An Automated Python Language-Based Tool for Creating Absence Samples in Groundwater Potential Mapping

Although sampling strategy plays an important role in groundwater potential mapping and significantly influences model accuracy, researchers often apply a simple random sampling method to determine absence (non-occurrence) samples. In this study, an automated, user-friendly geographic information sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Jg. 11; H. 11; S. 1375
Hauptverfasser: Rahmati, Omid, Moghaddam, Davoud Davoudi, Moosavi, Vahid, Kalantari, Zahra, Samadi, Mahmood, Lee, Saro, Tien Bui, Dieu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 2019
Schlagworte:
ISSN:2072-4292, 2072-4292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Although sampling strategy plays an important role in groundwater potential mapping and significantly influences model accuracy, researchers often apply a simple random sampling method to determine absence (non-occurrence) samples. In this study, an automated, user-friendly geographic information system (GIS)-based tool, selection of absence samples (SAS), was developed using the Python programming language. The SAS tool takes into account different geospatial concepts, including nearest neighbor (NN) and hotspot analyses. In a case study, it was successfully applied to the Bojnourd watershed, Iran, together with two machine learning models (random forest (RF) and multivariate adaptive regression splines (MARS)) with GIS and remotely sensed data, to model groundwater potential. Different evaluation criteria (area under the receiver operating characteristic curve (AUC-ROC), true skill statistic (TSS), efficiency (E), false positive rate (FPR), true positive rate (TPR), true negative rate (TNR), and false negative rate (FNR)) were used to scrutinize model performance. Two absence sample types were produced, based on a simple random method and the SAS tool, and used in the models. The results demonstrated that both RF (AUC-ROC = 0.913, TSS = 0.72, E = 0.926) and MARS (AUC-ROC = 0.889, TSS = 0.705, E = 0.90) performed better when using absence samples generated by the SAS tool, indicating that this tool is capable of producing trustworthy absence samples to improve groundwater potential models.
AbstractList Although sampling strategy plays an important role in groundwater potential mapping and significantly influences model accuracy, researchers often apply a simple random sampling method to determine absence (non-occurrence) samples. In this study, an automated, user-friendly geographic information system (GIS)-based tool, selection of absence samples (SAS), was developed using the Python programming language. The SAS tool takes into account different geospatial concepts, including nearest neighbor (NN) and hotspot analyses. In a case study, it was successfully applied to the Bojnourd watershed, Iran, together with two machine learning models (random forest (RF) and multivariate adaptive regression splines (MARS)) with GIS and remotely sensed data, to model groundwater potential. Different evaluation criteria (area under the receiver operating characteristic curve (AUC-ROC), true skill statistic (TSS), efficiency (E), false positive rate (FPR), true positive rate (TPR), true negative rate (TNR), and false negative rate (FNR)) were used to scrutinize model performance. Two absence sample types were produced, based on a simple random method and the SAS tool, and used in the models. The results demonstrated that both RF (AUC-ROC = 0.913, TSS = 0.72, E = 0.926) and MARS (AUC-ROC = 0.889, TSS = 0.705, E = 0.90) performed better when using absence samples generated by the SAS tool, indicating that this tool is capable of producing trustworthy absence samples to improve groundwater potential models.
Author Kalantari, Zahra
Samadi, Mahmood
Lee, Saro
Rahmati, Omid
Moghaddam, Davoud Davoudi
Moosavi, Vahid
Tien Bui, Dieu
