Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells
Passivation of electronic defects at the surface and grain boundaries of perovskite materials has become one of the most important strategies to suppress charge recombination in both polycrystalline and single-crystalline perovskite solar cells. Although many passivation molecules have been reported...
Uloženo v:
| Vydáno v: | Journal of the American Chemical Society Ročník 141; číslo 14; s. 5781 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
10.04.2019
|
| ISSN: | 1520-5126, 1520-5126 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Passivation of electronic defects at the surface and grain boundaries of perovskite materials has become one of the most important strategies to suppress charge recombination in both polycrystalline and single-crystalline perovskite solar cells. Although many passivation molecules have been reported, it remains very unclear regarding the passivation mechanisms of various functional groups. Here, we systematically engineer the structures of passivation molecular functional groups, including carboxyl, amine, isopropyl, phenethyl, and tert-butylphenethyl groups, and study their passivation capability to perovskites. It reveals the carboxyl and amine groups would heal charged defects via electrostatic interactions, and the neutral iodine related defects can be reduced by the aromatic structures. The judicious control of the interaction between perovskite and molecules can further realize grain boundary passivation, including those that are deep toward substrates. Understanding of the underlining mechanisms allows us to design a new passivation molecule, D-4- tert-butylphenylalanine, yielding high-performance p-i-structure solar cells with a stabilized efficiency of 21.4%. The open-circuit voltage ( V
) of a device with an optical bandgap of 1.57 eV for the perovskite layer reaches 1.23 V, corresponding to a record small V
deficit of 0.34 V. Our findings provide a guidance for future design of new passivation molecules to realize multiple facets applications in perovskite electronics. |
|---|---|
| AbstractList | Passivation of electronic defects at the surface and grain boundaries of perovskite materials has become one of the most important strategies to suppress charge recombination in both polycrystalline and single-crystalline perovskite solar cells. Although many passivation molecules have been reported, it remains very unclear regarding the passivation mechanisms of various functional groups. Here, we systematically engineer the structures of passivation molecular functional groups, including carboxyl, amine, isopropyl, phenethyl, and tert-butylphenethyl groups, and study their passivation capability to perovskites. It reveals the carboxyl and amine groups would heal charged defects via electrostatic interactions, and the neutral iodine related defects can be reduced by the aromatic structures. The judicious control of the interaction between perovskite and molecules can further realize grain boundary passivation, including those that are deep toward substrates. Understanding of the underlining mechanisms allows us to design a new passivation molecule, D-4- tert-butylphenylalanine, yielding high-performance p-i-structure solar cells with a stabilized efficiency of 21.4%. The open-circuit voltage ( VOC) of a device with an optical bandgap of 1.57 eV for the perovskite layer reaches 1.23 V, corresponding to a record small VOC deficit of 0.34 V. Our findings provide a guidance for future design of new passivation molecules to realize multiple facets applications in perovskite electronics.Passivation of electronic defects at the surface and grain boundaries of perovskite materials has become one of the most important strategies to suppress charge recombination in both polycrystalline and single-crystalline perovskite solar cells. Although many passivation molecules have been reported, it remains very unclear regarding the passivation mechanisms of various functional groups. Here, we systematically