Sequentially ordered single-frequency 2-D acoustic waveform inversion in the Laplace–Fourier domain

In the conventional frequency-domain waveform inversion, either multifrequency simultaneous inversion or sequential single-frequency inversion has been implemented. However, most conventional frequency-domain waveform inversion methods fail to recover background velocity when low-frequency informati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international Jg. 181; H. 2; S. 935 - 950
Hauptverfasser: Shin, Changsoo, Koo, Nam-Hyung, Cha, Young Ho, Park, Keun-Pil
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.05.2010
Schlagworte:
ISSN:0956-540X, 1365-246X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the conventional frequency-domain waveform inversion, either multifrequency simultaneous inversion or sequential single-frequency inversion has been implemented. However, most conventional frequency-domain waveform inversion methods fail to recover background velocity when low-frequency information is missing. Recently, new waveform inversion techniques in the Laplace and Laplace–Fourier domain have been proposed to recover background velocity structure from data with insufficient low-frequency information. In such techniques, however, all frequencies are inverted simultaneously, and this requires large computational resources and long computation times. In this paper, we propose a sequentially ordered single-frequency 2-D acoustic waveform inversion using the logarithmic objective function in the Laplace–Fourier domain. Our algorithm sequentially inverts single-frequency data in the Laplace–Fourier domain, thus reducing computational resources. Unlike most conventional waveform inversion methods requiring an initial velocity model close to the true model, we propose a one-step waveform inversion method in seeking to find a final velocity structure from the simple initial model through a hybrid combination of the Laplace domain inversion and the Fourier domain inversion. We adopt and evaluate the multiloop algorithm by modifying the double-loop algorithm commonly used in the conventional frequency-domain waveform inversion. Using the multiloop algorithm repeating loop over frequencies, the quality of the inversion results can be improved and the decision problem of the number of iterations for each frequency can be overcome effectively. Because the sequential order of the Laplace–Fourier frequencies in a 2-D plane should be assigned for inverting Laplace–Fourier frequency data consecutively, we present three different sequential orders of Laplace–Fourier frequencies while considering the multiscale and layer-stripping approach, and we compare the inversion results from the numerical experiments. We applied the sequentially ordered single-frequency 2-D acoustic waveform inversion in the full Laplace–Fourier domain to the synthetic seismic data produced from complex structure model and field data. A realistic model could be recovered in an efficient and robust manner, even using the two-layer homogeneous velocity model as an initial model. The inverted velocity model from the field data was validated by examining the migrated image from the pre-stack depth migration and the flattening of the common-image gathers or by comparing the synthetic shot gather with the real shot gather. The proposed one-step waveform inversion algorithm can be easily extended to the sequential inversion of 3-D acoustic or elastic data in the full Laplace–Fourier domain.
AbstractList SUMMARY In the conventional frequency‐domain waveform inversion, either multifrequency simultaneous inversion or sequential single‐frequency inversion has been implemented. However, most conventional frequency‐domain waveform inversion methods fail to recover background velocity when low‐frequency information is missing. Recently, new waveform inversion techniques in the Laplace and Laplace–Fourier domain have been proposed to recover background velocity structure from data with insufficient low‐frequency information. In such techniques, however, all frequencies are inverted simultaneously, and this requires large computational resources and long computation times. In this paper, we propose a sequentially ordered single‐frequency 2‐D acoustic waveform inversion using the logarithmic objective function in the Laplace–Fourier domain. Our algorithm sequentially inverts single‐frequency data in the Laplace–Fourier domain, thus reducing computational resources. Unlike most conventional waveform inversion methods requiring an initial velocity model close to the true model, we propose a one‐step waveform inversion method in seeking to find a final velocity structure from the simple initial model through a hybrid combination of the Laplace domain inversion and the Fourier domain inversion. We adopt and evaluate the multiloop algorithm by modifying the double‐loop algorithm commonly used in the conventional frequency‐domain waveform inversion. Using the multiloop algorithm repeating loop over frequencies, the quality of the inversion results can be improved and the decision problem of the number of iterations for each frequency can be overcome effectively. Because the sequential order of the Laplace–Fourier frequencies in a 2‐D plane should be assigned for inverting Laplace–Fourier frequency data consecutively, we present three different sequential orders of Laplace–Fourier frequencies while considering the multiscale and layer‐stripping approach, and we compare the inversion results from the numerical experiments. We applied the sequentially ordered single‐frequency 2‐D acoustic waveform inversion in the full Laplace–Fourier domain to the synthetic seismic data produced from complex structure model and field data. A realistic model could be recovered in an efficient and robust manner, even using the two‐layer homogeneous velocity model as an initial model. The inverted velocity model from the field data was validated by examining the migrated image from the pre‐stack depth migration and the flattening of the common‐image gathers or by comparing the synthetic shot gather with the real shot gather. The proposed one‐step waveform inversion algorithm can be easily extended to the sequential inversion of 3‐D acoustic or elastic data in the full Laplace–Fourier domain.
