The Advent of Generative Chemistry

Generative adversarial networks (GANs), first published in 2014, are among the most important concepts in modern artificial intelligence (AI). Bridging deep learning and game theory, GANs are used to generate or "imagine" new objects with desired properties. Since 2016, multiple GANs with...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ACS medicinal chemistry letters Ročník 11; číslo 8; s. 1496
Hlavní autoři: Vanhaelen, Quentin, Lin, Yen-Chu, Zhavoronkov, Alex
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 13.08.2020
ISSN:1948-5875, 1948-5875
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Generative adversarial networks (GANs), first published in 2014, are among the most important concepts in modern artificial intelligence (AI). Bridging deep learning and game theory, GANs are used to generate or "imagine" new objects with desired properties. Since 2016, multiple GANs with reinforcement learning (RL) have been successfully applied in pharmacology for molecular design. Those techniques aim at a more efficient use of the data and a better exploration of the chemical space. We review recent advances for the generation of novel molecules with desired properties with a focus on the applications of GANs, RL, and related techniques. We also discuss the current limitations and challenges in the new growing field of generative chemistry.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1948-5875
1948-5875
DOI:10.1021/acsmedchemlett.0c00088