engineer the structures of passivation molecular functional groups, including carboxyl, amine, isopropyl, phenethyl, and tert-butylphenethyl groups, and study their passivation capability to perovskites. It reveals the carboxyl and amine groups would heal charged defects via electrostatic interactions, and the neutral iodine related defects can be reduced by the aromatic structures. The judicious control of the interaction between perovskite and molecules can further realize grain boundary passivation, including those that are deep toward substrates. Understanding of the underlining mechanisms allows us to design a new passivation molecule, D-4- tert-butylphenylalanine, yielding high-performance p-i-structure solar cells with a stabilized efficiency of 21.4%. The open-circuit voltage ( VOC) of a device with an optical bandgap of 1.57 eV for the perovskite layer reaches 1.23 V, corresponding to a record small VOC deficit of 0.34 V. Our findings provide a guidance for future design of new passivation molecules to realize multiple facets applications in perovskite electronics. Passivation of electronic defects at the surface and grain boundaries of perovskite materials has become one of the most important strategies to suppress charge recombination in both polycrystalline and single-crystalline perovskite solar cells. Although many passivation molecules have been reported, it remains very unclear regarding the passivation mechanisms of various functional groups. Here, we systematically engineer the structures of passivation molecular functional groups, including carboxyl, amine, isopropyl, phenethyl, and tert-butylphenethyl groups, and study their passivation capability to perovskites. It reveals the carboxyl and amine groups would heal charged defects via electrostatic interactions, and the neutral iodine related defects can be reduced by the aromatic structures. The judicious control of the interaction between perovskite and molecules can further realize grain boundary passivation, including those that are deep toward substrates. Understanding of the underlining mechanisms allows us to design a new passivation molecule, D-4- tert-butylphenylalanine, yielding high-performance p-i-structure solar cells with a stabilized efficiency of 21.4%. The open-circuit voltage ( V ) of a device with an optical bandgap of 1.57 eV for the perovskite layer reaches 1.23 V, corresponding to a record small V deficit of 0.34 V. Our findings provide a guidance for future design of new passivation molecules to realize multiple facets applications in perovskite electronics. |
| Author | Yang, Shuang Zhou, Yu Dai, Jun Huang, Jinsong Yu, Zhenhua Xiao, Xun Shao, Yuchuan Zeng, Xiao Cheng |
| Author_xml | – sequence: 1 givenname: Shuang orcidid: 0000-0002-8244-3002 surname: Yang fullname: Yang, Shuang organization: Department of Applied Physical Sciences , University of North Carolina , Chapel Hill , North Carolina 27599 , United States – sequence: 2 givenname: Jun surname: Dai fullname: Dai, Jun – sequence: 3 givenname: Zhenhua surname: Yu fullname: Yu, Zhenhua organization: Department of Applied Physical Sciences , University of North Carolina , Chapel Hill , North Carolina 27599 , United States – sequence: 4 givenname: Yuchuan surname: Shao fullname: Shao, Yuchuan organization: Department of Applied Physical Sciences , University of North Carolina , Chapel Hill , North Carolina 27599 , United States – sequence: 5 givenname: Yu surname: Zhou fullname: Zhou, Yu organization: Department of Applied Physical Sciences , University of North Carolina , Chapel Hill , North Carolina 27599 , United States – sequence: 6 givenname: Xun orcidid: 0000-0002-9810-2448 surname: Xiao fullname: Xiao, Xun organization: Department of Applied Physical Sciences , University of North Carolina , Chapel Hill , North Carolina 27599 , United States – sequence: 7 givenname: Xiao Cheng orcidid: 0000-0003-4672-8585 surname: Zeng fullname: Zeng, Xiao Cheng – sequence: 8 givenname: Jinsong orcidid: 0000-0002-0509-8778 surname: Huang fullname: Huang, Jinsong organization: Department of Applied Physical Sciences , University of North Carolina , Chapel Hill , North Carolina 27599 , United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30888171$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLAzEUhYNU7EN3riVLN1NzM5nXUkp9QKWFVrdDJnOnpGYmNckU---tqODqnMXHx-GMyaCzHRJyDWwKjMPdTio_zSuIWQFnZAQJZ1ECPB3860My9n7HGBM8hwsyjFme55DBiLiN1MY63W3pSnqvDzJo29EXa1D1Rjq6Dq5XoXfoaWMdnX8Ghy2aI1230hi63GMXzbRTvQ70zZogt0gX1nuqO7pCZw_-XQeka_stm6Ex_pKcN9J4vPrNCXl9mG9mT9Fi-fg8u19EUqQsRFA1WEvWVJkogGFexWmmECXIImOpYEKoOsY0kVAUohY1NhWvZaaSPBEgsppPyO2Pd-_sR48-lK326rRAdmh7X3IoBCRQ5PyE3vyifdViXe6dbqU7ln8_8S-M4W3P |
| CitedBy_id | crossref_primary_10_1038_s41467_023_36229_1 crossref_primary_10_1039_D4RA02191F crossref_primary_10_1016_j_carbon_2023_118398 crossref_primary_10_1016_j_joule_2024_11_010 crossref_primary_10_1002_adfm_201902600 crossref_primary_10_1016_j_cej_2023_144975 crossref_primary_10_1088_1674_1056_ac8e9f crossref_primary_10_1002_solr_202000149 crossref_primary_10_1002_solr_202200955 crossref_primary_10_1002_solr_202300692 crossref_primary_10_1002_adma_202102816 crossref_primary_10_1002_cjoc_201900317 crossref_primary_10_1016_j_cej_2022_134899 crossref_primary_10_1002_solr_202000153 crossref_primary_10_1016_j_nanoen_2025_110904 crossref_primary_10_1002_adma_202211257 crossref_primary_10_1063_5_0276784 crossref_primary_10_1002_adfm_202110069 crossref_primary_10_1021_jacs_1c03419 crossref_primary_10_1002_adma_202302143 crossref_primary_10_1002_smll_202001772 crossref_primary_10_1038_s41578_022_00503_3 crossref_primary_10_1002_adfm_202000778 crossref_primary_10_1007_s10854_020_04696_7 crossref_primary_10_1016_j_cej_2023_141573 crossref_primary_10_1002_smll_202305064 crossref_primary_10_1039_D0NR05739H crossref_primary_10_1016_j_solener_2020_02_025 crossref_primary_10_1002_solr_202000376 crossref_primary_10_1007_s41939_024_00699_7 crossref_primary_10_1016_j_nanoen_2020_105159 crossref_primary_10_1016_j_nanoen_2022_106922 crossref_primary_10_1002_admi_201900413 crossref_primary_10_1007_s11426_022_1445_2 crossref_primary_10_1016_j_cej_2022_141199 crossref_primary_10_1039_D4EE01008F crossref_primary_10_1093_nsr_nwad305 crossref_primary_10_1021_jacs_0c09560 crossref_primary_10_1002_aenm_202201787 crossref_primary_10_1002_aenm_201904134 crossref_primary_10_1002_solr_202000288 crossref_primary_10_1002_adfm_202307568 crossref_primary_10_1002_solr_202200852 crossref_primary_10_1016_j_cej_2022_135647 crossref_primary_10_1016_j_cjsc_2024_100454 crossref_primary_10_1002_adma_202005570 crossref_primary_10_1016_j_nanoen_2024_109504 crossref_primary_10_1016_j_chempr_2020_04_013 crossref_primary_10_1016_j_cej_2020_127204 crossref_primary_10_1038_s41560_023_01358_w crossref_primary_10_1002_advs_202509898 crossref_primary_10_1002_aenm_201903053 crossref_primary_10_1016_j_solener_2021_04_053 crossref_primary_10_1002_aenm_202200111 crossref_primary_10_1016_j_nanoen_2020_105491 crossref_primary_10_1016_j_cej_2024_152978 crossref_primary_10_1002_adfm_202204594 crossref_primary_10_1002_anie_202418763 crossref_primary_10_1039_D3EE03435F crossref_primary_10_1016_j_nanoen_2020_105377 crossref_primary_10_1002_smll_202311673 crossref_primary_10_1016_j_cej_2021_129931 crossref_primary_10_1002_solr_202300766 crossref_primary_10_1016_j_cej_2023_141788 crossref_primary_10_1016_j_cej_2021_133082 crossref_primary_10_1002_solr_202000107 crossref_primary_10_1002_advs_201903331 crossref_primary_10_1016_j_enchem_2020_100032 crossref_primary_10_1021_jacs_9b13418 crossref_primary_10_1016_j_nanoen_2020_105249 crossref_primary_10_1039_C9RA05371A crossref_primary_10_1039_D2NR05588K crossref_primary_10_1016_j_nanoen_2021_105882 crossref_primary_10_1016_j_apsusc_2023_157733 crossref_primary_10_1002_advs_202205072 crossref_primary_10_1016_j_jallcom_2025_179076 crossref_primary_10_1021_acs_jpclett_5c00756 crossref_primary_10_1002_smll_202401487 crossref_primary_10_1016_j_jechem_2020_12_035 crossref_primary_10_1038_s41377_022_01027_9 crossref_primary_10_1039_D2NR05565A crossref_primary_10_1016_j_cej_2022_136760 crossref_primary_10_1016_j_cej_2022_136644 crossref_primary_10_1016_j_nanoen_2020_105237 crossref_primary_10_1002_er_6293 crossref_primary_10_1088_2515_7655_ac975a crossref_primary_10_1016_j_cej_2022_136405 crossref_primary_10_1002_adfm_202208859 crossref_primary_10_1002_solr_202000582 crossref_primary_10_1002_adfm_202210728 crossref_primary_10_1007_s40042_023_00984_7 crossref_primary_10_1002_adem_202200747 crossref_primary_10_1002_aenm_202500678 crossref_primary_10_1039_D5TA03920G crossref_primary_10_1002_solr_202000244 crossref_primary_10_1007_s11426_020_9710_7 crossref_primary_10_1002_cphc_202500022 crossref_primary_10_1002_solr_202000490 crossref_primary_10_1002_solr_202200418 crossref_primary_10_1002_adfm_202207554 crossref_primary_10_1007_s10854_022_08435_y crossref_primary_10_1016_j_nanoen_2024_109423 crossref_primary_10_1002_ange_202204148 crossref_primary_10_1016_j_orgel_2020_105681 crossref_primary_10_1002_solr_202000113 crossref_primary_10_1007_s11426_024_2567_7 crossref_primary_10_1016_j_surfin_2023_103738 crossref_primary_10_1002_solr_202000481 crossref_primary_10_1002_admi_202101881 crossref_primary_10_1016_j_solmat_2021_111400 crossref_primary_10_1039_D0EE02337J crossref_primary_10_1002_aenm_201903090 crossref_primary_10_1002_solr_202201092 crossref_primary_10_1002_solr_202000308 crossref_primary_10_1016_j_nanoen_2021_106370 crossref_primary_10_1039_D0NR01142H crossref_primary_10_1002_aelm_202400042 crossref_primary_10_1002_smtd_202400948 crossref_primary_10_1002_eom2_12158 crossref_primary_10_1016_j_solmat_2024_112768 crossref_primary_10_1002_smll_202406960 crossref_primary_10_1016_j_colsurfa_2024_135032 crossref_primary_10_1016_j_apsusc_2022_153716 crossref_primary_10_1002_adfm_202203898 crossref_primary_10_1016_j_nanoen_2022_107988 crossref_primary_10_1016_j_nanoen_2022_107747 crossref_primary_10_1021_acsaem_4c00914 crossref_primary_10_1016_j_nanoen_2021_106374 crossref_primary_10_1002_solr_202100040 crossref_primary_10_1002_adma_202306466 crossref_primary_10_1016_j_jpowsour_2021_230734 crossref_primary_10_1021_acsaem_5c01647 crossref_primary_10_1016_j_joule_2021_11_003 crossref_primary_10_1016_j_cej_2020_126855 crossref_primary_10_1016_j_mseb_2024_117751 crossref_primary_10_1002_admi_202000366 crossref_primary_10_1021_acsanm_4c07354 crossref_primary_10_1039_D3EE00636K crossref_primary_10_1038_s41578_019_0151_y crossref_primary_10_1002_adfm_202308036 crossref_primary_10_1002_adma_201903691 crossref_primary_10_1016_j_jechem_2020_05_040 crossref_primary_10_1002_adma_202507435 crossref_primary_10_1016_j_orgel_2020_105943 crossref_primary_10_1016_j_mtsust_2023_100381 crossref_primary_10_1016_j_orgel_2022_106598 crossref_primary_10_1002_admi_201900252 crossref_primary_10_1039_D1RA02260A crossref_primary_10_3390_catal11020174 crossref_primary_10_1016_j_optmat_2023_114321 crossref_primary_10_1002_solr_202000205 crossref_primary_10_1016_j_jechem_2021_04_063 crossref_primary_10_32604_jrm_2022_023192 crossref_primary_10_1016_j_nanoen_2022_107529 crossref_primary_10_1016_j_jechem_2021_03_024 crossref_primary_10_1016_j_cej_2021_134311 crossref_primary_10_1002_ange_202105512 crossref_primary_10_1002_adfm_202204642 crossref_primary_10_1002_aenm_202000173 crossref_primary_10_1002_anie_202309831 crossref_primary_10_1002_solr_202100386 crossref_primary_10_1016_j_snb_2021_130298 crossref_primary_10_1016_j_nanoen_2021_106113 crossref_primary_10_1002_ange_202418763 crossref_primary_10_1021_acsaem_5c00535 crossref_primary_10_1016_j_cej_2023_145632 crossref_primary_10_1016_j_cej_2023_142122 crossref_primary_10_1002_adfm_202402110 crossref_primary_10_1002_anie_202505667 crossref_primary_10_1016_j_cej_2025_163528 crossref_primary_10_1002_cssc_201903288 crossref_primary_10_1002_anie_202213560 crossref_primary_10_1016_j_jallcom_2023_172340 crossref_primary_10_1002_aenm_202101080 crossref_primary_10_1002_aenm_202102290 crossref_primary_10_1007_s10854_023_10008_6 crossref_primary_10_1002_adma_202006004 crossref_primary_10_1002_adma_202502916 crossref_primary_10_1016_j_cej_2023_143446 