An Automated Python Language-Based Tool for Creating Absence Samples in Groundwater Potential Mapping
Although sampling strategy plays an important role in groundwater potential mapping and significantly influences model accuracy, researchers often apply a simple random sampling method to determine absence (non-occurrence) samples. In this study, an automated, user-friendly geographic information sy...
Gespeichert in:
| Veröffentlicht in: | Remote sensing (Basel, Switzerland) Jg. 11; H. 11; S. 1375 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
2019
|
| Schlagworte: | |
| ISSN: | 2072-4292, 2072-4292 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Although sampling strategy plays an important role in groundwater potential mapping and significantly influences model accuracy, researchers often apply a simple random sampling method to determine absence (non-occurrence) samples. In this study, an automated, user-friendly geographic information system (GIS)-based tool, selection of absence samples (SAS), was developed using the Python programming language. The SAS tool takes into account different geospatial concepts, including nearest neighbor (NN) and hotspot analyses. In a case study, it was successfully applied to the Bojnourd watershed, Iran, together with two machine learning models (random forest (RF) and multivariate adaptive regression splines (MARS)) with GIS and remotely sensed data, to model groundwater potential. Different evaluation criteria (area under the receiver operating characteristic curve (AUC-ROC), true skill statistic (TSS), efficiency (E), false positive rate (FPR), true positive rate (TPR), true negative rate (TNR), and false negative rate (FNR)) were used to scrutinize model performance. Two absence sample types were produced, based on a simple random method and the SAS tool, and used in the models. The results demonstrated that both RF (AUC-ROC = 0.913, TSS = 0.72, E = 0.926) and MARS (AUC-ROC = 0.889, TSS = 0.705, E = 0.90) performed better when using absence samples generated by the SAS tool, indicating that this tool is capable of producing trustworthy absence samples to improve groundwater potential models. |
|---|---|
| AbstractList | Although sampling strategy plays an important role in groundwater potential mapping and significantly influences model accuracy, researchers often apply a simple random sampling method to determine absence (non-occurrence) samples. In this study, an automated, user-friendly geographic information system (GIS)-based tool, selection of absence samples (SAS), was developed using the Python programming language. The SAS tool takes into account different geospatial concepts, including nearest neighbor (NN) and hotspot analyses. In a case study, it was successfully applied to the Bojnourd watershed, Iran, together with two machine learning models (random forest (RF) and multivariate adaptive regression splines (MARS)) with GIS and remotely sensed data, to model groundwater potential. Different evaluation criteria (area under the receiver operating characteristic curve (AUC-ROC), true skill statistic (TSS), efficiency (E), false positive rate (FPR), true positive rate (TPR), true negative rate (TNR), and false negative rate (FNR)) were used to scrutinize model performance. Two absence sample types were produced, based on a simple random method and the SAS tool, and used in the models. The results demonstrated that both RF (AUC-ROC = 0.913, TSS = 0.72, E = 0.926) and MARS (AUC-ROC = 0.889, TSS = 0.705, E = 0.90) performed better when using absence samples generated by the SAS tool, indicating that this tool is capable of producing trustworthy absence samples to improve groundwater potential models. |
| Author | Kalantari, Zahra Samadi, Mahmood Lee, Saro Rahmati, Omid Moghaddam, Davoud Davoudi Moosavi, Vahid Tien Bui, Dieu |