In the conventional frequency-domain waveform inversion, either multifrequency simultaneous inversion or sequential single-frequency inversion has been implemented. However, most conventional frequency-domain waveform inversion methods fail to recover background velocity when low-frequency information is missing. Recently, new waveform inversion techniques in the Laplace and Laplace–Fourier domain have been proposed to recover background velocity structure from data with insufficient low-frequency information. In such techniques, however, all frequencies are inverted simultaneously, and this requires large computational resources and long computation times. In this paper, we propose a sequentially ordered single-frequency 2-D acoustic waveform inversion using the logarithmic objective function in the Laplace–Fourier domain. Our algorithm sequentially inverts single-frequency data in the Laplace–Fourier domain, thus reducing computational resources. Unlike most conventional waveform inversion methods requiring an initial velocity model close to the true model, we propose a one-step waveform inversion method in seeking to find a final velocity structure from the simple initial model through a hybrid combination of the Laplace domain inversion and the Fourier domain inversion. We adopt and evaluate the multiloop algorithm by modifying the double-loop algorithm commonly used in the conventional frequency-domain waveform inversion. Using the multiloop algorithm repeating loop over frequencies, the quality of the inversion results can be improved and the decision problem of the number of iterations for each frequency can be overcome effectively. Because the sequential order of the Laplace–Fourier frequencies in a 2-D plane should be assigned for inverting Laplace–Fourier frequency data consecutively, we present three different sequential orders of Laplace–Fourier frequencies while considering the multiscale and layer-stripping approach, and we compare the inversion results from the numerical experiments. We applied the sequentially ordered single-frequency 2-D acoustic waveform inversion in the full Laplace–Fourier domain to the synthetic seismic data produced from complex structure model and field data. A realistic model could be recovered in an efficient and robust manner, even using the two-layer homogeneous velocity model as an initial model. The inverted velocity model from the field data was validated by examining the migrated image from the pre-stack depth migration and the flattening of the common-image gathers or by comparing the synthetic shot gather with the real shot gather. The proposed one-step waveform inversion algorithm can be easily extended to the sequential inversion of 3-D acoustic or elastic data in the full Laplace–Fourier domain.
In the conventional frequency-domain waveform inversion, either multifrequency simultaneous inversion or sequential single-frequency inversion has been implemented. However, most conventional frequency-domain waveform inversion methods fail to recover background velocity when low-frequency information is missing. Recently, new waveform inversion techniques in the Laplace and Laplace-Fourier domain have been proposed to recover background velocity structure from data with insufficient low-frequency information. In such techniques, however, all frequencies are inverted simultaneously, and this requires large computational resources and long computation times.