Author_xml – sequence: 1
  givenname: Omid
  orcidid: 0000-0001-5672-8525
  surname: Rahmati
  fullname: Rahmati, Omid
– sequence: 2
  givenname: Davoud Davoudi
  surname: Moghaddam
  fullname: Moghaddam, Davoud Davoudi
– sequence: 3
  givenname: Vahid
  orcidid: 0000-0002-4563-1178
  surname: Moosavi
  fullname: Moosavi, Vahid
– sequence: 4
  givenname: Zahra
  orcidid: 0000-0002-7978-0040
  surname: Kalantari
  fullname: Kalantari, Zahra
– sequence: 5
  givenname: Mahmood
  orcidid: 0000-0003-2661-2358
  surname: Samadi
  fullname: Samadi, Mahmood
– sequence: 6
  givenname: Saro
  orcidid: 0000-0003-0409-8263
  surname: Lee
  fullname: Lee, Saro
– sequence: 7
  givenname: Dieu
  orcidid: 0000-0001-5161-6479
  surname: Tien Bui
  fullname: Tien Bui, Dieu
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288310$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-170883$$DView record from Swedish Publication Index (Stockholms universitet)
BookMark eNqFkV9rFDEUxYNUsK198RME-iYdzeTPJvM4rloLKxZs-xruZDLbrLPJNMlQ-u3NdhWrFLwvCZdzfhzuOUIHPniL0JuavGOsIe9jqnfDpHiBDimRtOK0oQdP_q_QSUobUoaxuiH8ENnW43bOYQvZ9vjyId8Gj1fg1zOsbfUBUtlehTDiIUS8jBay82vcdsl6Y_F32E6jTdh5fB7D7Pv7gon4MmTrs4MRf4VpKobX6OUAY7Inv95jdP3509XyS7X6dn6xbFcVcNHkigOjCnplSzQlpVF9r6RaCDCSMjo0QMSCN12n6gEo9IIb0higzHTGEMkIO0YXe24fYKOn6LYQH3QApx8XIa41xOzMaLVQSi4WnPRSdBx4wRljaa1MQ4XtGBTW2Z6V7u00d3_RPrqb9pGWZl1LohQr8ur_8h_5VtOirndRT_f6KYa72aasN2GOvlxHU0Y44UywHZXsVSaGlKIdtHG5dBB8juBGXRO9q17_qb5Y3v5j-R3lGfFP5vyvyg
CitedBy_id crossref_primary_10_1007_s10064_023_03219_y
crossref_primary_10_3390_app10072469
crossref_primary_10_3390_rs12111890
crossref_primary_10_1007_s12665_021_10071_4
crossref_primary_10_1016_j_jhydrol_2021_126474
crossref_primary_10_3390_rs14040894
crossref_primary_10_3390_rs13112086
crossref_primary_10_1016_j_heliyon_2023_e21213
crossref_primary_10_1016_j_jhydrol_2019_124172
crossref_primary_10_1016_j_jhydrol_2024_132337
crossref_primary_10_1016_j_indcrop_2025_120750
crossref_primary_10_3390_su13052459
crossref_primary_10_3390_w12030679
crossref_primary_10_3390_rs12172833
crossref_primary_10_1007_s11356_022_19248_1
crossref_primary_10_1016_j_pce_2025_104060
crossref_primary_10_3390_app131910707
crossref_primary_10_1016_j_gsf_2021_101154
crossref_primary_10_1007_s11069_021_04673_1
crossref_primary_10_1016_j_gsf_2021_101232
crossref_primary_10_1007_s00477_025_02941_1
Cites_doi 10.1016/j.jhydrol.2015.06.008
10.1016/j.scitotenv.2017.07.198
10.1016/B978-0-12-815226-3.00022-3
10.1016/j.enggeo.2009.12.004
10.1007/978-3-319-75115-3_2
10.1006/jtbi.1995.0032
10.1016/S0167-5877(00)00115-X
10.1016/j.geomorph.2011.03.012
10.1016/j.ecolmodel.2006.05.022
10.1016/j.geomorph.2016.03.006
10.1016/j.jenvman.2013.04.010
10.1007/s00267-011-9766-5
10.1007/s40815-016-0235-4
10.1007/s00704-014-1243-7
10.1080/01431160412331269698
10.5194/hess-20-4585-2016
10.1016/j.ecolmodel.2004.12.009
10.1016/j.proenv.2015.07.098
10.1016/j.enggeo.2008.01.004
10.3390/su71013416
10.1016/j.geomorph.2010.03.029
10.1016/j.geomorph.2008.03.015
10.1007/s10661-018-6507-8
10.1016/j.scitotenv.2019.01.009
10.1007/s00435-007-0036-2
10.1016/j.enggeo.2008.03.010
10.5194/hess-18-4913-2014
10.1016/j.csda.2007.08.015
10.1111/j.1467-9671.2006.01004.x
10.1029/2018JF004640
10.1016/j.envsoft.2017.06.012
10.1016/j.jsb.2018.11.008
10.1016/j.jenvman.2019.02.020
10.1016/j.scitotenv.2017.09.262
10.1016/j.jhydrol.2018.08.027
10.1016/j.scitotenv.2019.02.436
10.1016/j.cageo.2012.01.005
10.1016/j.cageo.2011.10.031
10.1007/s10040-018-1848-5
10.1016/j.knosys.2012.12.007
10.1111/j.1365-2427.2005.01448.x
10.1111/j.1365-2664.2006.01214.x
10.1007/s12665-016-5424-9
10.1016/j.scitotenv.2019.02.017
10.1007/978-1-4419-9326-7_11
10.1007/s10661-015-5049-6
10.1016/j.jhydrol.2011.01.026
10.1111/j.1365-2664.2007.01281.x
10.1080/02626667909491834
10.1016/j.catena.2018.12.018
10.1016/j.scitotenv.2018.04.055
10.1023/A:1010933404324
10.1016/j.geomorph.2015.10.030