| Author_xml | – sequence: 1 givenname: Omid orcidid: 0000-0001-5672-8525 surname: Rahmati fullname: Rahmati, Omid – sequence: 2 givenname: Davoud Davoudi surname: Moghaddam fullname: Moghaddam, Davoud Davoudi – sequence: 3 givenname: Vahid orcidid: 0000-0002-4563-1178 surname: Moosavi fullname: Moosavi, Vahid – sequence: 4 givenname: Zahra orcidid: 0000-0002-7978-0040 surname: Kalantari fullname: Kalantari, Zahra – sequence: 5 givenname: Mahmood orcidid: 0000-0003-2661-2358 surname: Samadi fullname: Samadi, Mahmood – sequence: 6 givenname: Saro orcidid: 0000-0003-0409-8263 surname: Lee fullname: Lee, Saro – sequence: 7 givenname: Dieu orcidid: 0000-0001-5161-6479 surname: Tien Bui fullname: Tien Bui, Dieu |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288310$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan) https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-170883$$DView record from Swedish Publication Index (Stockholms universitet) |
| BookMark | eNqFkV9rFDEUxYNUsK198RME-iYdzeTPJvM4rloLKxZs-xruZDLbrLPJNMlQ-u3NdhWrFLwvCZdzfhzuOUIHPniL0JuavGOsIe9jqnfDpHiBDimRtOK0oQdP_q_QSUobUoaxuiH8ENnW43bOYQvZ9vjyId8Gj1fg1zOsbfUBUtlehTDiIUS8jBay82vcdsl6Y_F32E6jTdh5fB7D7Pv7gon4MmTrs4MRf4VpKobX6OUAY7Inv95jdP3509XyS7X6dn6xbFcVcNHkigOjCnplSzQlpVF9r6RaCDCSMjo0QMSCN12n6gEo9IIb0higzHTGEMkIO0YXe24fYKOn6LYQH3QApx8XIa41xOzMaLVQSi4WnPRSdBx4wRljaa1MQ4XtGBTW2Z6V7u00d3_RPrqb9pGWZl1LohQr8ur_8h_5VtOirndRT_f6KYa72aasN2GOvlxHU0Y44UywHZXsVSaGlKIdtHG5dBB8juBGXRO9q17_qb5Y3v5j-R3lGfFP5vyvyg |
| CitedBy_id | crossref_primary_10_1007_s10064_023_03219_y crossref_primary_10_3390_app10072469 crossref_primary_10_3390_rs12111890 crossref_primary_10_1007_s12665_021_10071_4 crossref_primary_10_1016_j_jhydrol_2021_126474 crossref_primary_10_3390_rs14040894 crossref_primary_10_3390_rs13112086 crossref_primary_10_1016_j_heliyon_2023_e21213 crossref_primary_10_1016_j_jhydrol_2019_124172 crossref_primary_10_1016_j_jhydrol_2024_132337 crossref_primary_10_1016_j_indcrop_2025_120750 crossref_primary_10_3390_su13052459 crossref_primary_10_3390_w12030679 crossref_primary_10_3390_rs12172833 crossref_primary_10_1007_s11356_022_19248_1 crossref_primary_10_1016_j_pce_2025_104060 crossref_primary_10_3390_app131910707 crossref_primary_10_1016_j_gsf_2021_101154 crossref_primary_10_1007_s11069_021_04673_1 crossref_primary_10_1016_j_gsf_2021_101232 crossref_primary_10_1007_s00477_025_02941_1 |
| Cites_doi | 10.1016/j.jhydrol.2015.06.008 10.1016/j.scitotenv.2017.07.198 10.1016/B978-0-12-815226-3.00022-3 10.1016/j.enggeo.2009.12.004 10.1007/978-3-319-75115-3_2 10.1006/jtbi.1995.0032 10.1016/S0167-5877(00)00115-X 10.1016/j.geomorph.2011.03.012 10.1016/j.ecolmodel.2006.05.022 10.1016/j.geomorph.2016.03.006 10.1016/j.jenvman.2013.04.010 10.1007/s00267-011-9766-5 10.1007/s40815-016-0235-4 10.1007/s00704-014-1243-7 10.1080/01431160412331269698 10.5194/hess-20-4585-2016 10.1016/j.ecolmodel.2004.12.009 10.1016/j.proenv.2015.07.098 10.1016/j.enggeo.2008.01.004 10.3390/su71013416 10.1016/j.geomorph.2010.03.029 10.1016/j.geomorph.2008.03.015 10.1007/s10661-018-6507-8 10.1016/j.scitotenv.2019.01.009 10.1007/s00435-007-0036-2 10.1016/j.enggeo.2008.03.010 10.5194/hess-18-4913-2014 10.1016/j.csda.2007.08.015 10.1111/j.1467-9671.2006.01004.x 10.1029/2018JF004640 10.1016/j.envsoft.2017.06.012 10.1016/j.jsb.2018.11.008 10.1016/j.jenvman.2019.02.020 10.1016/j.scitotenv.2017.09.262 10.1016/j.jhydrol.2018.08.027 10.1016/j.scitotenv.2019.02.436 10.1016/j.cageo.2012.01.005 10.1016/j.cageo.2011.10.031 10.1007/s10040-018-1848-5 10.1016/j.knosys.2012.12.007 10.1111/j.1365-2427.2005.01448.x 10.1111/j.1365-2664.2006.01214.x 10.1007/s12665-016-5424-9 10.1016/j.scitotenv.2019.02.017 10.1007/978-1-4419-9326-7_11 10.1007/s10661-015-5049-6 10.1016/j.jhydrol.2011.01.026 10.1111/j.1365-2664.2007.01281.x 10.1080/02626667909491834 10.1016/j.catena.2018.12.018 10.1016/j.scitotenv.2018.04.055 10.1023/A:1010933404324 10.1016/j.geomorph.2015.10.030 10.1007/s10346-017-0906-8 10.1016/j.cageo.2013.04.006 10.1016/j.patcog.2012.09.005 10.1016/j.csda.2004.11.006 10.1016/j.jhydrol.2014.03.008 10.1007/s10040-010-0631-z 10.1016/j.catena.2017.11.022 10.1016/j.geomorph.2013.08.021 10.1016/j.compenvurbsys.2009.12.004 10.1016/j.aap.2011.05.007 10.1007/s10346-015-0557-6 10.1016/j.cageo.2012.08.023 10.1007/s12665-018-7704-z 10.1016/j.sbspro.2011.07.020 10.1080/10106049.2017.1303091 10.1016/B978-0-12-815226-3.00006-5 10.1016/j.catena.2014.10.017 10.1016/j.ecolmodel.2009.06.020 10.1007/s11269-015-1114-8 10.1007/978-3-319-16595-0_12 10.1007/978-3-642-16239-8_8 10.1016/B978-0-12-815226-3.00014-4 10.1007/s11053-018-9416-1 10.1007/s10661-007-0092-6 10.1016/j.geomorph.2011.06.026 10.1016/j.geomorph.2017.09.006 |
