem_4c00914
crossref_primary_10_1016_j_nanoen_2021_106374
crossref_primary_10_1002_solr_202100040
crossref_primary_10_1002_adma_202306466
crossref_primary_10_1016_j_jpowsour_2021_230734
crossref_primary_10_1021_acsaem_5c01647
crossref_primary_10_1016_j_joule_2021_11_003
crossref_primary_10_1016_j_cej_2020_126855
crossref_primary_10_1016_j_mseb_2024_117751
crossref_primary_10_1002_admi_202000366
crossref_primary_10_1021_acsanm_4c07354
crossref_primary_10_1039_D3EE00636K
crossref_primary_10_1038_s41578_019_0151_y
crossref_primary_10_1002_adfm_202308036
crossref_primary_10_1002_adma_201903691
crossref_primary_10_1016_j_jechem_2020_05_040
crossref_primary_10_1002_adma_202507435
crossref_primary_10_1016_j_orgel_2020_105943
crossref_primary_10_1016_j_mtsust_2023_100381
crossref_primary_10_1016_j_orgel_2022_106598
crossref_primary_10_1002_admi_201900252
crossref_primary_10_1039_D1RA02260A
crossref_primary_10_3390_catal11020174
crossref_primary_10_1016_j_optmat_2023_114321
crossref_primary_10_1002_solr_202000205
crossref_primary_10_1016_j_jechem_2021_04_063
crossref_primary_10_32604_jrm_2022_023192
crossref_primary_10_1016_j_nanoen_2022_107529
crossref_primary_10_1016_j_jechem_2021_03_024
crossref_primary_10_1016_j_cej_2021_134311
crossref_primary_10_1002_ange_202105512
crossref_primary_10_1002_adfm_202204642
crossref_primary_10_1002_aenm_202000173
crossref_primary_10_1002_anie_202309831
crossref_primary_10_1002_solr_202100386
crossref_primary_10_1016_j_snb_2021_130298
crossref_primary_10_1016_j_nanoen_2021_106113
crossref_primary_10_1002_ange_202418763
crossref_primary_10_1021_acsaem_5c00535
crossref_primary_10_1016_j_cej_2023_145632
crossref_primary_10_1016_j_cej_2023_142122
crossref_primary_10_1002_adfm_202402110
crossref_primary_10_1002_anie_202505667
crossref_primary_10_1016_j_cej_2025_163528
crossref_primary_10_1002_cssc_201903288
crossref_primary_10_1002_anie_202213560
crossref_primary_10_1016_j_jallcom_2023_172340
crossref_primary_10_1002_aenm_202101080
crossref_primary_10_1002_aenm_202102290
crossref_primary_10_1007_s10854_023_10008_6
crossref_primary_10_1002_adma_202006004
crossref_primary_10_1002_adma_202502916
crossref_primary_10_1016_j_cej_2023_143446
crossref_primary_10_1016_j_jechem_2020_04_049
crossref_primary_10_1016_j_matt_2023_12_003
crossref_primary_10_1002_solr_202300253
crossref_primary_10_1002_adma_202310651
crossref_primary_10_1039_D4EE00865K
crossref_primary_10_1002_ange_202104201
crossref_primary_10_1002_aenm_202202982
crossref_primary_10_1002_adma_202100791
crossref_primary_10_1016_j_jpowsour_2021_230534
crossref_primary_10_1002_anie_202117067
crossref_primary_10_1002_adfm_202201036
crossref_primary_10_1038_s41467_022_34203_x
crossref_primary_10_1002_advs_202408919
crossref_primary_10_1016_j_jallcom_2025_181432
crossref_primary_10_1002_adma_202402480
crossref_primary_10_1021_acsami_5c09196
crossref_primary_10_1016_j_jssc_2022_122891
crossref_primary_10_1021_jacs_3c09327
crossref_primary_10_1002_adfm_202100516
crossref_primary_10_1002_anie_201905521
crossref_primary_10_1002_aenm_202202868
crossref_primary_10_1002_cphc_202200581
crossref_primary_10_1126_science_add8786
crossref_primary_10_1002_inf2_12307
crossref_primary_10_1002_inf2_12423
crossref_primary_10_1016_j_apsusc_2021_151740
crossref_primary_10_1002_solr_202100190
crossref_primary_10_1021_acsami_4c14477
crossref_primary_10_35848_1882_0786_ad2a05
crossref_primary_10_1002_admi_202200464
crossref_primary_10_1016_j_joule_2020_04_006
crossref_primary_10_1016_j_jallcom_2025_179119
crossref_primary_10_1002_adfm_202412458
crossref_primary_10_1016_j_chempr_2021_11_010
crossref_primary_10_1016_j_joule_2020_04_001