10.1007/s10346-017-0906-8
10.1016/j.cageo.2013.04.006
10.1016/j.patcog.2012.09.005
10.1016/j.csda.2004.11.006
10.1016/j.jhydrol.2014.03.008
10.1007/s10040-010-0631-z
10.1016/j.catena.2017.11.022
10.1016/j.geomorph.2013.08.021
10.1016/j.compenvurbsys.2009.12.004
10.1016/j.aap.2011.05.007
10.1007/s10346-015-0557-6
10.1016/j.cageo.2012.08.023
10.1007/s12665-018-7704-z
10.1016/j.sbspro.2011.07.020
10.1080/10106049.2017.1303091
10.1016/B978-0-12-815226-3.00006-5
10.1016/j.catena.2014.10.017
10.1016/j.ecolmodel.2009.06.020
10.1007/s11269-015-1114-8
10.1007/978-3-319-16595-0_12
10.1007/978-3-642-16239-8_8
10.1016/B978-0-12-815226-3.00014-4
10.1007/s11053-018-9416-1
10.1007/s10661-007-0092-6
10.1016/j.geomorph.2011.06.026
10.1016/j.geomorph.2017.09.006
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ABAVF
DG7
DOA
DOI 10.3390/rs11111375
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
SWEPUB Stockholms universitet full text
SWEPUB Stockholms universitet
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_58876640d75b4a42adcce218c925eb3a
oai_DiVA_org_su_170883
oai_DiVA_org_kth_288310
10_3390_rs11111375
GeographicLocations Iran
Vietnam
India
GeographicLocations_xml – name: Vietnam
– name: Iran
– name: India
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
2XV
ADTPV
AFDQA
AOWAS
C1A
D8T
D8V
IPNFZ
ITC
RIG
ZZAVC
ABAVF
DG7
ID FETCH-LOGICAL-a459t-4a328ad8e904877c8dd87865ac7232f9a05649bb81fa2ad54c09ca23cbcc07303
IEDL.DBID DOA
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472648000118&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:45:07 EDT 2025
Tue Nov 04 16:51:53 EST 2025
Tue Nov 04 16:59:15 EST 2025
Mon Oct 20 02:54:00 EDT 2025
Sat Nov 29 07:16:34 EST 2025
Tue Nov 18 22:30:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a459t-4a328ad8e904877c8dd87865ac7232f9a05649bb81fa2ad54c09ca23cbcc07303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5161-6479
0000-0002-4563-1178
0000-0003-0409-8263
0000-0001-5672-8525
0000-0002-7978-0040
0000-0003-2661-2358
OpenAccessLink https://doaj.org/article/58876640d75b4a42adcce218c925eb3a
PQID 2304043533
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_58876640d75b4a42adcce218c925eb3a
swepub_primary_oai_DiVA_org_su_170883
swepub_primary_oai_DiVA_org_kth_288310
proquest_journals_2304043533
crossref_citationtrail_10_3390_rs11111375
crossref_primary_10_3390_rs11111375
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lacoste (ref_67) 2011; 133
Prasannakumar (ref_48) 2011; 21
Golkarian (ref_15) 2018; 190
ref_14
Pourghasemi (ref_24) 2017; 609
Lee (ref_26) 2015; 7
Plug (ref_20) 2011; 43
ref_51
Perry (ref_38) 2018; 123
Sharma (ref_81) 2017; 3
Lee (ref_69) 2013; 127
Ye (ref_82) 2013; 46
ref_18
Archer (ref_60) 2008; 52
ref_59
Rutherford (ref_34) 2007; 44
Vadrevu (ref_43) 2008; 147
Rahmati (ref_30) 2019; 236
Kiss (ref_54) 2004; 2
Gayen (ref_23) 2019; 668
Chen (ref_45) 2015; 27
ref_61
Pradhan (ref_12) 2012; 45
Castellanos (ref_2) 2008; 102
Naghibi (ref_3) 2015; 29
Conoscenti (ref_22) 2014; 204
Chapi (ref_32) 2017; 95
Jha (ref_84) 2010; 18
Chen (ref_13) 2017; 19
Pradhan (ref_72) 2010; 34
McMillan (ref_52) 2011; 400
Lee (ref_27) 2012; 49
Wang (ref_78) 2013; 57
Ahlmer (ref_17) 2018; 77
Pham (ref_19) 2019; 175
ref_29
Lee (ref_66) 2006; 50
Hussin (ref_76) 2016; 253
Pal (ref_53) 2005; 26
Allouche (ref_70) 2006; 43
Kalantari (ref_33) 2019; 661
Lee (ref_16) 2019; 35
Rahmati (ref_25) 2017; 298
Rahmati (ref_77) 2019; 664
Gorsevski (ref_8) 2006; 10
Formetta (ref_9) 2016; 20
Hong (ref_1) 2018; 15
San (ref_55) 2014; 26
Conoscenti (ref_7) 2016; 261
Friedman (ref_62) 1991; 19
Naghibi (ref_10) 2016; 188
Lee (ref_68) 2018; 33
Nefeslioglu (ref_4) 2008; 97
Cardini (ref_83) 2007; 126
Tehrany (ref_35) 2014; 512
Sameen (ref_40) 2018; 28
Wang (ref_58) 2015; 527
Zhou (ref_79) 2013; 41
Frattini (ref_74) 2010; 111
Wilson (ref_11) 2012; 137
Peres (ref_71) 2014; 18
Greiner (ref_75) 2000; 45
Bishop (ref_50) 2010; 120
Zou (ref_49) 1995; 172