| ContentType | Journal Article |
| Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTPV AFDQA AOWAS D8T D8V ZZAVC ABAVF DG7 DOA |
| DOI | 10.3390/rs11111375 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text SWEPUB Stockholms universitet full text SWEPUB Stockholms universitet DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_58876640d75b4a42adcce218c925eb3a oai_DiVA_org_su_170883 oai_DiVA_org_kth_288310 10_3390_rs11111375 |
| GeographicLocations | Iran Vietnam India |
| GeographicLocations_xml | – name: Vietnam – name: Iran – name: India |
| GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 2XV ADTPV AFDQA AOWAS C1A D8T D8V IPNFZ ITC RIG ZZAVC ABAVF DG7 |
| ID | FETCH-LOGICAL-a459t-4a328ad8e904877c8dd87865ac7232f9a05649bb81fa2ad54c09ca23cbcc07303 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472648000118&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:45:07 EDT 2025 Tue Nov 04 16:51:53 EST 2025 Tue Nov 04 16:59:15 EST 2025 Mon Oct 20 02:54:00 EDT 2025 Sat Nov 29 07:16:34 EST 2025 Tue Nov 18 22:30:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a459t-4a328ad8e904877c8dd87865ac7232f9a05649bb81fa2ad54c09ca23cbcc07303 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5161-6479 0000-0002-4563-1178 0000-0003-0409-8263 0000-0001-5672-8525 0000-0002-7978-0040 0000-0003-2661-2358 |
| OpenAccessLink | https://doaj.org/article/58876640d75b4a42adcce218c925eb3a |
| PQID | 2304043533 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_58876640d75b4a42adcce218c925eb3a swepub_primary_oai_DiVA_org_su_170883 swepub_primary_oai_DiVA_org_kth_288310 proquest_journals_2304043533 crossref_citationtrail_10_3390_rs11111375 crossref_primary_10_3390_rs11111375 |
| PublicationCentury | 2000 |
| PublicationDate | 2019 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2019 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Lacoste (ref_67) 2011; 133 Prasannakumar (ref_48) 2011; 21 Golkarian (ref_15) 2018; 190 ref_14 Pourghasemi (ref_24) 2017; 609 Lee (ref_26) 2015; 7 Plug (ref_20) 2011; 43 ref_51 Perry (ref_38) 2018; 123 Sharma (ref_81) 2017; 3 Lee (ref_69) 2013; 127 Ye (ref_82) 2013; 46 ref_18 Archer (ref_60) 2008; 52 ref_59 Rutherford (ref_34) 2007; 44 Vadrevu (ref_43) 2008; 147 Rahmati (ref_30) 2019; 236 Kiss (ref_54) 2004; 2 Gayen (ref_23) 2019; 668 Chen (ref_45) 2015; 27 ref_61 Pradhan (ref_12) 2012; 45 Castellanos (ref_2) 2008; 102 Naghibi (ref_3) 2015; 29 Conoscenti (ref_22) 2014; 204 Chapi (ref_32) 2017; 95 Jha (ref_84) 2010; 18 Chen (ref_13) 2017; 19 Pradhan (ref_72) 2010; 34 McMillan (ref_52) 2011; 400 Lee (ref_27) 2012; 49 Wang (ref_78) 2013; 57 Ahlmer (ref_17) 2018; 77 Pham (ref_19) 2019; 175 ref_29 Lee (ref_66) 2006; 50 Hussin (ref_76) 2016; 253 Pal (ref_53) 2005; 26 Allouche (ref_70) 2006; 43 Kalantari (ref_33) 2019; 661 Lee (ref_16) 2019; 35 Rahmati (ref_25) 2017; 298 Rahmati (ref_77) 2019; 664 Gorsevski (ref_8) 2006; 10 Formetta (ref_9) 2016; 20 Hong (ref_1) 2018; 15 San (ref_55) 2014; 26 Conoscenti (ref_7) 2016; 261 Friedman (ref_62) 1991; 19 Naghibi (ref_10) 2016; 188 Lee (ref_68) 2018; 33 Nefeslioglu (ref_4) 2008; 97 Cardini (ref_83) 2007; 126 Tehrany (ref_35) 2014; 512 Sameen (ref_40) 2018; 28 Wang (ref_58) 2015; 527 Zhou (ref_79) 2013; 41 Frattini (ref_74) 2010; 111 Wilson (ref_11) 2012; 137 Peres (ref_71) 2014; 18 Greiner (ref_75) 2000; 45 Bishop (ref_50) 2010; 120 Zou (ref_49) 1995; 172 Xu (ref_39) 2005; 185 Breiman (ref_57) 2001; 45 Termeh (ref_37) 2018; 615 Rahmati (ref_73) 2018; 565 Zabihi (ref_41) 2016; 75 Chen (ref_44) 2018; 634 Koch (ref_47) 2019; 205 Beven (ref_56) 1979; 24 Tehrany (ref_36) 2015; 125 Bui (ref_31) 2016; 13 ref_42 ref_85 Leathwick (ref_65) 2005; 50 Corsini (ref_5) 2009; 111 Leathwick (ref_64) 2006; 199 Bajat (ref_46) 2015; 121 Park (ref_28) 2012; 48 Schnabel (ref_63) 2009; 220 Pourghasemi (ref_21) 2018; 162 Kordestani (ref_80) 2019; 27 Pradhan (ref_6) 2013; 51 |