Author Shin, Changsoo
Koo, Nam-Hyung
Park, Keun-Pil
Cha, Young Ho
Author_xml – sequence: 1
  givenname: Changsoo
  surname: Shin
  fullname: Shin, Changsoo
  organization: Department of Energy Resources Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
– sequence: 2
  givenname: Nam-Hyung
  surname: Koo
  fullname: Koo, Nam-Hyung
  email: Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources, 92 Gwahang-no, Yuseong-gu, Daejeon, 305-350, Korea. nhkoo@kigam.re.kr, nhkoo@kigam.re.kr
  organization: Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources, 92 Gwahang-no, Yuseong-gu, Daejeon, 305-350, Korea. E-mail: nhkoo@kigam.re.kr
– sequence: 3
  givenname: Young Ho
  surname: Cha
  fullname: Cha, Young Ho
  organization: Department of Energy Resources Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
– sequence: 4
  givenname: Keun-Pil
  surname: Park
  fullname: Park, Keun-Pil
  email: Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources, 92 Gwahang-no, Yuseong-gu, Daejeon, 305-350, Korea. nhkoo@kigam.re.kr, nhkoo@kigam.re.kr
  organization: Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources, 92 Gwahang-no, Yuseong-gu, Daejeon, 305-350, Korea. E-mail: nhkoo@kigam.re.kr
BookMark eNqNkM9OGzEQxq2KSgTKO_jW06Z2_CfZQ5EoJUAbqeKvol6syXoWnDrr1N5Acus79A15knpJxYETvvjTzPw-zXx7ZKcJDRJCOevz_D7N-1xoVQyknvYHLFeZVJL11-9I76WxQ3qsVLrIjeku2UtpzhiXXI56BK_w9wqb1oH3GxqixYiWJtfceSzq-NysNnRQfKVQhVVqXUUf4QHrEBfUNQ8YkwtNVrS9RzqBpYcKn_78HYdVdBipDQtwzQfyvgaf8OD_v09uxifXx2fF5Mfp-fHRpACpNCvA8hLkyPIay6w4VDVoawWA1lyKGajSasbroQara65KbpWejTQwycVMSLFPPm59lzHkzVNrFi5V6D00mJc3QymGqlSlyJOH28kqhpQi1qZyLbT5ljaC84Yz08Vr5qZL0XQpmi5e8xyvWWeD0SuDZXQLiJu3oJ-36KPzuHkzZ06_nXcq88WWd6nF9QsP8ZfRw3ygOZv-NLcXt1dj8eXSfBf_AKlGps4
CitedBy_id crossref_primary_10_1190_geo2019_0251_1
crossref_primary_10_1029_2018EA000453
crossref_primary_10_1190_geo2018_0220_1
crossref_primary_10_1190_geo2011_0220_1
crossref_primary_10_1190_geo2011_0411_1
Cites_doi 10.1190/1.1635054
10.1190/1.1442046
10.1029/2005JB003835
10.1046/j.1365-2478.2001.00279.x
10.1190/1.1649391
10.1046/j.1365-246X.2002.01645.x
10.1190/1.1442384
10.3997/2214-4609-pdb.1.B035
10.1111/j.1365-246X.2008.03768.x
10.1190/1.2194523
10.1111/j.1365-246X.2006.03162.x
10.1190/1.1441754
10.1111/j.1365-246X.2006.03156.x
10.1046/j.1365-246X.1998.00498.x
10.1111/j.1365-2478.1990.tb01846.x
10.1190/1.1442237
10.1111/j.1365-246X.2007.03691.x
10.1190/1.1441689
10.1190/1.2957948
10.1111/j.1365-2478.2007.00617.x
10.3997/2214-4609.201401529
10.1111/j.1365-2478.2008.00739.x
10.1071/EG04019
10.1111/j.1365-246X.2009.04102.x
10.1190/1.2953978
10.1190/1.1444597
10.1190/1.1443880
ContentType Journal Article
Copyright 2010 The Authors Journal compilation © 2010 RAS
Copyright_xml – notice: 2010 The Authors Journal compilation © 2010 RAS
DBID BSCLL
AAYXX
CITATION
7SM
8FD
FR3
H8D
KR7
L7M
DOI 10.1111/j.1365-246X.2010.04540.x
DatabaseName Istex
CrossRef
Earthquake Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Earthquake Engineering Abstracts
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList

Earthquake Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1365-246X
EndPage 950
ExternalDocumentID 10_1111_j_1365_246X_2010_04540_x
GJI4540
ark_67375_HXZ_VQVSF3BR_K
Genre article
GroupedDBID -~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
1OC
1TH
29H
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8UM
AAIJN
AAJKP
AAJQQ
AAKDD
AAMMB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABAZT
ABCQN
ABEJV
ABEML
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPTD
ABQLI
ABSMQ
ABVLG
ABXVV
ABZBJ
ACFRR
ACGFS
ACSCC
ACUFI
ACUKT
ACUTJ
ACUXJ
ACXQS
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEFGJ
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFBPY
AFEBI
AFFZL
AFIYH
AFOFC
AFZJQ
AGINJ
AGKRT
AGQPQ
AGSYK
AGXDD
AHEFC
AHGBF
AHXPO
AI.