Xu (ref_39) 2005; 185
Breiman (ref_57) 2001; 45
Termeh (ref_37) 2018; 615
Rahmati (ref_73) 2018; 565
Zabihi (ref_41) 2016; 75
Chen (ref_44) 2018; 634
Koch (ref_47) 2019; 205
Beven (ref_56) 1979; 24
Tehrany (ref_36) 2015; 125
Bui (ref_31) 2016; 13
ref_42
ref_85
Leathwick (ref_65) 2005; 50
Corsini (ref_5) 2009; 111
Leathwick (ref_64) 2006; 199
Bajat (ref_46) 2015; 121
Park (ref_28) 2012; 48
Schnabel (ref_63) 2009; 220
Pourghasemi (ref_21) 2018; 162
Kordestani (ref_80) 2019; 27
Pradhan (ref_6) 2013; 51
References_xml – volume: 527
  start-page: 1130
  year: 2015
  ident: ref_58
  article-title: Flood hazard risk assessment model based on random forest
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.06.008
– volume: 609
  start-page: 764
  year: 2017
  ident: ref_24
  article-title: Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.07.198
– ident: ref_51
– ident: ref_14
  doi: 10.1016/B978-0-12-815226-3.00022-3
– volume: 111
  start-page: 62
  year: 2010
  ident: ref_74
  article-title: Techniques for evaluating the performance of landslide susceptibility models
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2009.12.004
– ident: ref_85
  doi: 10.1007/978-3-319-75115-3_2
– volume: 172
  start-page: 347
  year: 1995
  ident: ref_49
  article-title: Nearest-neighbor distribution of interacting biological entities
  publication-title: J. Theor. Biol.
  doi: 10.1006/jtbi.1995.0032
– volume: 45
  start-page: 23
  year: 2000
  ident: ref_75
  article-title: Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests
  publication-title: Prev. Vet. Med.
  doi: 10.1016/S0167-5877(00)00115-X
– volume: 137
  start-page: 107
  year: 2012
  ident: ref_11
  article-title: Digital terrain modeling
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.03.012
– volume: 199
  start-page: 188
  year: 2006
  ident: ref_64
  article-title: Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2006.05.022
– volume: 261
  start-page: 222
  year: 2016
  ident: ref_7
  article-title: Exploring the effect of absence selection on landslide susceptibility models: A case study in Sicily, Italy
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.03.006
– volume: 127
  start-page: 166
  year: 2013
  ident: ref_69
  article-title: Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2013.04.010
– volume: 49
  start-page: 347
  year: 2012
  ident: ref_27
  article-title: Spatial prediction of ground subsidence susceptibility using an artificial neural network
  publication-title: Environ. Manag.
  doi: 10.1007/s00267-011-9766-5
– volume: 19
  start-page: 1217
  year: 2017
  ident: ref_13
  article-title: Feature Selection in Learning Common Sense Associations Using Matrix Factorization
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-016-0235-4
– volume: 121
  start-page: 289
  year: 2015
  ident: ref_46
  article-title: Spatial analysis of the temperature trends in Serbia during the period 1961–2010
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-014-1243-7
– volume: 26
  start-page: 217
  year: 2005
  ident: ref_53
  article-title: Random forest classifier for remote sensing classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160412331269698
– volume: 20
  start-page: 4585
  year: 2016
  ident: ref_9
  article-title: Evaluating performance of simplified physically based models for shallow landslide susceptibility
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-4585-2016
– volume: 185
  start-page: 255
  year: 2005
  ident: ref_39
  article-title: Latin hypercube sampling and geostatistical modeling of spatial uncertainty in a spatially explicit forest landscape model simulation
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2004.12.009
– volume: 35
  start-page: 179
  year: 2019
  ident: ref_16
  article-title: Current and Future Status of GIS-based Landslide Susceptibility Mapping: A Literature Review
  publication-title: Korean J. Remote Sens.