| References_xml | – volume: 527 start-page: 1130 year: 2015 ident: ref_58 article-title: Flood hazard risk assessment model based on random forest publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.06.008 – volume: 609 start-page: 764 year: 2017 ident: ref_24 article-title: Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.07.198 – ident: ref_51 – ident: ref_14 doi: 10.1016/B978-0-12-815226-3.00022-3 – volume: 111 start-page: 62 year: 2010 ident: ref_74 article-title: Techniques for evaluating the performance of landslide susceptibility models publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2009.12.004 – ident: ref_85 doi: 10.1007/978-3-319-75115-3_2 – volume: 172 start-page: 347 year: 1995 ident: ref_49 article-title: Nearest-neighbor distribution of interacting biological entities publication-title: J. Theor. Biol. doi: 10.1006/jtbi.1995.0032 – volume: 45 start-page: 23 year: 2000 ident: ref_75 article-title: Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests publication-title: Prev. Vet. Med. doi: 10.1016/S0167-5877(00)00115-X – volume: 137 start-page: 107 year: 2012 ident: ref_11 article-title: Digital terrain modeling publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.03.012 – volume: 199 start-page: 188 year: 2006 ident: ref_64 article-title: Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2006.05.022 – volume: 261 start-page: 222 year: 2016 ident: ref_7 article-title: Exploring the effect of absence selection on landslide susceptibility models: A case study in Sicily, Italy publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.03.006 – volume: 127 start-page: 166 year: 2013 ident: ref_69 article-title: Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2013.04.010 – volume: 49 start-page: 347 year: 2012 ident: ref_27 article-title: Spatial prediction of ground subsidence susceptibility using an artificial neural network publication-title: Environ. Manag. doi: 10.1007/s00267-011-9766-5 – volume: 19 start-page: 1217 year: 2017 ident: ref_13 article-title: Feature Selection in Learning Common Sense Associations Using Matrix Factorization publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-016-0235-4 – volume: 121 start-page: 289 year: 2015 ident: ref_46 article-title: Spatial analysis of the temperature trends in Serbia during the period 1961–2010 publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-014-1243-7 – volume: 26 start-page: 217 year: 2005 ident: ref_53 article-title: Random forest classifier for remote sensing classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431160412331269698 – volume: 20 start-page: 4585 year: 2016 ident: ref_9 article-title: Evaluating performance of simplified physically based models for shallow landslide susceptibility publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-20-4585-2016 – volume: 185 start-page: 255 year: 2005 ident: ref_39 article-title: Latin hypercube sampling and geostatistical modeling of spatial uncertainty in a spatially explicit forest landscape model simulation publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2004.12.009 – volume: 35 start-page: 179 year: 2019 ident: ref_16 article-title: Current and Future Status of GIS-based Landslide Susceptibility Mapping: A Literature Review publication-title: Korean J. Remote Sens. – volume: 27 start-page: 98 year: 2015 ident: ref_45 article-title: Spatial point pattern analysis on the villages in China’s poverty-stricken areas publication-title: Procedia Environ. Sci. doi: 10.1016/j.proenv.2015.07.098 – volume: 97 start-page: 171 year: 2008 ident: ref_4 article-title: An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2008.01.004 – volume: 7 start-page: 13416 year: 2015 ident: ref_26 article-title: Application of decision-tree model to groundwater productivity-potential mapping publication-title: Sustainability doi: 10.3390/su71013416 – volume: 120 start-page: 186 year: 2010 ident: ref_50 article-title: Nearest neighbor analysis of