AIDQK
AIDYY
AJAOE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APJGH
ASAOO
ATDFG
AXUDD
AZFZN
AZVOD
BAYMD
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BSCLL
BTQHN
BY8
CAG
CDBKE
COF
CS3
CXTWN
D-E
D-F
DAKXR
DC6
DCZOG
DFGAJ
DILTD
DR2
D~K
EBS
EE~
EJD
F00
F04
F9B
FA8
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
FZ0
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
LC2
LC3
LH4
LP6
LP7
LW6
MBTAY
MK4
N9A
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OIG
OJQWA
O~Y
P2P
P2X
P4D
PAFKI
PB-
PEELM
Q1.
Q11
Q5Y
QB0
ROL
ROZ
RUSNO
RW1
RX1
RXO
TJP
TOX
UB1
VH1
VOH
W8V
W99
WQJ
WYUIH
XG1
YAYTL
YKOAZ
YXANX
ZCG
ZY4
ZZE
~02
1OB
AAHHS
ABJNI
ABTAH
ACCFJ
ADRIX
ADZOD
AEEZP
AEQDE
AFXEN
AIWBW
AJBDE
BCRHZ
M49
NU-
RHF
ROX
TCN
WRC
AAYXX
CITATION
O8X
7SM
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-a4560-ad19a48d1fe919a1acfa6dd3aa66143ba59d601f76ad6f1591d56b86a0413b343
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000276697000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0956-540X
IngestDate Thu Jul 10 20:25:01 EDT 2025
Sat Nov 29 06:38:20 EST 2025
Tue Nov 18 21:55:24 EST 2025
Wed Jan 22 16:58:32 EST 2025
Sat Sep 20 11:01:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a4560-ad19a48d1fe919a1acfa6dd3aa66143ba59d601f76ad6f1591d56b86a0413b343
Notes ark:/67375/HXZ-VQVSF3BR-K
Now at: ExxonMobil Upstream Research Company, 3120 Buffalo Speedway, Houston, TX 77046, USA.
istex:55D3FC4F03EECDFF8CCCCAC6E7DD2D07B7312169
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://academic.oup.com/gji/article-pdf/181/2/935/1939521/181-2-935.pdf
PQID 743759593
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_743759593
crossref_citationtrail_10_1111_j_1365_246X_2010_04540_x
crossref_primary_10_1111_j_1365_246X_2010_04540_x
wiley_primary_10_1111_j_1365_246X_2010_04540_x_GJI4540
istex_primary_ark_67375_HXZ_VQVSF3BR_K
PublicationCentury 2000
PublicationDate May 2010
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: May 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
PublicationTitle Geophysical journal international
PublicationTitleAlternate Geophys. J. Int
PublicationYear 2010
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2006; 71
2007; 168
1987; 52
1986; 51
1990; 38
1984; 49
2002; 151
2004; 69
1997
2008
2009; 177
2007
2005
1999; 64
2001; 49
1998; 133
2008; 73
2007; 55
2006; 111
2009; 57
1995; 60
2004; 35
2003; 68
1983
2006; 167
2008; 173
Bunks (10.1111/j.1365-246X.2010.04540.x-BIB6) 1995; 60
Shin (10.1111/j.1365-246X.2010.04540.x-BIB20) 2009; 177
Jaiswal (10.1111/j.1365-246X.2010.04540.x-BIB8) 2008; 173
Sheen (10.1111/j.1365-246X.2010.04540.x-BIB18) 2006; 167
Pratt (10.1111/j.1365-246X.2010.04540.x-BIB17) 1990; 38
Shin (10.1111/j.1365-246X.2010.04540.x-BIB24) 2007; 55
Yokota (10.1111/j.1365-246X.2010.04540.x-BIB30) 2004; 35
Shipp (10.1111/j.1365-246X.2010.04540.x-BIB25) 2002; 151
Jang (10.1111/j.1365-246X.2010.04540.x-BIB9) 2009; 57
Shin (10.1111/j.1365-246X.2010.04540.x-BIB22) 2001; 49
10.1111/j.1365-246X.2010.04540.x-BIB7
Tarantola (10.1111/j.1365-246X.2010.04540.x-BIB28) 1986; 51
Operto (10.1111/j.1365-246X.2010.04540.x-BIB14) 2006; 111
Pratt (10.1111/j.1365-246X.2010.04540.x-BIB16) 1998; 133
Pratt (10.1111/j.1365-246X.2010.04540.x-BIB15) 1999; 64
Wu (10.1111/j.1365-246X.2010.04540.x-BIB29) 1987; 52
Ben-Hadj-Ali (10.1111/j.1365-246X.2010.04540.x-BIB2) 2008; 73
Sirgue (10.1111/j.1365-246X.2010.04540.x-BIB26) 2004; 69
Aminzadeh (10.1111/j.1365-246X.2010.04540.x-BIB1) 1997
Tarantola (10.1111/j.1365-246X.2010.04540.x-BIB27) 1984; 49
Shin (10.1111/j.1365-246X.2010.04540.x-BIB21) 2008; 73
Marfurt (10.1111/j.1365-246X.2010.04540.x-BIB12) 1984; 49
Shin (10.1111/j.1365-246X.2010.04540.x-BIB19) 2008; 173
Brenders (10.1111/j.1365-246X.2010.04540.x-BIB5) 2007; 168
Mora (10.1111/j.1365-246X.2010.04540.x-BIB13) 1987; 52
10.1111/j.1365-246X.2010.04540.x-BIB3
Bleibinhaus (10.1111/j.1365-246X.2010.04540.x-BIB4) 2008
10.1111/j.1365-246X.2010.04540.x-BIB10
Shin (10.1111/j.1365-246X.2010.04540.x-BIB23) 2006; 71
Lee (10.1111/j.1365-246X.2010.04540.x-BIB11) 2003; 68
References_xml – volume: 177
  start-page: 1067
  year: 2009
  end-page: 1079
  article-title: Waveform inversion in the Laplace‐Fourier domain
  publication-title: Geophys. J. Int.
– volume: 51
  start-page: 1893
  year: 1986
  end-page: 1903
  article-title: A strategy for nonlinear elastic inversion of seismic reflection data
  publication-title: Geophysics
– volume: 55
  start-page: 449
  year: 2007
  end-page: 464
  article-title: Comparison of waveform inversion. Part 1: Conventional wavefield vs logarithmic wavefield
  publication-title: Geophys. Prospect.
– volume: 151
  start-page: 325
  year: 2002
  end-page: 344
  article-title: Two‐dimensional full wavefield inversion of wide‐aperture marine seismic streamer data
  publication-title: Geophys. J. Int.
– volume: 173
  start-page: 642
  year: 2008
  end-page: 658
  article-title: 2‐D traveltime and waveform inversion for improved seismic imaging: Naga Thrust and Fold Belt, India
  publication-title: Geophys. J. Int.
– volume: 168
  start-page: 133
  year: 2007
  end-page: 151
  article-title: Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model
  publication-title: Geophys. J. Int.
– volume: 64
  start-page: 888
  year: 1999
  end-page: 901
  article-title: Seismic waveform inversion in the frequency domain. Part 1: Theory and verification in a physical scale model
  publication-title: Geophysics
– volume: 73
  start-page: VE101
  year: 2008
  end-page: VE117
  article-title: Velocity modeling building by 3D frequency‐domain, full‐waveform inversion of wide‐aperture seismic data
  publication-title: Geophysics
– volume: 60
  start-page: 1457
  year: 1995
  end-page: 1473
  article-title: Multiscale seismic waveform inversion
  publication-title: Geophysics
– volume: 57
  start-page: 49
  year: 2009
  end-page: 59
  article-title: Comparison of scaling methods for waveform inversion
  publication-title: Geophys. Prospect.
– volume: 167
  start-page: 1373
  year: 2006
  end-page: 1384
  article-title: Time domain Gauss‐Newton seismic waveform inversion in elastic media
  publication-title: Geophys. J. Int.
– start-page: C028
  year: 2007
– volume: 52
  start-page: 11
  year: 1987
  end-page: 25
  article-title: Diffraction tomography and multisource holography applied to seismic imaging
  publication-title: Geophysics
– volume: 111
  start-page: B09306
  year: 2006
  article-title: Crustal seismic imaging from multifold ocean bottom seismometer data by frequency domain full waveform tomography: application to the eastern Nankai trough
  publication-title: J. geophys. Res.
– volume: 71
  start-page: R31
  year: 2006
  end-page: R42
  article-title: Waveform inversion using a logarithmic wavefield
  publication-title: Geophysics
– volume: 73
  start-page: VE119
  year: 2008
  end-page: VE133
  article-title: A comparison between behavior of objective functions for waveform inversion in the frequency and Laplace domains
  publication-title: Geophysics
– volume: 35
  start-page: 19
  year: 2004
  end-page: 24
  article-title: Seismic waveform tomography in the frequency‐space domain: selection of the optimal temporal frequency for inversion
  publication-title: Explor. Geophys.
– volume: 69
  start-page: 231
  year: 2004
  end-page: 248
  article-title: Efficient waveform inversion and imaging: a strategy for selecting temporal frequencies
  publication-title: Geophysics
– start-page: B035
  year: 2005
– volume: 133
  start-page: 341
  year: 1998
  end-page: 362
  article-title: Gauss‐Newton and full Newton methods in frequency‐space seismic waveform inversion
  publication-title: Geophys. J. Int.
– year: 2008
  article-title: Applying waveform inversion to wide‐angle seismic surveys
  publication-title: Tectonophysics
– year: 1997
– volume: 173
  start-page: 922
  year: 2008
  end-page: 931
  article-title: Waveform inversion in the Laplace domain
  publication-title: Geophys. J. Int.
– start-page: 206
  year: 1983
  end-page: 220
– volume: 52
  start-page: 1211
  year: 1987
  end-page: 1228
  article-title: Nonlinear two‐dimensional elastic inversion of multioffset seismic data
  publication-title: Geophysics
– volume: 49
  start-page: 1259
  year: 1984
  end-page: 1266
  article-title: Inversion of seismic reflection data in the acoustic approximation
  publication-title: Geophysics
– volume: 49
  start-page: 533
  year: 1984
  end-page: 549
  article-title: Accuracy of finite‐difference and finite‐elements modelling of the scalar and elastic wave equation
  publication-title: Geophysics
– volume: 49
  start-page: 592
  year: 2001
  end-page: 606
  article-title: Improved amplitude preservation for prestack depth migration by inverse scattering theory
  publication-title: Geophys. Prospect.
– volume: 68
  start-page: 2010
  year: 2003
  end-page: 2015
  article-title: Source‐independent full‐waveform inversion of seismic data
  publication-title: Geophysics
– volume: 38
  start-page: 287
  year: 1990
  end-page: 310
  article-title: Inverse theory applied to multisource cross‐hole tomography. Part 1: Acoustic wave‐equation method
  publication-title: Geophys. Prospect.
– volume: 68
  start-page: 2010
  year: 2003
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB11
  article-title: Source-independent full-waveform inversion of seismic data
  publication-title: Geophysics
  doi: 10.1190/1.1635054
– volume: 51
  start-page: 1893
  year: 1986
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB28
  article-title: A strategy for nonlinear elastic inversion of seismic reflection data
  publication-title: Geophysics
  doi: 10.1190/1.1442046
– volume: 111
  start-page: B09306
  year: 2006
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB14
  article-title: Crustal seismic imaging from multifold ocean bottom seismometer data by frequency domain full waveform tomography: application to the eastern Nankai trough
  publication-title: J. geophys. Res.
  doi: 10.1029/2005JB003835
– volume: 49
  start-page: 592
  year: 2001
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB22
  article-title: Improved amplitude preservation for prestack depth migration by inverse scattering theory
  publication-title: Geophys. Prospect.
  doi: 10.1046/j.1365-2478.2001.00279.x
– volume: 69
  start-page: 231
  year: 2004
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB26
  article-title: Efficient waveform inversion and imaging: a strategy for selecting temporal frequencies
  publication-title: Geophysics
  doi: 10.1190/1.1649391
– volume: 151
  start-page: 325
  year: 2002
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB25
  article-title: Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246X.2002.01645.x
– volume: 52
  start-page: 1211
  year: 1987
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB13
  article-title: Nonlinear two-dimensional elastic inversion of multioffset seismic data
  publication-title: Geophysics
  doi: 10.1190/1.1442384
– ident: 10.1111/j.1365-246X.2010.04540.x-BIB3
  doi: 10.3997/2214-4609-pdb.1.B035
– volume: 173
  start-page: 922
  year: 2008
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB19
  article-title: Waveform inversion in the Laplace domain
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2008.03768.x
– volume: 71
  start-page: R31
  year: 2006
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB23
  article-title: Waveform inversion using a logarithmic wavefield
  publication-title: Geophysics
  doi: 10.1190/1.2194523
– volume: 167
  start-page: 1373
  year: 2006
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB18
  article-title: Time domain Gauss-Newton seismic waveform inversion in elastic media
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2006.03162.x
– year: 2008
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB4
  article-title: Applying waveform inversion to wide-angle seismic surveys
  publication-title: Tectonophysics
– volume: 49
  start-page: 1259
  year: 1984
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB27
  article-title: Inversion of seismic reflection data in the acoustic approximation
  publication-title: Geophysics
  doi: 10.1190/1.1441754
– volume: 168
  start-page: 133
  year: 2007
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB5
  article-title: Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2006.03156.x
– volume: 133
  start-page: 341
  year: 1998
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB16
  article-title: Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246X.1998.00498.x
– volume: 38
  start-page: 287
  year: 1990
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB17
  article-title: Inverse theory applied to multisource cross-hole tomography. Part 1: Acoustic wave-equation method
  publication-title: Geophys. Prospect.
  doi: 10.1111/j.1365-2478.1990.tb01846.x
– volume: 52
  start-page: 11
  year: 1987
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB29
  article-title: Diffraction tomography and multisource holography applied to seismic imaging
  publication-title: Geophysics
  doi: 10.1190/1.1442237
– volume: 173
  start-page: 642
  year: 2008
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB8
  article-title: 2-D traveltime and waveform inversion for improved seismic imaging: Naga Thrust and Fold Belt, India
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2007.03691.x
– ident: 10.1111/j.1365-246X.2010.04540.x-BIB10
– volume: 49
  start-page: 533
  year: 1984
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB12
  article-title: Accuracy of finite-difference and finite-elements modelling of the scalar and elastic wave equation
  publication-title: Geophysics
  doi: 10.1190/1.1441689
– volume: 73
  start-page: VE101
  year: 2008
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB2
  article-title: Velocity modeling building by 3D frequency-domain, full-waveform inversion of wide-aperture seismic data
  publication-title: Geophysics
  doi: 10.1190/1.2957948
– volume: 55
  start-page: 449
  year: 2007
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB24
  article-title: Comparison of waveform inversion. Part 1: Conventional wavefield vs logarithmic wavefield
  publication-title: Geophys. Prospect.
  doi: 10.1111/j.1365-2478.2007.00617.x
– volume-title: 3-D Salt and Overthrust Models
  year: 1997
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB1
– ident: 10.1111/j.1365-246X.2010.04540.x-BIB7
  doi: 10.3997/2214-4609.201401529
– volume: 57
  start-page: 49
  year: 2009
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB9
  article-title: Comparison of scaling methods for waveform inversion
  publication-title: Geophys. Prospect.
  doi: 10.1111/j.1365-2478.2008.00739.x
– volume: 35
  start-page: 19
  year: 2004
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB30
  article-title: Seismic waveform tomography in the frequency-space domain: selection of the optimal temporal frequency for inversion
  publication-title: Explor. Geophys.
