The Advent of Generative Chemistry

Generative adversarial networks (GANs), first published in 2014, are among the most important concepts in modern artificial intelligence (AI). Bridging deep learning and game theory, GANs are used to generate or "imagine" new objects with desired properties. Since 2016, multiple GANs with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS medicinal chemistry letters Jg. 11; H. 8; S. 1496
Hauptverfasser: Vanhaelen, Quentin, Lin, Yen-Chu, Zhavoronkov, Alex
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 13.08.2020
ISSN:1948-5875, 1948-5875
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Generative adversarial networks (GANs), first published in 2014, are among the most important concepts in modern artificial intelligence (AI). Bridging deep learning and game theory, GANs are used to generate or "imagine" new objects with desired properties. Since 2016, multiple GANs with reinforcement learning (RL) have been successfully applied in pharmacology for molecular design. Those techniques aim at a more efficient use of the data and a better exploration of the chemical space. We review recent advances for the generation of novel molecules with desired properties with a focus on the applications of GANs, RL, and related techniques. We also discuss the current limitations and challenges in the new growing field of generative chemistry.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1948-5875
1948-5875
DOI:10.1021/acsmedchemlett.0c00088