mega-barchanoid dunes, Ar Rub’al Khali, sand sea: The application of geographical indices to the understanding of dune field self-organization, maturity and environmental change publication-title: Geomorphology doi: 10.1016/j.geomorph.2010.03.029 – volume: 111 start-page: 79 year: 2009 ident: ref_5 article-title: Weight of evidence and artificial neural networks for potential groundwater spring mapping: An application to the Mt. Modino area (Northern Apennines, Italy) publication-title: Geomorphology doi: 10.1016/j.geomorph.2008.03.015 – volume: 190 start-page: 149 year: 2018 ident: ref_15 article-title: Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-018-6507-8 – volume: 661 start-page: 393 year: 2019 ident: ref_33 article-title: Assessing flood probability for transportation infrastructure based on catchment characteristics, sediment connectivity and remotely sensed soil moisture publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.009 – volume: 126 start-page: 121 year: 2007 ident: ref_83 article-title: Sample size and sampling error in geometric morphometric studies of size and shape publication-title: Zoomorphology doi: 10.1007/s00435-007-0036-2 – volume: 102 start-page: 112 year: 2008 ident: ref_2 article-title: Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2008.03.010 – volume: 18 start-page: 4913 year: 2014 ident: ref_71 article-title: Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo approach publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-18-4913-2014 – volume: 52 start-page: 2249 year: 2008 ident: ref_60 article-title: Empirical characterization of random forest variable importance measures publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2007.08.015 – volume: 10 start-page: 395 year: 2006 ident: ref_8 article-title: Spatial prediction of landslide hazard using logistic regression and ROC analysis publication-title: Trans. GIS doi: 10.1111/j.1467-9671.2006.01004.x – volume: 123 start-page: 2954 year: 2018 ident: ref_38 article-title: Using Machine Learning to Predict Geomorphic Disturbance: The Effects of Sample Size, Sample Prevalence, and Sampling Strategy publication-title: J. Geophys. Res.-Earth doi: 10.1029/2018JF004640 – volume: 95 start-page: 229 year: 2017 ident: ref_32 article-title: A novel hybrid artificial intelligence approach for flood susceptibility assessment publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2017.06.012 – volume: 205 start-page: 60 year: 2019 ident: ref_47 article-title: Variation in human hair ultrastructure among three biogeographic populations publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2018.11.008 – volume: 236 start-page: 466 year: 2019 ident: ref_30 article-title: Land subsidence hazard modeling: Machine learning to identify predictors and the role of human activities publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.02.020 – volume: 615 start-page: 438 year: 2018 ident: ref_37 article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.262 – volume: 565 start-page: 248 year: 2018 ident: ref_73 article-title: Groundwater spring potential modelling: Comprising the capability and robustness of three different modeling approaches publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.08.027 – volume: 668 start-page: 124 year: 2019 ident: ref_23 article-title: Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.436 – volume: 19 start-page: 1 year: 1991 ident: ref_62 article-title: Multivariate adaptive regression splines publication-title: Ann. Stat. – volume: 48 start-page: 228 year: 2012 ident: ref_28 article-title: Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.01.005 – volume: 26 start-page: 399 year: 2014 ident: ref_55 article-title: An evaluation of SVM using polygon-based random sampling in landslide susceptibility mapping: The Candir catchment area (western Antalya, Turkey) publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 45 start-page: 199 year: 2012 ident: ref_12 article-title: Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2011.10.031 – volume: 27 start-page: 211 year: 2019 ident: ref_80 article-title: Groundwater potential mapping using a novel data-mining ensemble model publication-title: Hydrogeol. J. doi: 10.1007/s10040-018-1848-5 – volume: 41 start-page: 16 year: 2013 ident: ref_79 article-title: Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of sampling methods publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2012.12.007 – volume: 50 start-page: 2034 year: 2005 ident: ref_65 article-title: Using multivariate adaptive regression splines to predict the distributions of New Zealand’s freshwater diadromous fish publication-title: Freshw. Biol. doi: 10.1111/j.1365-2427.2005.01448.x – volume: 43 start-page: 1223 year: 2006 ident: ref_70 article-title: Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS) publication-title: J. Appl. Ecol. doi: 10.1111/j.1365-2664.2006.01214.x – volume: 75 start-page: 665 year: 2016 ident: ref_41 article-title: GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran publication-title: Environ. Earth Sci. doi: 10.1007/s12665-016-5424-9 – volume: 664 start-page: 296 year: 2019 ident: ref_77 article-title: PMT: New analytical framework for automated evaluation of geo-environmental modelling approaches publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.017 – ident: ref_59 doi: 10.1007/978-1-4419-9326-7_11 – volume: 188 start-page: 44 year: 2016 ident: ref_10 article-title: GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-015-5049-6 – volume: 400 start-page: 83 year: 2011 ident: ref_52 article-title: Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.01.026 – volume: 44 start-page: 414 year: 2007 ident: ref_34 article-title: Evaluating sampling strategies and logistic regression methods for modelling complex land cover changes publication-title: J. Appl. Ecol. doi: 10.1111/j.1365-2664.2007.01281.x – volume: 24 start-page: 43 year: 1979 ident: ref_56 article-title: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant publication-title: Hydrol. Sci. J. doi: 10.1080/02626667909491834 – volume: 175 start-page: 203 year: 2019 ident: ref_19 article-title: Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches publication-title: Catena doi: 10.1016/j.catena.2018.12.018 – volume: 634 start-page: 853 year: 2018 ident: ref_44 article-title: GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.055 – volume: 45 start-page: 5 year: 2001 ident: ref_57 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 253 start-page: 508 year: 2016 ident: ref_76 article-title: Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.10.030 – volume: 15 start-page: 753 year: 2018 ident: ref_1 article-title: Improving the accuracy of landslide susceptibility model using a novel region-partitioning approach publication-title: Landslides doi: 10.1007/s10346-017-0906-8 – volume: 57 start-page: 81 year: 2013 ident: ref_78 article-title: Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2013.04.006 – volume: 46 start-page: 769 year: 2013 ident: ref_82 article-title: Stratified sampling for feature subspace selection in random forests for high dimensional data publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2012.09.005 – volume: 50 start-page: 1113 year: 2006 ident: ref_66 article-title: Mining the customer credit using classification and regression tree and multivariate adaptive regression splines publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2004.11.006 – volume: 512 start-page: 332 year: 2014 ident: ref_35 article-title: Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.03.008 – volume: 18 start-page: 1713 year: 2010 ident: ref_84 article-title: Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques publication-title: Hydrogeol. J. doi: 10.1007/s10040-010-0631-z – volume: 162 start-page: 177 year: 2018 ident: ref_21 article-title: Prediction of the landslide susceptibility: Which algorithm, which precision? publication-title: Catena doi: 10.1016/j.catena.2017.11.022 – volume: 204 start-page: 399 year: 2014 ident: ref_22 article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy) publication-title: Geomorphology doi: 10.1016/j.geomorph.2013.08.021 – volume: 