crossref_primary_10_1016_j_jechem_2020_04_049 crossref_primary_10_1016_j_matt_2023_12_003 crossref_primary_10_1002_solr_202300253 crossref_primary_10_1002_adma_202310651 crossref_primary_10_1039_D4EE00865K crossref_primary_10_1002_ange_202104201 crossref_primary_10_1002_aenm_202202982 crossref_primary_10_1002_adma_202100791 crossref_primary_10_1016_j_jpowsour_2021_230534 crossref_primary_10_1002_anie_202117067 crossref_primary_10_1002_adfm_202201036 crossref_primary_10_1038_s41467_022_34203_x crossref_primary_10_1002_advs_202408919 crossref_primary_10_1016_j_jallcom_2025_181432 crossref_primary_10_1002_adma_202402480 crossref_primary_10_1021_acsami_5c09196 crossref_primary_10_1016_j_jssc_2022_122891 crossref_primary_10_1021_jacs_3c09327 crossref_primary_10_1002_adfm_202100516 crossref_primary_10_1002_anie_201905521 crossref_primary_10_1002_aenm_202202868 crossref_primary_10_1002_cphc_202200581 crossref_primary_10_1126_science_add8786 crossref_primary_10_1002_inf2_12307 crossref_primary_10_1002_inf2_12423 crossref_primary_10_1016_j_apsusc_2021_151740 crossref_primary_10_1002_solr_202100190 crossref_primary_10_1021_acsami_4c14477 crossref_primary_10_35848_1882_0786_ad2a05 crossref_primary_10_1002_admi_202200464 crossref_primary_10_1016_j_joule_2020_04_006 crossref_primary_10_1016_j_jallcom_2025_179119 crossref_primary_10_1002_adfm_202412458 crossref_primary_10_1016_j_chempr_2021_11_010 crossref_primary_10_1016_j_joule_2020_04_001 crossref_primary_10_1039_D1EE02248B crossref_primary_10_1002_smtd_202101079 crossref_primary_10_1016_j_jechem_2021_04_021 crossref_primary_10_1016_j_jechem_2021_04_023 crossref_primary_10_1039_D1EE02454J crossref_primary_10_1016_j_cej_2023_143789 crossref_primary_10_1002_solr_202500566 crossref_primary_10_1002_solr_202000647 crossref_primary_10_1016_j_jechem_2022_12_029 crossref_primary_10_1002_anie_202213478 crossref_primary_10_1002_ange_202404289 crossref_primary_10_1016_j_cej_2021_134358 crossref_primary_10_1016_j_mtchem_2023_101799 crossref_primary_10_1063_5_0063935 crossref_primary_10_1007_s11426_020_9741_1 crossref_primary_10_1002_aenm_201902726 crossref_primary_10_1007_s40820_021_00683_7 crossref_primary_10_1002_ange_202116308 crossref_primary_10_1002_aenm_201902600 crossref_primary_10_1016_j_cej_2021_134223 crossref_primary_10_1002_smtd_202000441 crossref_primary_10_1016_j_cej_2022_135974 crossref_primary_10_1039_C9EE02268F crossref_primary_10_1002_solr_202100295 crossref_primary_10_1002_aenm_202000361 crossref_primary_10_1016_j_nanoen_2021_106445 crossref_primary_10_1007_s12274_021_3673_8 crossref_primary_10_1016_j_jmst_2020_08_051 crossref_primary_10_1021_jacs_2c13307 crossref_primary_10_1016_j_mtener_2021_100847 crossref_primary_10_1002_aenm_201902650 crossref_primary_10_1016_j_jechem_2019_11_023 crossref_primary_10_1016_j_jcis_2023_03_034 crossref_primary_10_1016_j_solmat_2020_110862 crossref_primary_10_1002_smll_202408993 crossref_primary_10_1016_j_mtphys_2023_101135 crossref_primary_10_1038_s41586_021_04216_5 crossref_primary_10_1016_j_jechem_2021_01_037 crossref_primary_10_1007_s40820_022_00807_7 crossref_primary_10_1088_2752_5724_acb838 crossref_primary_10_1016_j_optmat_2025_116804 crossref_primary_10_1088_1674_4926_44_8_080201 crossref_primary_10_1038_s41467_020_16831_3 crossref_primary_10_1002_adma_201902762 crossref_primary_10_1002_solr_202200171 crossref_primary_10_1016_j_orgel_2025_107228 crossref_primary_10_1016_j_nanoen_2019_104189 crossref_primary_10_1002_smtd_201900511 crossref_primary_10_1002_solr_202200297 crossref_primary_10_1002_smll_201907531 crossref_primary_10_1002_adfm_202417310 crossref_primary_10_1007_s12274_022_4894_1 crossref_primary_10_1039_D1EE00062D crossref_primary_10_1039_D4EE02917H crossref_primary_10_1002_adfm_202200534 crossref_primary_10_1002_adfm_202105290 crossref_primary_10_1002_ange_202016085 crossref_primary_10_1002_adfm_202304503 crossref_primary_10_1016_j_surfin_2021_101213 crossref_primary_10_1002_anie_202218752 crossref_primary_10_1016_j_nanoen_2022_107579 crossref_primary_10_1002_ange_202213478 crossref_primary_10_1002_aenm_202002882 crossref_primary_10_1002_adma_202105635 crossref_primary_10_1002_ange_202309831 crossref_primary_10_1002_cssc_202400510 crossref_primary_10_1002_aenm_202000687 crossref_primary_10_1002_aenm_202002989 crossref_primary_10_1016_j_jechem_2022_02_016 crossref_primary_10_1016_j_cej_2022_139321 crossref_primary_10_1002_adfm_202108567 crossref_primary_10_1016_j_electacta_2021_137812 crossref_primary_10_1016_j_mtchem_2023_101511 crossref_primary_10_1088_1361_6463_ace1fb crossref_primary_10_1002_aenm_202300610 crossref_primary_10_1002_cssc_202101573 crossref_primary_10_1016_j_nanoen_2023_108731 crossref_primary_10_1002_anie_202216668 crossref_primary_10_1016_j_jechem_2023_04_015 crossref_primary_10_1016_j_matt_2021_10_026 crossref_primary_10_1016_j_jpowsour_2020_228502 crossref_primary_10_1002_chem_202302703 crossref_primary_10_1021_jacs_1c05122 crossref_primary_10_1002_slct_202400957 crossref_primary_10_1039_D0QM01064B crossref_primary_10_1039_D1EE00869B crossref_primary_10_1016_j_cej_2024_153386 crossref_primary_10_1002_inf2_12369 crossref_primary_10_1016_j_cej_2024_155686 crossref_primary_10_1002_adfm_202005776 crossref_primary_10_1016_j_solmat_2019_110379 crossref_primary_10_1016_j_jechem_2019_11_015 crossref_primary_10_1002_smtd_202500395 crossref_primary_10_1016_j_jechem_2020_07_050 crossref_primary_10_1103_PhysRevApplied_12_014017 crossref_primary_10_1016_j_cej_2021_129482 crossref_primary_10_1021_jacs_4c13866 crossref_primary_10_1002_adfm_202212577 crossref_primary_10_1002_smtd_202100046 crossref_primary_10_1021_jacs_4c05904 crossref_primary_10_1002_aenm_201902573 crossref_primary_10_1002_admi_202201939 crossref_primary_10_1007_s42114_021_00238_9 crossref_primary_10_1002_pssa_202100406 crossref_primary_10_1007_s10854_024_12316_x crossref_primary_10_1016_j_jpowsour_2024_236124 crossref_primary_10_1016_j_cej_2022_139345 crossref_primary_10_1002_aenm_201902579 crossref_primary_10_1002_anie_202204148 crossref_primary_10_1002_smtd_202101257 crossref_primary_10_1002_adfm_202412068 crossref_primary_10_1002_anie_202016085 crossref_primary_10_1002_ange_202213560 crossref_primary_10_1016_j_surfin_2021_101420 crossref_primary_10_1002_smll_202005495 crossref_primary_10_1016_j_mtener_2024_101741 crossref_primary_10_1002_adfm_202423096 crossref_primary_10_1002_aesr_202200173 crossref_primary_10_1002_adfm_202104036 crossref_primary_10_1002_anie_202313833 crossref_primary_10_1039_D0MH00745E crossref_primary_10_1016_j_mtener_2022_101191 crossref_primary_10_3390_nano11030775 crossref_primary_10_1016_j_cej_2022_138028 crossref_primary_10_1021_acsmaterialslett_4c01998 crossref_primary_10_1002_adfm_202002366 crossref_primary_10_1016_j_dyepig_2020_108334 crossref_primary_10_1016_j_jechem_2021_01_001 crossref_primary_10_1016_j_cej_2021_132426 crossref_primary_10_1016_j_cplett_2021_138362 crossref_primary_10_1016_j_cej_2019_122298 crossref_primary_10_1002_ange_202102538 crossref_primary_10_1016_j_orgel_2023_106984 crossref_primary_10_1088_1674_1056_ac1fe0 crossref_primary_10_1002_smtd_202400643 crossref_primary_10_1021_acsami_5c08172 crossref_primary_10_1016_j_cej_2021_131358 crossref_primary_10_1002_solr_202201079 crossref_primary_10_1002_anie_202017148 crossref_primary_10_1016_j_apsusc_2024_161922 crossref_primary_10_1016_j_joule_2024_01_020 crossref_primary_10_1002_solr_201900421 crossref_primary_10_1002_anie_202102538 crossref_primary_10_1016_j_mtener_2022_101049 crossref_primary_10_1364_OE_561644 crossref_primary_10_1063_5_0052402 crossref_primary_10_1002_adma_202200705 crossref_primary_10_3390_mi13111857 crossref_primary_10_1007_s10854_024_14104_z crossref_primary_10_1002_ange_202017148 crossref_primary_10_3390_cryst11030295 crossref_primary_10_3389_fchem_2020_00352 crossref_primary_10_1002_adma_202000995 crossref_primary_10_1002_solr_201900413 crossref_primary_10_1002_cssc_202102474 crossref_primary_10_1016_j_orgel_2021_106158 crossref_primary_10_1016_j_mtnano_2021_100118 crossref_primary_10_1126_science_abd4016 crossref_primary_10_1002_adma_202303635 crossref_primary_10_1002_solr_202100710 crossref_primary_10_1016_j_nanoen_2022_108154 crossref_primary_10_1021_acs_nanolett_5c03659 crossref_primary_10_1002_adma_202000186 crossref_primary_10_1142_S0217979225300038 crossref_primary_10_1002_aenm_201902492 crossref_primary_10_1016_j_apsusc_2024_160257 crossref_primary_10_1016_j_jallcom_2023_170606 crossref_primary_10_1002_adma_202501588 crossref_primary_10_1002_aesr_202300275 crossref_primary_10_1002_solr_202300730 crossref_primary_10_1016_j_apsusc_2022_154248 crossref_primary_10_1002_solr_201900206 crossref_primary_10_1002_smll_202204763 crossref_primary_10_1016_j_cej_2023_148249 crossref_primary_10_1002_solr_202500173 crossref_primary_10_1007_s40820_020_00418_0 crossref_primary_10_1002_aenm_201902142 crossref_primary_10_1007_s10853_020_05685_1 crossref_primary_10_1007_s12598_020_01680_2 crossref_primary_10_1002_smll_202203319 crossref_primary_10_1002_smtd_202400039 crossref_primary_10_1002_ente_202200061 crossref_primary_10_1039_D4SE01096E crossref_primary_10_1016_j_mtcomm_2023_107879 crossref_primary_10_1016_j_physb_2025_417268 crossref_primary_10_1002_adfm_202006802 crossref_primary_10_1002_ente_202201159 crossref_primary_10_1016_j_cej_2020_127387 crossref_primary_10_1016_j_nanoen_2022_107298 crossref_primary_10_1002_ente_202100691 crossref_primary_10_1002_ange_202505667 crossref_primary_10_1016_j_nanoen_2023_108691 crossref_primary_10_1002_aenm_202403021 crossref_primary_10_1002_ange_202313833 crossref_primary_10_1002_adma_202002585 crossref_primary_10_1002_aenm_202100493 crossref_primary_10_1002_adma_201907361 crossref_primary_10_1021_jacs_0c09845 crossref_primary_10_1002_adma_202312014 crossref_primary_10_1002_ange_202218752 crossref_primary_10_1016_j_jlumin_2025_121281 crossref_primary_10_1002_adfm_202412965 crossref_primary_10_1002_solr_201900468 crossref_primary_10_1002_smll_202308847 crossref_primary_10_1016_j_joule_2020_08_016 crossref_primary_10_1016_j_jechem_2025_06_047 crossref_primary_10_1016_j_nanoen_2022_107193 crossref_primary_10_1016_j_sse_2023_108799 crossref_primary_10_1038_s41467_020_17482_0 crossref_primary_10_1002_solr_202300714 crossref_primary_10_1007_s10854_023_10417_7 crossref_primary_10_1038_s41467_025_56182_5 crossref_primary_10_1039_D5TA05906B crossref_primary_10_1016_j_joule_2024_08_003 crossref_primary_10_1002_smll_202503174 crossref_primary_10_1002_slct_202302617 crossref_primary_10_1016_j_jpowsour_2020_228857 crossref_primary_10_1016_j_nanoen_2023_108990 crossref_primary_10_1038_s41560_019_0538_4 crossref_primary_10_1002_solr_202400011 crossref_primary_10_1002_solr_202200364 crossref_primary_10_1002_solr_202300921 crossref_primary_10_1002_solr_202000069 crossref_primary_10_1016_j_physb_2022_414363 crossref_primary_10_1002_aenm_202102844 crossref_primary_10_1002_solr_201900243 crossref_primary_10_1002_solr_202200115 crossref_primary_10_1002_aenm_202202189 crossref_primary_10_1002_solr_202000197 crossref_primary_10_1016_j_cej_2022_136118 crossref_primary_10_1016_j_cej_2022_139988 crossref_primary_10_1002_adsu_202000078 crossref_primary_10_1002_solr_201900248 crossref_primary_10_1016_j_cej_2020_128167 crossref_primary_10_1515_pac_2019_0505 crossref_primary_10_1002_adma_202001581 crossref_primary_10_1039_D1EE01508G crossref_primary_10_1002_adma_202503435 crossref_primary_10_1002_anie_202105512 crossref_primary_10_1002_sstr_202000050 crossref_primary_10_1016_j_nanoen_2020_105634 crossref_primary_10_1002_solr_202000060 crossref_primary_10_1088_2515_7655_abf29a crossref_primary_10_1007_s12200_022_00038_z crossref_primary_10_1142_S1793604722510353 crossref_primary_10_1002_ange_202216668 crossref_primary_10_1002_ange_202117067 crossref_primary_10_1002_smll_202205962 crossref_primary_10_1002_aenm_202300661 crossref_primary_10_1016_j_apsusc_2022_155640 crossref_primary_10_1039_D0EE01767A crossref_primary_10_1002_ange_201905521 crossref_primary_10_1002_anie_202116308 crossref_primary_10_1016_j_cej_2022_136136 crossref_primary_10_1016_j_jechem_2024_11_024 crossref_primary_10_1038_s41570_023_00510_0 crossref_primary_10_1002_adfm_202107726 crossref_primary_10_1002_adfm_202103121 crossref_primary_10_1039_D3EE02475J crossref_primary_10_1016_j_cjsc_2023_100087 crossref_primary_10_1016_j_mssp_2024_108184 crossref_primary_10_1002_adma_202307709 crossref_primary_10_1002_aenm_201904102 crossref_primary_10_1002_adma_202419573 crossref_primary_10_1016_j_solmat_2021_111242 crossref_primary_10_1002_adfm_202303673 crossref_primary_10_1038_s41467_023_39260_4 crossref_primary_10_1002_adfm_202010368 crossref_primary_10_1002_anie_202404289 crossref_primary_10_1002_anie_202104201 crossref_primary_10_1007_s42114_023_00691_8 crossref_primary_10_1002_aenm_202003073 crossref_primary_10_1039_D3NR01296D crossref_primary_10_3390_photonics11010087 crossref_primary_10_1002_adfm_202503504 crossref_primary_10_1016_j_orgel_2022_106731 crossref_primary_10_1007_s11426_019_9649_2 crossref_primary_10_1016_j_nanoen_2022_107036 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1021/jacs.8b13091 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1520-5126 |
| ExternalDocumentID | 30888171 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI AAHBH ABJNI ABMVS ABPPZ ABQRX ABUCX ACBEA ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AETEA AFEFF AGXLV AHDLI AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 CUPRZ DU5 EBS ED~ EJD F5P GGK GNL IH2 IH9 JG~ LG6 NPM P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 W1F WH7 XSW YQT YZZ ZCA ~02 7X8 AAYWT ABBLG ABLBI |
| ID | FETCH-LOGICAL-a460t-1bfeda0fb74910e8b367ceea1a97064044cd3e65a1994d4defb2da7c5854147d2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 678 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464769000030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-5126 |
| IngestDate | Wed Oct 01 12:53:04 EDT 2025 Thu Apr 03 06:54:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a460t-1bfeda0fb74910e8b367ceea1a97064044cd3e65a1994d4defb2da7c5854147d2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4672-8585 0000-0002-8244-3002 0000-0002-9810-2448 0000-0002-0509-8778 |
| PMID | 30888171 |
| PQID | 2194151982 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2194151982 pubmed_primary_30888171 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-10 |
| PublicationDateYYYYMMDD | 2019-04-10 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of the American Chemical Society |
| PublicationTitleAlternate | J Am Chem Soc |
| PublicationYear | 2019 |
| SSID | ssj0004281 |
| Score | 2.7095659 |
| Snippet | Passivation of electronic defects at the surface and grain boundaries of perovskite materials has become one of the most important strategies to suppress... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 5781 |
| Title | Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30888171 https://www.proquest.com/docview/2194151982 |
| Volume | 141 |
| WOSCitedRecordID | wos000464769000030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UCnrx_agvVvAa7SbbbHISCS0ebCm0Sm9lnxCJSW3Sov_e2TzQiyB4yS0QJrvzfd_MMB9CN4qEQviSO8IzgUMl78Kdo56jmV13boT0AlOaTbDhMJhOw1FdcMvrscomJ5aJWmXS1sjv4GYB1oBEdu_n7451jbLd1dpCYx21PKAydqSLTX9sC3eDal8qSCQANr8efAdYu3vlMr8NBGTwkPxOLkuQ6e_-9_P20E5NL_FDdR720ZpOD9BW1Li6HaLFhMfV0B0eAW-uvc3woHHJxeNyoewSVDgGPot7H4WtICafePzGkwTbARQnihdyGRf4JUsKyEf4CZAWxyke6UW2ym09GI-tZMaRTpL8CD33e5Po0al9FxxO_U7hEGG04h0jGAUyoQPh-QywlBMeMtv4o1QqT_tdbvcKK6q0Ea7iTILyoIQy5R6jjTRL9SnCPlFdEGTCNSHoQGEDTjWDWBlXAbnx2-i6CecMAmGbFTzV2TKffQe0jU6qfzKbVws4Zh6kxoAwcvaHt8_RNnCcsgFEOheoZeBW60u0KVdFnC-uygMDz-Fo8AUraM1A |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+Passivation+Molecular+Structures+for+Extremely+Small+Open-Circuit+Voltage+Loss+in+Perovskite+Solar+Cells&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Yang%2C+Shuang&rft.au=Dai%2C+Jun&rft.au=Yu%2C+Zhenhua&rft.au=Shao%2C+Yuchuan&rft.date=2019-04-10&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=141&rft.issue=14&rft.spage=5781&rft_id=info:doi/10.1021%2Fjacs.8b13091&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-5126&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-5126&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-5126&client=summon |