crossref_primary_10_1039_D1EE02248B
crossref_primary_10_1002_smtd_202101079
crossref_primary_10_1016_j_jechem_2021_04_021
crossref_primary_10_1016_j_jechem_2021_04_023
crossref_primary_10_1039_D1EE02454J
crossref_primary_10_1016_j_cej_2023_143789
crossref_primary_10_1002_solr_202500566
crossref_primary_10_1002_solr_202000647
crossref_primary_10_1016_j_jechem_2022_12_029
crossref_primary_10_1002_anie_202213478
crossref_primary_10_1002_ange_202404289
crossref_primary_10_1016_j_cej_2021_134358
crossref_primary_10_1016_j_mtchem_2023_101799
crossref_primary_10_1063_5_0063935
crossref_primary_10_1007_s11426_020_9741_1
crossref_primary_10_1002_aenm_201902726
crossref_primary_10_1007_s40820_021_00683_7
crossref_primary_10_1002_ange_202116308
crossref_primary_10_1002_aenm_201902600
crossref_primary_10_1016_j_cej_2021_134223
crossref_primary_10_1002_smtd_202000441
crossref_primary_10_1016_j_cej_2022_135974
crossref_primary_10_1039_C9EE02268F
crossref_primary_10_1002_solr_202100295
crossref_primary_10_1002_aenm_202000361
crossref_primary_10_1016_j_nanoen_2021_106445
crossref_primary_10_1007_s12274_021_3673_8
crossref_primary_10_1016_j_jmst_2020_08_051
crossref_primary_10_1021_jacs_2c13307
crossref_primary_10_1016_j_mtener_2021_100847
crossref_primary_10_1002_aenm_201902650
crossref_primary_10_1016_j_jechem_2019_11_023
crossref_primary_10_1016_j_jcis_2023_03_034
crossref_primary_10_1016_j_solmat_2020_110862
crossref_primary_10_1002_smll_202408993
crossref_primary_10_1016_j_mtphys_2023_101135
crossref_primary_10_1038_s41586_021_04216_5
crossref_primary_10_1016_j_jechem_2021_01_037
crossref_primary_10_1007_s40820_022_00807_7
crossref_primary_10_1088_2752_5724_acb838
crossref_primary_10_1016_j_optmat_2025_116804
crossref_primary_10_1088_1674_4926_44_8_080201
crossref_primary_10_1038_s41467_020_16831_3
crossref_primary_10_1002_adma_201902762
crossref_primary_10_1002_solr_202200171
crossref_primary_10_1016_j_orgel_2025_107228
crossref_primary_10_1016_j_nanoen_2019_104189
crossref_primary_10_1002_smtd_201900511
crossref_primary_10_1002_solr_202200297
crossref_primary_10_1002_smll_201907531
crossref_primary_10_1002_adfm_202417310
crossref_primary_10_1007_s12274_022_4894_1
crossref_primary_10_1039_D1EE00062D
crossref_primary_10_1039_D4EE02917H
crossref_primary_10_1002_adfm_202200534
crossref_primary_10_1002_adfm_202105290
crossref_primary_10_1002_ange_202016085
crossref_primary_10_1002_adfm_202304503
crossref_primary_10_1016_j_surfin_2021_101213
crossref_primary_10_1002_anie_202218752
crossref_primary_10_1016_j_nanoen_2022_107579
crossref_primary_10_1002_ange_202213478
crossref_primary_10_1002_aenm_202002882
crossref_primary_10_1002_adma_202105635
crossref_primary_10_1002_ange_202309831
crossref_primary_10_1002_cssc_202400510
crossref_primary_10_1002_aenm_202000687
crossref_primary_10_1002_aenm_202002989
crossref_primary_10_1016_j_jechem_2022_02_016
crossref_primary_10_1016_j_cej_2022_139321
crossref_primary_10_1002_adfm_202108567
crossref_primary_10_1016_j_electacta_2021_137812
crossref_primary_10_1016_j_mtchem_2023_101511
crossref_primary_10_1088_1361_6463_ace1fb
crossref_primary_10_1002_aenm_202300610
crossref_primary_10_1002_cssc_202101573
crossref_primary_10_1016_j_nanoen_2023_108731
crossref_primary_10_1002_anie_202216668
crossref_primary_10_1016_j_jechem_2023_04_015
crossref_primary_10_1016_j_matt_2021_10_026
crossref_primary_10_1016_j_jpowsour_2020_228502
crossref_primary_10_1002_chem_202302703
crossref_primary_10_1021_jacs_1c05122
crossref_primary_10_1002_slct_202400957
crossref_primary_10_1039_D0QM01064B
crossref_primary_10_1039_D1EE00869B
crossref_primary_10_1016_j_cej_2024_153386
crossref_primary_10_1002_inf2_12369
crossref_primary_10_1016_j_cej_2024_155686
crossref_primary_10_1002_adfm_202005776
crossref_primary_10_1016_j_solmat_2019_110379
crossref_primary_10_1016_j_jechem_2019_11_015
crossref_primary_10_1002_smtd_202500395
crossref_primary_10_1016_j_jechem_2020_07_050
crossref_primary_10_1103_PhysRevApplied_12_014017
crossref_primary_10_1016_j_cej_2021_129482
crossref_primary_10_1021_jacs_4c13866
crossref_primary_10_1002_adfm_202212577
crossref_primary_10_1002_smtd_202100046
crossref_primary_10_1021_jacs_4c05904
crossref_primary_10_1002_aenm_201902573
crossref_primary_10_1002_admi_202201939
crossref_primary_10_1007_s42114_021_00238_9
crossref_primary_10_1002_pssa_202100406
crossref_primary_10_1007_s10854_024_12316_x
crossref_primary_10_1016_j_jpowsour_2024_236124
crossref_primary_10_1016_j_cej_2022_139345
crossref_primary_10_1002_aenm_201902579
crossref_primary_10_1002_anie_202204148
crossref_primary_10_1002_smtd_202101257
crossref_primary_10_1002_adfm_202412068
crossref_primary_10_1002_anie_202016085
crossref_primary_10_1002_ange_202213560
crossref_primary_10_1016_j_surfin_2021_101420
crossref_primary_10_1002_smll_202005495
crossref_primary_10_1016_j_mtener_2024_101741
crossref_primary_10_1002_adfm_202423096
crossref_primary_10_1002_aesr_202200173
crossref_primary_10_1002_adfm_202104036
crossref_primary_10_1002_anie_202313833
crossref_primary_10_1039_D0MH00745E
crossref_primary_10_1016_j_mtener_2022_101191
crossref_primary_10_3390_nano11030775
crossref_primary_10_1016_j_cej_2022_138028
crossref_primary_10_1021_acsmaterialslett_4c01998
crossref_primary_10_1002_adfm_202002366
crossref_primary_10_1016_j_dyepig_2020_108334
crossref_primary_10_1016_j_jechem_2021_01_001
crossref_primary_10_1016_j_cej_2021_132426
crossref_primary_10_1016_j_cplett_2021_138362
crossref_primary_10_1016_j_cej_2019_122298
crossref_primary_10_1002_ange_202102538
crossref_primary_10_1016_j_orgel_2023_106984
crossref_primary_10_1088_1674_1056_ac1fe0
crossref_primary_10_1002_smtd_202400643
crossref_primary_10_1021_acsami_5c08172
crossref_primary_10_1016_j_cej_2021_131358
crossref_primary_10_1002_solr_202201079
crossref_primary_10_1002_anie_202017148
crossref_primary_10_1016_j_apsusc_2024_161922
crossref_primary_10_1016_j_joule_2024_01_020
crossref_primary_10_1002_solr_201900421
crossref_primary_10_1002_anie_202102538
crossref_primary_10_1016_j_mtener_2022_101049
crossref_primary_10_1364_OE_561644
crossref_primary_10_1063_5_0052402
crossref_primary_10_1002_adma_202200705
crossref_primary_10_3390_mi13111857
crossref_primary_10_1007_s10854_024_14104_z
crossref_primary_10_1002_ange_202017148
crossref_primary_10_3390_cryst11030295
crossref_primary_10_3389_fchem_2020_00352
crossref_primary_10_1002_adma_202000995
crossref_primary_10_1002_solr_201900413
crossref_primary_10_1002_cssc_202102474
crossref_primary_10_1016_j_orgel_2021_106158
crossref_primary_10_1016_j_mtnano_2021_100118
crossref_primary_10_1126_science_abd4016
crossref_primary_10_1002_adma_202303635
crossref_primary_10_1002_solr_202100710
crossref_primary_10_1016_j_nanoen_2022_108154
crossref_primary_10_1021_acs_nanolett_5c03659
crossref_primary_10_1002_adma_202000186
crossref_primary_10_1142_S0217979225300038
crossref_primary_10_1002_aenm_201902492
crossref_primary_10_1016_j_apsusc_2024_160257
crossref_primary_10_1016_j_jallcom_2023_170606
crossref_primary_10_1002_adma_202501588
crossref_primary_10_1002_aesr_202300275
crossref_primary_10_1002_solr_202300730
crossref_primary_10_1016_j_apsusc_2022_154248
crossref_primary_10_1002_solr_201900206
crossref_primary_10_1002_smll_202204763
crossref_primary_10_1016_j_cej_2023_148249
crossref_primary_10_1002_solr_202500173