2 start-page: 16 year: 2004 ident: ref_54 article-title: Determination of drainage network in digital elevation models, utilities and limitations publication-title: J. Hung. Geomath. – volume: 34 start-page: 216 year: 2010 ident: ref_72 article-title: A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses publication-title: Comput. Environ. Urban doi: 10.1016/j.compenvurbsys.2009.12.004 – volume: 43 start-page: 1937 year: 2011 ident: ref_20 article-title: Spatial and temporal visualisation techniques for crash analysis publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2011.05.007 – volume: 13 start-page: 361 year: 2016 ident: ref_31 article-title: Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree publication-title: Landslides doi: 10.1007/s10346-015-0557-6 – volume: 51 start-page: 350 year: 2013 ident: ref_6 article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.08.023 – volume: 77 start-page: 533 year: 2018 ident: ref_17 article-title: Soil moisture remote-sensing applications for identification of flood-prone areas along transport infrastructure publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-7704-z – volume: 21 start-page: 317 year: 2011 ident: ref_48 article-title: Spatio-temporal clustering of road accidents: GIS based analysis and assessment publication-title: Proc. Soc. Behv. doi: 10.1016/j.sbspro.2011.07.020 – volume: 33 start-page: 847 year: 2018 ident: ref_68 article-title: GIS-based groundwater potential mapping using artificial neural network and support vector machine models: The case of Boryeong city in Korea publication-title: Geocarto Int. doi: 10.1080/10106049.2017.1303091 – ident: ref_29 doi: 10.1016/B978-0-12-815226-3.00006-5 – volume: 125 start-page: 91 year: 2015 ident: ref_36 article-title: Flood susceptibility assessment using GIS-based support vector machine model with different kernel types publication-title: Catena doi: 10.1016/j.catena.2014.10.017 – volume: 220 start-page: 3630 year: 2009 ident: ref_63 article-title: Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2009.06.020 – volume: 29 start-page: 5217 year: 2015 ident: ref_3 article-title: A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping publication-title: Water Resour. Manag. doi: 10.1007/s11269-015-1114-8 – ident: ref_42 doi: 10.1007/978-3-319-16595-0_12 – ident: ref_61 doi: 10.1007/978-3-642-16239-8_8 – ident: ref_18 doi: 10.1016/B978-0-12-815226-3.00014-4 – volume: 28 start-page: 757 year: 2018 ident: ref_40 article-title: Self-learning random forests model for mapping groundwater yield in data-scarce areas publication-title: Nat. Resour. Res. doi: 10.1007/s11053-018-9416-1 – volume: 147 start-page: 1 year: 2008 ident: ref_43 article-title: Spatial patterns in vegetation fires in the Indian region publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-007-0092-6 – volume: 133 start-page: 90 year: 2011 ident: ref_67 article-title: Regional mapping of soil parent material by machine learning based on point data publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.06.026 – volume: 298 start-page: 118 year: 2017 ident: ref_25 article-title: Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.09.006 – volume: 3 start-page: 749 year: 2017 ident: ref_81 article-title: Pros and cons of different sampling techniques publication-title: Int. J. Appl. Res. |
| SSID | ssj0000331904 |
| Score | 2.3163385 |
| Snippet | Although sampling strategy plays an important role in groundwater potential mapping and significantly influences model accuracy, researchers often apply a... |
| SourceID | doaj swepub proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1375 |
| SubjectTerms | Accuracy Artificial intelligence Automation Earth science Geographic information systems GIS Groundwater Groundwater data Groundwater potential Learning algorithms LiDAR Machine learning Mapping Methods Model accuracy Natural resources Programming languages Python R&D Random sampling Regression analysis Remote sensing Research & development sampling strategy SAS tool spatial modeling Splines Statistical analysis Statistical methods Statistical sampling Studies Trustworthiness Watershed management |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9VAEF60CvpSr8XYKgtewIfQTXaTbJ4krRYftBxolb4te8vpwZLUJMfSf9-ZZM9pC9IXX8OQSTKz3347Gb4h5L2TaWmZM7FnuY6B_7NYJszGmbZ1VuepSWo9DpsoDg_lyUk5CwW3PrRVrjBxBGrXWqyR72LxksHezvnn8z8xTo3Cv6thhMZ98gBVEpKxde9oXWNhHBKMiUmVlMPpfrfrESISjm2FN_ahUa7_Nse8qRs67jUHT_73KZ-SzcAyaTWlxTNyzzfPyaMw8Pz08gXxVUOr5dACX_WOzi5RQYB-D7XLeA-2NkeP2_aMAqel-yOxbOa0Mj0CAT3SqCnc00VDsXbVuAu4TUdn7YC9R-D4h0bZh_lL8vPg6_H-tzhMXIi1yMohFpqnUjvp4avJorDSOVnIHAJXAPOqSw10SZTGSIhgql0mLCutTrk11iJW8C2y0bSNf0WoEUmd2cQ5LZzQxpdpXRtIBQsAgAo2Efm0-v7KBjlynIpxpuBYgrFS17GKyLu17fkkwvFPqz0M49oChbPHC203V2EdqgxANc8Fc0VmhBbwEtZ6oDm2TDNvuI7IziqwKqzmXl1HNSIfp8S45eXL4lc1evk9nCoc35ywiHy4y7BfqqQAgOev7_a3TR4DQyunms8O2Ri6pX9DHtq_w6Lv3o7ZfgUzrwrA priority: 102 providerName: ProQuest |
| Title | An Automated Python Language-Based Tool for Creating Absence Samples in Groundwater Potential Mapping |
| URI | https://www.proquest.com/docview/2304043533 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288310 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-170883 https://doaj.org/article/58876640d75b4a42adcce218c925eb3a |
| Volume | 11 |
| WOSCitedRecordID | wos000472648000118&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQQYILojxEaFlZ4iFxiOrEdmIfs2UrkOgqogUVLpEfSbtqlVSbLKiX_vbOJGm7lRBcuOSQWLEzD8831uQbQt56FWvHvA1LlpgQ8D8LVcRcKI2rZJXENqpM32winc_V0ZHO11p9YU3YQA88CG5HghckiWA-lVYYERvvXAlxyelYQiLYQyOW6rVkqt-DOZgWEwMfKYe8fmfZ4uYQcSwoXItAPVH_XXS5zhjaR5m9J-TxCA9pNixrk9wr66fk4dip_OTiGSmzmmarrgGgWXqaX-Cv__TLeOgYTiEmeXrYNGcUwCjd7RFhfUwz26IH0wODZMAtXdQUD51q_xtes6R502HREEy8b5Cv4fg5-bY3O9z9FI6tEkIjpO5CYXisjFclfLRKU6e8V6lKQOIpQKZKG8A5QlurQPQgQikc087E3Fnn0Mn5C7JRN3X5klArokq6yHsjvDC21HFVWdChA89F6pmAfLgWX-FGHnFsZ3FWQD6Boi5uRR2QNzdjzwf2jD-OmqIWbkYg43V_A-ygGO2g-JcdBGT7WofF6IZtgSfeDAAh5wF5P-j1ziwfF9-zfpbT7qTAvssRC8i7vw1sV0WUws7MX_2PRW-RRwDA9HCks002uuWqfE0euF_dol1OyP3pbJ5_nfSmPcGq1AO8Xs7gmsuf8Dz_vJ__uALI5gNl |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKlceCMCBVaCInGwuvauY-8BobSlatQkikRA5WT25TSisovtUOVP8RuZtZ20lVBvPXC1Rvvwfjvz7Xj9DcA7EwdCU6M8S3vSQ_5Pvdin2gulTsO0Fyg_lXWxiWg8jk9OxGQD_qz-hXHXKlc-sXbUJtcuR77rkpcUYztjn85_ea5qlPu6uiqh0cDi2C4v8MhWfhwc4PruBMHh5-n-kddWFfAkD0XlccmCWJrYCgRvFOnYmDiKezi4CNlFKiRSAi6UinGUgTQh11RoGTCttHb7gWG7d2CTO7B3YHMyGE2-r7M6lCGkKW90UBkTdLconVPymbvIeCXy1QUCrrPaq0qldXQ7fPC_vZeHcL_l0aTfAP8RbNjsMWy1Jd1Pl0_A9jPSX1Q5MnJryGTpNBLIsM3OensYvA2Z5vkZQdZO9mvqnM1IX5XO1ZEv0qkml2SeEZedy8wFNlOQSV6521XY8Ug6YYvZU_h6K7N8Bp0sz-xzIIr7aah9YyQ3XCorgjRVCHaNLs5p9HThw2q9E90Krru6H2cJHrwcNpJLbHTh7dr2vJEZ-afVnoPN2sJJg9cP8mKWtJ4mCTFs9HqcmihUXHKchNYWiZwWQWgVk13YXgEpaf1VmVyiqAvvGyBe6-Vg_q1f9_KzOk1cgWqfdmHnJsNykfgRhjD24ub-3sDW0XQ0TIaD8fFLuId8VDQZrm3oVMXCvoK7-nc1L4vX7V4j8OO2YfwXXQJo4g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgoALb9RAgZWgSBysrL3r2HtAyG2IqFqiSBRU9WL25TRqZZfYocpf49cx60faSqi3Hrhaq314v535djz-BuCdiQOhqVGepQPpIf-nXuxT7YVSZ2E2CJSfybrYRDQex4eHYrIGf7p_YVxaZWcTa0NtCu1i5H0XvKTo2xnrZ21axGQ4-nT2y3MVpNyX1q6cRgORPbs8x-tb-XF3iHu9FQSjzwc7X7y2woAneSgqj0sWxNLEViCQo0jHxsRRPMCJRsg0MiGRHnChVIwzDqQJuaZCy4BppbU7Gwz7vQW3I7xjunTCSXi0iu9QhuCmvFFEZUzQ_rx05slnLqXxkg-sSwVc5beXNUtrPzd6-D-_oUfwoGXXJGmOw2NYs_kTuNcWej9ePgWb5CRZVAXydGvIZOmUE8h-G7P1ttGlG3JQFKcEuTzZqQl1PiWJKp0BJN-k01IuySwnLmaXm3PsZk4mReVyrnDgr9LJXUyfwfcbWeVzWM-L3G4AUdzPQu0bI7nhUlkRZJnCI6DR8Dnlnh586PY-1a0Mu6sGcpridczhJL3ASQ_ertqeNeIj_2y17SC0auEEw-sHxXyatvYnDdGZDAacmihUXHJchNYW6Z0WQWgVkz3Y7ECVtlasTC8Q1YP3DSivjDKc_UjqUU6q49SVrfZpD7aua1guUj9Cx8ZeXD_eG7iL2E33d8d7L-E-klTRhL02Yb2aL-wruKN_V7Ny_ro-dAR-3jSG_wJphXBF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Automated+Python+Language-Based+Tool+for+Creating+Absence+Samples+in+Groundwater+Potential+Mapping&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Omid+Rahmati&rft.au=Davoud+Davoudi+Moghaddam&rft.au=Vahid+Moosavi&rft.au=Zahra+Kalantari&rft.date=2019&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=11&rft.spage=1375&rft_id=info:doi/10.3390%2Frs11111375&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_58876640d75b4a42adcce218c925eb3a |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |