Refinery engineering integrated process modeling and optimization

A pioneering and comprehensive introduction to the complex subject of integrated refinery process simulation, using many of the tools and techniques currently employed in modern refineries. Adopting a systematic and practical approach, the authors include the theory, case studies and hands-on worksh...

Full description

Saved in:
Bibliographic Details
Main Authors: Chang, Ai-Fu, Pashikanti, Kiran, Liu, Y. A
Format: eBook Book
Language:English
Published: Weinheim Wiley 2013
Wiley-VCH
John Wiley & Sons, Incorporated
Edition:1st ed.
Subjects:
ISBN:9783527666867, 3527666869, 3527333576, 9783527333578
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • 6.4.5 Delumping of the Reactor Model Eff luent and Fractionator Model Development -- 6.4.5.1 Applying the Gauss-Legendre Quadrature to Delump the Reactor Model Eff luent -- 6.4.5.2 Key Issue of the Building Fractionator Model: Overall Stage Efficiency Model -- 6.4.5.3 Verification of the Delumping Method: Gaussian-Legendre Quadrature -- 6.4.6 Product Property Correlation -- 6.5 Modeling Results of MP HCR Process -- 6.5.1 Performance of the Reactor and Hydrogen Recycle System -- 6.5.2 Performance of Fractionators -- 6.5.3 Product Yields -- 6.5.4 Distillation Curves of Liquid Products -- 6.5.5 Product Property -- 6.6 Modeling Results of HP HCR Process -- 6.6.1 Performance of the Reactor and Hydrogen Recycle System -- 6.6.2 Performance of Fractionators -- 6.6.3 Product Yields -- 6.6.4 LPG Composition and Distillation Curves of Liquid Products -- 6.6.5 Product Property -- 6.7 Model Applications to Process Optimization -- 6.7.1 H2-to-Oil Ratio vs. Product Distribution, Remained Catalyst Life, and Hydrogen Consumption -- 6.7.2 WART versus Feed Flow Rate versus Product Distribution -- 6.8 Model Application - Delta-Base Vector Generation -- 6.9 Conclusions -- 6.10 Workshop 6.1 - Build Preliminary Reactor Model of HCR Process -- 6.11 Workshop 6.2 - Calibrate Preliminary Reactor Model to Match Plant Data -- 6.12 Workshop 6.3 - Model Applications to Process Optimization -- 6.13 Workshop 6.4 - Connect Reactor Model to Fractionator Simulation -- 6.14 Nomenclature -- 6.15 References -- Supporting Materials: List of Computer Files -- Subject Index
  • 2.8.3 Crude Charge and Prefractionation Units -- 2.8.4 Atmospheric Distillation Column - Initial -- 2.8.5 Atmospheric Distillation Column - Side Strippers -- 2.8.6 Atmospheric Distillation Column - Pumparounds -- 2.8.7 Atmospheric Distillation Column - Final Column Convergence -- 2.8.8 Post-Convergence -- 2.9 Results -- 2.10 Model Applications to Process Optimization -- 2.10.1 Improve the 5% Distillation Point for an Individual Cut -- 2.10.2 Change Yield of a Given Cut -- 2.11 Workshop 2.1 -Rebuild Model Using "Back-blending" Procedure -- 2.11.1 Import Distillation Data into Aspen HYSYS Oil Manager -- 2.11.2 Import Distillation Data into Aspen HYSYS Oil Manager -- 2.11.3 Reorganize Process Flowsheet -- 2.11.4 Converging Column Model -- 2.11.5 Comparison of Results -- 2.12 Workshop 2.2 - Investigate Changes in Product Profiles with New Product Demands -- 2.12.1 Update Column Specifications -- 2.12.2 Vary Draw Rate of LGO -- 2.13 Conclusions -- 2.14 Nomenclature -- 2.15 References -- 3 Vacuum Distillation Unit -- 3.1 Process Description -- 3.2 Data Reconciliation -- 3.2.1 Required Data -- 3.2.2 Representation of the Atmospheric Residue -- 3.2.3 Makeup of Gas Streams -- 3.3 Model Implementation -- 3.3.1 Before Building the Process Flowsheet -- 3.3.2 Build a Simplified Model -- 3.3.3 Develop the Rigorous Simulation from a Simplified Model -- 3.4 Model Applications to Process Optimization - VDU Deep-Cut Operation -- 3.5 Workshop - Using Aspen HYSYS Petroleum Refining to Implement the Deep-Cut Operation -- 3.6 References -- 4 Predictive Modeling of the Fluid Catalytic Cracking (FCC) Process -- 4.1 Introduction -- 4.2 Process Description -- 4.2.1 Riser-Regenerator Complex -- 4.2.2 Downstream Fractionation -- 4.3 Process Chemistry -- 4.4 Literature Review -- 4.4.1 Kinetic Models -- 4.4.2 Unit-Level Models -- 4.5 Aspen HYSYS Petroleum Refining FCC Model
  • 4.5.1 Slip Factor and Average Voidage -- 4.5.2 21-Lump Kinetic Model -- 4.5.3 Catalyst Deactivation -- 4.6 Calibrating the Aspen HYSYS Petroleum Refining FCC Model -- 4.7 Fractionation -- 4.8 Mapping Feed Information to Kinetic Lumps -- 4.8.1 Fitting Distillation Curves -- 4.8.2 Inferring Molecular Composition -- 4.8.3 Convert Kinetic Lumps to Fractionation Lumps -- 4.9 Overall Modeling Strategy -- 4.10 Results -- 4.11 Model Applications to Process Optimization -- 4.11.1 Improving Gasoline Yield -- 4.11.2 Increasing Unit Throughput -- 4.11.3 Sulfur Content in Gasoline -- 4.12 Model Application to Refinery Production Planning -- 4.13 Workshop 4.1: Guide for Modeling FCC Units in Aspen HYSYS Petroleum Refining -- 4.13.1 Introduction -- 4.13.2 Process Overview -- 4.13.3 Process Data -- 4.13.4 Aspen HYSYS and Initial Component and Thermodynamics Setup -- 4.13.5 Workshop 4.1: Basic FCC Model -- 4.13.6 FCC Feed Configuration -- 4.13.7 FCC Catalyst Configuration -- 4.13.8 FCC Operating Variable Configuration -- 4.13.9 Initial Model Solution -- 4.13.10 Viewing Model Results -- 4.14 Workshop 4.2: Calibrating Basic FCC Model -- 4.15 Workshop 4.3: Build Main Fractionator and Gas Plant System -- 4.16 Workshop 4.4: Model Applications to Process Optimization - Perform Case Study to Identify Different Gasoline Production Sce -- 4.17 Workshop 4.5: Model Application to Production Planning - Generate DELTA-BASE Vectors for Linear-Programming (LP)-Based Prod -- 4.18 Conclusions -- 4.20 Nomenclature -- 4.21 References -- 5 Predictive Modeling of the Continuous Catalyst Regeneration (CCR) Reforming Process -- 5.1 Introduction -- 5.2 Process Overview -- 5.3 Process Chemistry -- 5.4 Literature Review -- 5.4.1 Kinetic Models and Networks -- 5.4.2 Unit-Level models -- 5.5 Aspen HYSYS Petroleum Ref ining Catalytic Reformer Model -- 5.6 Thermophysical Properties
  • Intro -- Title Page -- Contents -- Foreword by Steven R. Cope -- Foreword by Lawrence B. Evans -- Preface -- Acknowledgements -- About the Authors -- 1 Characterization, Physical and Thermodynamic Properties of Oil Fractions -- 1.1 Crude Assay -- 1.1.1 Bulk Properties -- 1.1.2 Fractional Properties -- 1.1.3 Interconversion of Distillation Curves -- 1.2 Pseudocomponent Generation Based on Boiling-Point Ranges -- 1.3 Workshop 1.1 - Interconvert Distillation Curves -- 1.4 Workshop 1.2 - Extrapolate an Incomplete Distillation Curve -- 1.5 Workshop 1.3 - Calculate MeABP of a Given Assay -- 1.6 Workshop 1.4 - Duplicate the Oil Fraction in Aspen HYSYS Petroleum Refining -- 1.7 Property Requirements for Refinery Process Models -- 1.8 Physical Properties -- 1.8.1 Estimating Minimal Physical Properties for Pseudocomponents -- 1.8.2 Molecular Weight -- 1.8.3 Critical Properties -- 1.8.4 Liquid Density -- 1.8.5 Ideal Gas Heat Capacity -- 1.8.6 Other Derived Physical Properties -- 1.9 Process Thermodynamics -- 1.9.1 Thermodynamic Models -- 1.9.2 Mixed or Activity-Coeff icient Approach -- 1.9.3 Equation-of-State Approach -- 1.10 Miscellaneous Physical Properties for Refinery Modeling -- 1.10.1 Two Approaches for Estimating Fuel Properties -- 1.10.2 Flash Point -- 1.10.3 Freeze Point -- 1.10.4 PNA Composition -- 1.11 Conclusions -- 1.12 Nomenclature -- 1.13 References -- 2 Atmospheric Distillation Unit -- 2.1 Introduction -- 2.2 Scope of the Chapter -- 2.3 Process Overview -- 2.3.1 Desalting -- 2.3.2 Preheat Train and Heat Recovery -- 2.3.3 Atmospheric Distillation -- 2.4 Model Development -- 2.5 Feed Characterization -- 2.6 Data Requirements and Validation -- 2.7 Representative Atmospheric Distillation Unit -- 2.8 Building the Model in Aspen HYSYS -- 2.8.1 Entering the Crude Information -- 2.8.2 Selection of a Thermodynamic System
  • 5.7 Fractionation System -- 5.8 Feed Characterization -- 5.9 Model Implementation -- 5.9.1 Data Consistency -- 5.9.2 Feed Characterization -- 5.9.3 Calibration -- 5.10 Overall Modeling Strategy -- 5.11 Results -- 5.12 Model Applications to Process Optimization -- 5.12.1 Effect of Reactor Temperature on Process Yield -- 5.12.2 Effect of Feed Rate on Process Yield -- 5.12.3 Combined Effects on Process Yield -- 5.12.4 Effect of Feedstock Quality on Process Yield -- 5.12.5 Chemical Feedstock Production -- 5.12.6 Energy Utilization and Process Performance -- 5.13 Model Applications to Refinery Production Planning -- 5.14 Workshop 5.1: Guide for Modeling CCR Units in Aspen HYSYS Petroleum Refining -- 5.14.1 Introduction -- 5.14.2 Process Overview and Relevant Data -- 5.14.3 Aspen HYSYS and Initial Component and Thermodynamics Setup -- 5.14.4 Basic Reformer Configuration -- 5.14.5 Input Feedstock and Process Variables -- 5.14.6 Solver Parameters and Running Initial Model -- 5.14.7 Viewing Model Results -- 5.14.8 Updating Results with Molecular Composition Information -- 5.15 Workshop 5.2: Model Calibration -- 5.16 Workshop 5.3: Build a Downstream Fractionation -- 5.17 Workshop 5.4: Case Study to Vary RON and Product Distribution Profile -- 5.18 Conclusions -- 5.19 Nomenclature -- 5.20 References -- 6 Predictive Modeling of the Hydroprocessing Units -- 6.1 Introduction -- 6.2 Aspen HYSYS Petroleum Refining HCR Modeling Tool -- 6.3 Process Description -- 6.3.1 MP HCR Process -- 6.3.2 HP HCR Process -- 6.4 Model Development -- 6.4.1 Workf low of Developing an Integrated HCR Process Model -- 6.4.2 Data Acquisition -- 6.4.3 Mass Balance -- 6.4.4 Reactor Model Development -- 6.4.4.1 MP HCR Reactor Model -- 6.4.4.2 HP HCR Reactor Model -- 6.4.4.2.1 Equivalent Reactor -- 6.4.4.2.2 Reconciliation of HP HCR Reactor Model