crossref_primary_10_1007_s40820_020_00418_0
crossref_primary_10_1002_aenm_201902142
crossref_primary_10_1007_s10853_020_05685_1
crossref_primary_10_1007_s12598_020_01680_2
crossref_primary_10_1002_smll_202203319
crossref_primary_10_1002_smtd_202400039
crossref_primary_10_1002_ente_202200061
crossref_primary_10_1039_D4SE01096E
crossref_primary_10_1016_j_mtcomm_2023_107879
crossref_primary_10_1016_j_physb_2025_417268
crossref_primary_10_1002_adfm_202006802
crossref_primary_10_1002_ente_202201159
crossref_primary_10_1016_j_cej_2020_127387
crossref_primary_10_1016_j_nanoen_2022_107298
crossref_primary_10_1002_ente_202100691
crossref_primary_10_1002_ange_202505667
crossref_primary_10_1016_j_nanoen_2023_108691
crossref_primary_10_1002_aenm_202403021
crossref_primary_10_1002_ange_202313833
crossref_primary_10_1002_adma_202002585
crossref_primary_10_1002_aenm_202100493
crossref_primary_10_1002_adma_201907361
crossref_primary_10_1021_jacs_0c09845
crossref_primary_10_1002_adma_202312014
crossref_primary_10_1002_ange_202218752
crossref_primary_10_1016_j_jlumin_2025_121281
crossref_primary_10_1002_adfm_202412965
crossref_primary_10_1002_solr_201900468
crossref_primary_10_1002_smll_202308847
crossref_primary_10_1016_j_joule_2020_08_016
crossref_primary_10_1016_j_jechem_2025_06_047
crossref_primary_10_1016_j_nanoen_2022_107193
crossref_primary_10_1016_j_sse_2023_108799
crossref_primary_10_1038_s41467_020_17482_0
crossref_primary_10_1002_solr_202300714
crossref_primary_10_1007_s10854_023_10417_7
crossref_primary_10_1038_s41467_025_56182_5
crossref_primary_10_1039_D5TA05906B
crossref_primary_10_1016_j_joule_2024_08_003
crossref_primary_10_1002_smll_202503174
crossref_primary_10_1002_slct_202302617
crossref_primary_10_1016_j_jpowsour_2020_228857
crossref_primary_10_1016_j_nanoen_2023_108990
crossref_primary_10_1038_s41560_019_0538_4
crossref_primary_10_1002_solr_202400011
crossref_primary_10_1002_solr_202200364
crossref_primary_10_1002_solr_202300921
crossref_primary_10_1002_solr_202000069
crossref_primary_10_1016_j_physb_2022_414363
crossref_primary_10_1002_aenm_202102844
crossref_primary_10_1002_solr_201900243
crossref_primary_10_1002_solr_202200115
crossref_primary_10_1002_aenm_202202189
crossref_primary_10_1002_solr_202000197
crossref_primary_10_1016_j_cej_2022_136118
crossref_primary_10_1016_j_cej_2022_139988
crossref_primary_10_1002_adsu_202000078
crossref_primary_10_1002_solr_201900248
crossref_primary_10_1016_j_cej_2020_128167
crossref_primary_10_1515_pac_2019_0505
crossref_primary_10_1002_adma_202001581
crossref_primary_10_1039_D1EE01508G
crossref_primary_10_1002_adma_202503435
crossref_primary_10_1002_anie_202105512
crossref_primary_10_1002_sstr_202000050
crossref_primary_10_1016_j_nanoen_2020_105634
crossref_primary_10_1002_solr_202000060
crossref_primary_10_1088_2515_7655_abf29a
crossref_primary_10_1007_s12200_022_00038_z
crossref_primary_10_1142_S1793604722510353
crossref_primary_10_1002_ange_202216668
crossref_primary_10_1002_ange_202117067
crossref_primary_10_1002_smll_202205962
crossref_primary_10_1002_aenm_202300661
crossref_primary_10_1016_j_apsusc_2022_155640
crossref_primary_10_1039_D0EE01767A
crossref_primary_10_1002_ange_201905521
crossref_primary_10_1002_anie_202116308
crossref_primary_10_1016_j_cej_2022_136136
crossref_primary_10_1016_j_jechem_2024_11_024
crossref_primary_10_1038_s41570_023_00510_0
crossref_primary_10_1002_adfm_202107726
crossref_primary_10_1002_adfm_202103121
crossref_primary_10_1039_D3EE02475J
crossref_primary_10_1016_j_cjsc_2023_100087
crossref_primary_10_1016_j_mssp_2024_108184
crossref_primary_10_1002_adma_202307709
crossref_primary_10_1002_aenm_201904102
crossref_primary_10_1002_adma_202419573
crossref_primary_10_1016_j_solmat_2021_111242
crossref_primary_10_1002_adfm_202303673
crossref_primary_10_1038_s41467_023_39260_4
crossref_primary_10_1002_adfm_202010368
crossref_primary_10_1002_anie_202404289
crossref_primary_10_1002_anie_202104201
crossref_primary_10_1007_s42114_023_00691_8
crossref_primary_10_1002_aenm_202003073
crossref_primary_10_1039_D3NR01296D
crossref_primary_10_3390_photonics11010087
crossref_primary_10_1002_adfm_202503504
crossref_primary_10_1016_j_orgel_2022_106731
crossref_primary_10_1007_s11426_019_9649_2
crossref_primary_10_1016_j_nanoen_2022_107036
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/jacs.8b13091
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
ExternalDocumentID 30888171
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
AAHBH
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AETEA
AFEFF
AGXLV
AHDLI
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
DU5
EBS
ED~
EJD
F5P
GGK
GNL
IH2
IH9
JG~
LG6
NPM
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
W1F
WH7
XSW
YQT
YZZ
ZCA
~02
7X8
AAYWT
ABBLG
ABLBI
ID FETCH-LOGICAL-a460t-1bfeda0fb74910e8b367ceea1a97064044cd3e65a1994d4defb2da7c5854147d2
IEDL.DBID 7X8
ISICitedReferencesCount 678
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464769000030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-5126
IngestDate Wed Oct 01 12:53:04 EDT 2025
Thu Apr 03 06:54:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-1bfeda0fb74910e8b367ceea1a97064044cd3e65a1994d4defb2da7c5854147d2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4672-8585
0000-0002-8244-3002
0000-0002-9810-2448
0000-0002-0509-8778
PMID 30888171
PQID 2194151982
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2194151982
pubmed_primary_30888171
PublicationCentury 2000
PublicationDate 2019-04-10
PublicationDateYYYYMMDD 2019-04-10
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J Am Chem Soc
PublicationYear 2019
SSID ssj0004281
Score 2.7095659
Snippet Passivation of electronic defects at the surface and grain boundaries of perovskite materials has become one of the most important strategies to suppress...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 5781
Title Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells
URI https://www.ncbi.nlm.nih.gov/pubmed/30888171
https://www.proquest.com/docview/2194151982
Volume 141
WOSCitedRecordID wos000464769000030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UCnrx_agvVvAa7SbbbHISCS0ebCm0Sm9lnxCJSW3Sov_e2TzQiyB4yS0QJrvzfd_MMB9CN4qEQviSO8IzgUMl78Kdo56jmV13boT0AlOaTbDhMJhOw1FdcMvrscomJ5aJWmXS1sjv4GYB1oBEdu_n7451jbLd1dpCYx21PKAydqSLTX9sC3eDal8qSCQANr8efAdYu3vlMr8NBGTwkPxOLkuQ6e_-9_P20E5NL_FDdR720ZpOD9BW1Li6HaLFhMfV0B0eAW-uvc3woHHJxeNyoewSVDgGPot7H4WtICafePzGkwTbARQnihdyGRf4JUsKyEf4CZAWxyke6UW2ym09GI-tZMaRTpL8CD33e5Po0al9FxxO_U7hEGG04h0jGAUyoQPh-QywlBMeMtv4o1QqT_tdbvcKK6q0Ea7iTILyoIQy5R6jjTRL9SnCPlFdEGTCNSHoQGEDTjWDWBlXAbnx2-i6CecMAmGbFTzV2TKffQe0jU6qfzKbVws4Zh6kxoAwcvaHt8_RNnCcsgFEOheoZeBW60u0KVdFnC-uygMDz-Fo8AUraM1A
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+Passivation+Molecular+Structures+for+Extremely+Small+Open-Circuit+Voltage+Loss+in+Perovskite+Solar+Cells&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Yang%2C+Shuang&rft.au=Dai%2C+Jun&rft.au=Yu%2C+Zhenhua&rft.au=Shao%2C+Yuchuan&rft.date=2019-04-10&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=141&rft.issue=14&rft.spage=5781&rft_id=info:doi/10.1021%2Fjacs.8b13091&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-5126&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-5126&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-5126&client=summon