  doi: 10.1071/EG04019
– volume: 177
  start-page: 1067
  year: 2009
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB20
  article-title: Waveform inversion in the Laplace-Fourier domain
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2009.04102.x
– volume: 73
  start-page: VE119
  year: 2008
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB21
  article-title: A comparison between behavior of objective functions for waveform inversion in the frequency and Laplace domains
  publication-title: Geophysics
  doi: 10.1190/1.2953978
– volume: 64
  start-page: 888
  year: 1999
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB15
  article-title: Seismic waveform inversion in the frequency domain. Part 1: Theory and verification in a physical scale model
  publication-title: Geophysics
  doi: 10.1190/1.1444597
– volume: 60
  start-page: 1457
  year: 1995
  ident: 10.1111/j.1365-246X.2010.04540.x-BIB6
  article-title: Multiscale seismic waveform inversion
  publication-title: Geophysics
  doi: 10.1190/1.1443880
SSID ssj0014148
Score 2.2049687
Snippet In the conventional frequency-domain waveform inversion, either multifrequency simultaneous inversion or sequential single-frequency inversion has been...
SUMMARY In the conventional frequency‐domain waveform inversion, either multifrequency simultaneous inversion or sequential single‐frequency inversion has been...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 935
SubjectTerms Acoustic properties
Computational seismology
Inverse theory
Seismic tomography
Title Sequentially ordered single-frequency 2-D acoustic waveform inversion in the Laplace–Fourier domain
URI https://api.istex.fr/ark:/67375/HXZ-VQVSF3BR-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-246X.2010.04540.x
https://www.proquest.com/docview/743759593
Volume 181
WOSCitedRecordID wos000276697000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-246X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014148
  issn: 0956-540X
  databaseCode: TOX
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLkhcEE9teckHxCWK1DSJEx95dQuLloUtq4iL5SQ2VOomVbst7Y3_wD-EP8L4lU0rVioHLpEV1Wky82VmPP4yg9CzvBSC0jj3uRSFH4Gd9HlURPBeSYC0TEWRSN1sIjk-TrOMnnQ6v923MMtJUlXpakWn_1XVcA6UrT6d_Qd1NxeFEzAGpcMR1A7HnRR_qsnR8OJOJmtPV9aEmFJlBCbClzPDnF57ff-1B8ZQ9_LyvvOlUMGrN66WJn_m6I_vuSZtOUpEOLAt7sr6nNua3TayPRT11OnclaMYt9ONTS7n29ht9Fdf53XdmPy6Nub-3B-uF9ahGuKB9hPKLHnD5ucnluR9JBaVf2KJIjZ9YXbeW-mLrTSlSbtdEppMopIo-kZmPJYx05qbF5Fs044HLcD2W1aZmooo1sFTU-n2at_hLm6Jf6pGoeOUtst1b7nRhtwIj6_YcknMhtkXdvbx7HQQvvzEjq6h_X4SU2V6Rx-yZqsrCnSLt-YxN-lmf72XjRhqX5mD1cYCqb3M0nHS6Da6ZRc4-IUB5h3UEdVddEMTjYv5PSTa8MQWnngbnhjgiR08sYMnbuAJIwzwxBaev378tMDEBpj30efBm9GroW9bfYBlgJjb52VAeZSWgRQURgEvJCdlGXKu4scw5zEtSS-QCeElkRCCB2VM8pTwHgRheRiFD9BeVVfiAGERFD0qeUpkmUeRjHkaS1gF0F4kiWqR1UWJEx4rbB181Y5lwlrrYRA7U2JnSuxMi52tuihoZk5NLZgd5jzX-mkmXIWOLsJOgQwsvNq245UAOTOI8QE2MQ27iGjF7vzn7PDdWzV6uOtNPEI3L9_Rx2jvYrYQT9D1Ynkxns-eatz-AeC62SY
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequentially+ordered+single-frequency+2-D+acoustic+waveform+inversion+in+the+Laplace%E2%80%93Fourier+domain&rft.jtitle=Geophysical+journal+international&rft.au=Shin%2C+Changsoo&rft.au=Koo%2C+Nam-Hyung&rft.au=Cha%2C+Young+Ho&rft.au=Park%2C+Keun-Pil&rft.date=2010-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0956-540X&rft.eissn=1365-246X&rft.volume=181&rft.issue=2&rft.spage=935&rft.epage=950&rft_id=info:doi/10.1111%2Fj.1365-246X.2010.04540.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_HXZ_VQVSF3BR_K
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-540X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-540X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-540X&client=summon