– volume: 27
  start-page: 98
  year: 2015
  ident: ref_45
  article-title: Spatial point pattern analysis on the villages in China’s poverty-stricken areas
  publication-title: Procedia Environ. Sci.
  doi: 10.1016/j.proenv.2015.07.098
– volume: 97
  start-page: 171
  year: 2008
  ident: ref_4
  article-title: An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2008.01.004
– volume: 7
  start-page: 13416
  year: 2015
  ident: ref_26
  article-title: Application of decision-tree model to groundwater productivity-potential mapping
  publication-title: Sustainability
  doi: 10.3390/su71013416
– volume: 120
  start-page: 186
  year: 2010
  ident: ref_50
  article-title: Nearest neighbor analysis of mega-barchanoid dunes, Ar Rub’al Khali, sand sea: The application of geographical indices to the understanding of dune field self-organization, maturity and environmental change
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2010.03.029
– volume: 111
  start-page: 79
  year: 2009
  ident: ref_5
  article-title: Weight of evidence and artificial neural networks for potential groundwater spring mapping: An application to the Mt. Modino area (Northern Apennines, Italy)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.03.015
– volume: 190
  start-page: 149
  year: 2018
  ident: ref_15
  article-title: Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-018-6507-8
– volume: 661
  start-page: 393
  year: 2019
  ident: ref_33
  article-title: Assessing flood probability for transportation infrastructure based on catchment characteristics, sediment connectivity and remotely sensed soil moisture
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.009
– volume: 126
  start-page: 121
  year: 2007
  ident: ref_83
  article-title: Sample size and sampling error in geometric morphometric studies of size and shape
  publication-title: Zoomorphology
  doi: 10.1007/s00435-007-0036-2
– volume: 102
  start-page: 112
  year: 2008
  ident: ref_2
  article-title: Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2008.03.010
– volume: 18
  start-page: 4913
  year: 2014
  ident: ref_71
  article-title: Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo approach
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-18-4913-2014
– volume: 52
  start-page: 2249
  year: 2008
  ident: ref_60
  article-title: Empirical characterization of random forest variable importance measures
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2007.08.015
– volume: 10
  start-page: 395
  year: 2006
  ident: ref_8
  article-title: Spatial prediction of landslide hazard using logistic regression and ROC analysis
  publication-title: Trans. GIS
  doi: 10.1111/j.1467-9671.2006.01004.x
– volume: 123
  start-page: 2954
  year: 2018
  ident: ref_38
  article-title: Using Machine Learning to Predict Geomorphic Disturbance: The Effects of Sample Size, Sample Prevalence, and Sampling Strategy
  publication-title: J. Geophys. Res.-Earth
  doi: 10.1029/2018JF004640
– volume: 95
  start-page: 229
  year: 2017
  ident: ref_32
  article-title: A novel hybrid artificial intelligence approach for flood susceptibility assessment
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2017.06.012
– volume: 205
  start-page: 60
  year: 2019
  ident: ref_47
  article-title: Variation in human hair ultrastructure among three biogeographic populations
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2018.11.008
– volume: 236
  start-page: 466
  year: 2019
  ident: ref_30
  article-title: Land subsidence hazard modeling: Machine learning to identify predictors and the role of human activities
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.02.020
– volume: 615
  start-page: 438
  year: 2018
  ident: ref_37
  article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.262
– volume: 565
  start-page: 248
  year: 2018
  ident: ref_73
  article-title: Groundwater spring potential modelling: Comprising the capability and robustness of three different modeling approaches
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.08.027
– volume: 668
  start-page: 124
  year: 2019
  ident: ref_23
  article-title: Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.436
– volume: 19
  start-page: 1
  year: 1991
  ident: ref_62
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
– volume: 48
  start-page: 228
  year: 2012
  ident: ref_28
  article-title: Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.01.005
– volume: 26
  start-page: 399
  year: 2014
  ident: ref_55
  article-title: An evaluation of SVM using polygon-based random sampling in landslide susceptibility mapping: The Candir catchment area (western Antalya, Turkey)
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 45
  start-page: 199
  year: 2012
  ident: ref_12
  article-title: Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.10.031
– volume: 27
  start-page: 211
  year: 2019
  ident: ref_80
  article-title: Groundwater potential mapping using a novel data-mining ensemble model
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-018-1848-5
– volume: 41
  start-page: 16
  year: 2013
  ident: ref_79
  article-title: Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of sampling methods
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2012.12.007
– volume: 50
  start-page: 2034
  year: 2005
  ident: ref_65
  article-title: Using multivariate adaptive regression splines to predict the distributions of New Zealand’s freshwater diadromous fish
  publication-title: Freshw. Biol.
  doi: 10.1111/j.1365-2427.2005.01448.x
– volume: 43
  start-page: 1223
  year: 2006
  ident: ref_70
  article-title: Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS)
  publication-title: J. Appl. Ecol.
  doi: 10.1111/j.1365-2664.2006.01214.x
– volume: 75
  start-page: 665
  year: 2016
  ident: ref_41
  article-title: GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-5424-9
– volume: 664
  start-page: 296
  year: 2019
  ident: ref_77
  article-title: PMT: New analytical framework for automated evaluation of geo-environmental modelling approaches
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.017
– ident: ref_59
  doi: 10.1007/978-1-4419-9326-7_11
– volume: 188
  start-page: 44
  year: 2016
  ident: ref_10
  article-title: GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-015-5049-6
– volume: 400
  start-page: 83
  year: 2011
  ident: ref_52
  article-title: Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.01.026
– volume: 44
  start-page: 414
  year: 2007
  ident: ref_34
  article-title: Evaluating sampling strategies and logistic regression methods for modelling complex land cover changes
  publication-title: J. Appl. Ecol.
  doi: 10.1111/j.1365-2664.2007.01281.x
– volume: 24
  start-page: 43
  year: 1979
  ident: ref_56
  article-title: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667909491834
– volume: 175
  start-page: 203
  year: 2019
  ident: ref_19
  article-title: Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches
  publication-title: Catena
  doi: 10.1016/j.catena.2018.12.018
– volume: 634
  start-page: 853
  year: 2018
  ident: ref_44
  article-title: GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.055
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_57
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 253
  start-page: 508
  year: 2016
  ident: ref_76
  article-title: Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.10.030
– volume: 15
  start-page: 753
  year: 2018
  ident: ref_1
  article-title: Improving the accuracy of landslide susceptibility model using a novel region-partitioning approach
  publication-title: Landslides
  doi: 10.1007/s10346-017-0906-8
– volume: 57
  start-page: 81
  year: 2013
  ident: ref_78
  article-title: Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2013.04.006
– volume: 46
  start-page: 769
  year: 2013
  ident: ref_82
  article-title: Stratified sampling for feature subspace selection in random forests for high dimensional data
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2012.09.005
– volume: 50
  start-page: 1113
  year: 2006
  ident: ref_66
  article-title: Mining the customer credit using classification and regression tree and multivariate adaptive regression splines
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2004.11.006
– volume: 512
  start-page: 332
  year: 2014
  ident: ref_35
  article-title: Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.03.008
– volume: 18
  start-page: 1713
  year: 2010
  ident: ref_84
  article-title: Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-010-0631-z
– volume: 162
  start-page: 177
  year: 2018
  ident: ref_21
  article-title: Prediction of the landslide susceptibility: Which algorithm, which precision?
  publication-title: Catena
  doi: 10.1016/j.catena.2017.11.022
– volume: 204
  start-page: 399
  year: 2014
  ident: ref_22
  article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2013.08.021
– volume: 2
  start-page: 16
  year: 2004
  ident: ref_54
  article-title: Determination of drainage network in digital elevation models, utilities and limitations
  publication-title: J. Hung. Geomath.
– volume: 34
  start-page: 216
  year: 2010
  ident: ref_72
  article-title: A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses
  publication-title: Comput. Environ. Urban
  doi: 10.1016/j.compenvurbsys.2009.12.004
– volume: 43
  start-page: 1937
  year: 2011
  ident: ref_20
  article-title: Spatial and temporal visualisation techniques for crash analysis
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2011.05.007
– volume: 13
  start-page: 361
  year: 2016
  ident: ref_31
  article-title: Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree
  publication-title: Landslides
  doi: 10.1007/s10346-015-0557-6
– volume: 51
  start-page: 350
  year: 2013
  ident: ref_6
  article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.08.023
– volume: 77
  start-page: 533
  year: 2018
  ident: ref_17
  article-title: Soil moisture remote-sensing applications for identification of flood-prone areas along transport infrastructure
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-7704-z
– volume: 21
  start-page: 317
  year: 2011
  ident: ref_48
  article-title: Spatio-temporal clustering of road accidents: GIS based analysis and assessment
  publication-title: Proc. Soc. Behv.
  doi: 10.1016/j.sbspro.2011.07.020
– volume: 33
  start-page: 847
  year: 2018
  ident: ref_68
  article-title: GIS-based groundwater potential mapping using artificial neural network and support vector machine models: The case of Boryeong city in Korea
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2017.1303091
– ident: ref_29
  doi: 10.1016/B978-0-12-815226-3.00006-5
– volume: 125
  start-page: 91
  year: 2015
  ident: ref_36
  article-title: Flood susceptibility assessment using GIS-based support vector machine model with different kernel types
  publication-title: Catena
  doi: 10.1016/j.catena.2014.10.017
– volume: 220
  start-page: 3630
  year: 2009
  ident: ref_63
  article-title: Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2009.06.020
– volume: 29
  start-page: 5217
  year: 2015
  ident: ref_3
  article-title: A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-015-1114-8
– ident: ref_42
  doi: 10.1007/978-3-319-16595-0_12
– ident: ref_61
  doi: 10.1007/978-3-642-16239-8_8
– ident: ref_18
  doi: 10.1016/B978-0-12-815226-3.00014-4
– volume: 28
  start-page: 757
  year: 2018
  ident: ref_40
  article-title: Self-learning random forests model for mapping groundwater yield in data-scarce areas
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-018-9416-1
– volume: 147
  start-page: 1
  year: 2008
  ident: ref_43
  article-title: Spatial patterns in vegetation fires in the Indian region
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-007-0092-6
– volume: 133
  start-page: 90
  year: 2011
  ident: ref_67
  article-title: Regional mapping of soil parent material by machine learning based on point data
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.06.026
– volume: 298
  start-page: 118
  year: 2017
  ident: ref_25
  article-title: Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.09.006
– volume: 3
  start-page: 749
  year: 2017
  ident: ref_81
  article-title: Pros and cons of different sampling techniques
  publication-title: Int. J. Appl. Res.
SSID ssj0000331904
Score 2.3163385
Snippet Although sampling strategy plays an important role in groundwater potential mapping and significantly influences model accuracy, researchers often apply a...
SourceID doaj
swepub
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1375
SubjectTerms Accuracy
Artificial intelligence
Automation
Earth science
Geographic information systems
GIS
Groundwater
Groundwater data
Groundwater potential
Learning algorithms
LiDAR
Machine learning
Mapping
Methods
Model accuracy
Natural resources
Programming languages
Python
R&D
Random sampling
Regression analysis
Remote sensing
Research & development
sampling strategy
SAS tool
spatial modeling
Splines
Statistical analysis
Statistical methods
Statistical sampling
Studies
Trustworthiness
Watershed management
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9VAEF60CvpSr8XYKgtewIfQTXaTbJ4krRYftBxolb4te8vpwZLUJMfSf9-ZZM9pC9IXX8OQSTKz3347Gb4h5L2TaWmZM7FnuY6B_7NYJszGmbZ1VuepSWo9DpsoDg_lyUk5CwW3PrRVrjBxBGrXWqyR72LxksHezvnn8z8xTo3Cv6thhMZ98gBVEpKxde9oXWNhHBKMiUmVlMPpfrfrESISjm2FN_ahUa7_Nse8qRs67jUHT_73KZ-SzcAyaTWlxTNyzzfPyaMw8Pz08gXxVUOr5dACX_WOzi5RQYB-D7XLeA-2NkeP2_aMAqel-yOxbOa0Mj0CAT3SqCnc00VDsXbVuAu4TUdn7YC9R-D4h0bZh_lL8vPg6_H-tzhMXIi1yMohFpqnUjvp4avJorDSOVnIHAJXAPOqSw10SZTGSIhgql0mLCutTrk11iJW8C2y0bSNf0WoEUmd2cQ5LZzQxpdpXRtIBQsAgAo2Efm0-v7KBjlynIpxpuBYgrFS17GKyLu17fkkwvFPqz0M49oChbPHC203V2EdqgxANc8Fc0VmhBbwEtZ6oDm2TDNvuI7IziqwKqzmXl1HNSIfp8S45eXL4lc1evk9nCoc35ywiHy4y7BfqqQAgOev7_a3TR4DQyunms8O2Ri6pX9DHtq_w6Lv3o7ZfgUzrwrA
  priority: 102
  providerName: ProQuest
Title An Automated Python Language-Based Tool for Creating Absence Samples in Groundwater Potential Mapping
URI https://www.proquest.com/docview/2304043533
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288310
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-170883
https://doaj.org/article/58876640d75b4a42adcce218c925eb3a
Volume 11
WOSCitedRecordID wos000472648000118&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQQYILojxEaFlZ4iFxiOrEdmIfs2UrkOgqogUVLpEfSbtqlVSbLKiX_vbOJGm7lRBcuOSQWLEzD8831uQbQt56FWvHvA1LlpgQ8D8LVcRcKI2rZJXENqpM32winc_V0ZHO11p9YU3YQA88CG5HghckiWA-lVYYERvvXAlxyelYQiLYQyOW6rVkqt-DOZgWEwMfKYe8fmfZ4uYQcSwoXItAPVH_XXS5zhjaR5m9J-TxCA9pNixrk9wr66fk4dip_OTiGSmzmmarrgGgWXqaX-Cv__TLeOgYTiEmeXrYNGcUwCjd7RFhfUwz26IH0wODZMAtXdQUD51q_xtes6R502HREEy8b5Cv4fg5-bY3O9z9FI6tEkIjpO5CYXisjFclfLRKU6e8V6lKQOIpQKZKG8A5QlurQPQgQikc087E3Fnn0Mn5C7JRN3X5klArokq6yHsjvDC21HFVWdChA89F6pmAfLgWX-FGHnFsZ3FWQD6Boi5uRR2QNzdjzwf2jD-OmqIWbkYg43V_A-ygGO2g-JcdBGT7WofF6IZtgSfeDAAh5wF5P-j1ziwfF9-zfpbT7qTAvssRC8i7vw1sV0WUws7MX_2PRW-RRwDA9HCks002uuWqfE0euF_dol1OyP3pbJ5_nfSmPcGq1AO8Xs7gmsuf8Dz_vJ__uALI5gNl
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKlceCMCBVaCInGwuvauY-8BobSlatQkikRA5WT25TSisovtUOVP8RuZtZ20lVBvPXC1Rvvwfjvz7Xj9DcA7EwdCU6M8S3vSQ_5Pvdin2gulTsO0Fyg_lXWxiWg8jk9OxGQD_qz-hXHXKlc-sXbUJtcuR77rkpcUYztjn85_ea5qlPu6uiqh0cDi2C4v8MhWfhwc4PruBMHh5-n-kddWFfAkD0XlccmCWJrYCgRvFOnYmDiKezi4CNlFKiRSAi6UinGUgTQh11RoGTCttHb7gWG7d2CTO7B3YHMyGE2-r7M6lCGkKW90UBkTdLconVPymbvIeCXy1QUCrrPaq0qldXQ7fPC_vZeHcL_l0aTfAP8RbNjsMWy1Jd1Pl0_A9jPSX1Q5MnJryGTpNBLIsM3OensYvA2Z5vkZQdZO9mvqnM1IX5XO1ZEv0qkml2SeEZedy8wFNlOQSV6521XY8Ug6YYvZU_h6K7N8Bp0sz-xzIIr7aah9YyQ3XCorgjRVCHaNLs5p9HThw2q9E90Krru6H2cJHrwcNpJLbHTh7dr2vJEZ-afVnoPN2sJJg9cP8mKWtJ4mCTFs9HqcmihUXHKchNYWiZwWQWgVk13YXgEpaf1VmVyiqAvvGyBe6-Vg_q1f9_KzOk1cgWqfdmHnJsNykfgRhjD24ub-3sDW0XQ0TIaD8fFLuId8VDQZrm3oVMXCvoK7-nc1L4vX7V4j8OO2YfwXXQJo4g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgoALb9RAgZWgSBysrL3r2HtAyG2IqFqiSBRU9WL25TRqZZfYocpf49cx60faSqi3Hrhaq314v535djz-BuCdiQOhqVGepQPpIf-nXuxT7YVSZ2E2CJSfybrYRDQex4eHYrIGf7p_YVxaZWcTa0NtCu1i5H0XvKTo2xnrZ21axGQ4-nT2y3MVpNyX1q6cRgORPbs8x-tb-XF3iHu9FQSjzwc7X7y2woAneSgqj0sWxNLEViCQo0jHxsRRPMCJRsg0MiGRHnChVIwzDqQJuaZCy4BppbU7Gwz7vQW3I7xjunTCSXi0iu9QhuCmvFFEZUzQ_rx05slnLqXxkg-sSwVc5beXNUtrPzd6-D-_oUfwoGXXJGmOw2NYs_kTuNcWej9ePgWb5CRZVAXydGvIZOmUE8h-G7P1ttGlG3JQFKcEuTzZqQl1PiWJKp0BJN-k01IuySwnLmaXm3PsZk4mReVyrnDgr9LJXUyfwfcbWeVzWM-L3G4AUdzPQu0bI7nhUlkRZJnCI6DR8Dnlnh586PY-1a0Mu6sGcpridczhJL3ASQ_ertqeNeIj_2y17SC0auEEw-sHxXyatvYnDdGZDAacmihUXHJchNYW6Z0WQWgVkz3Y7ECVtlasTC8Q1YP3DSivjDKc_UjqUU6q49SVrfZpD7aua1guUj9Cx8ZeXD_eG7iL2E33d8d7L-E-klTRhL02Yb2aL-wruKN_V7Ny_ro-dAR-3jSG_wJphXBF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Automated+Python+Language-Based+Tool+for+Creating+Absence+Samples+in+Groundwater+Potential+Mapping&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Omid+Rahmati&rft.au=Davoud+Davoudi+Moghaddam&rft.au=Vahid+Moosavi&rft.au=Zahra+Kalantari&rft.date=2019&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=11&rft.spage=1375&rft_id=info:doi/10.3390%2Frs11111375&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_58876640d75b4a42adcce218c925eb3a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon