Toward a Global Model for Soil Inorganic Phosphorus Dynamics: Dependence of Exchange Kinetics and Soil Bioavailability on Soil Physicochemical Properties
The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usua...
Uložené v:
| Vydané v: | Global biogeochemical cycles Ročník 36; číslo 3; s. e2021GB007061 - n/a |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Washington
Blackwell Publishing Ltd
01.03.2022
John Wiley and Sons Inc |
| Predmet: | |
| ISSN: | 0886-6236, 1944-9224 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usually based on expert knowledge or data from few sites with debatable global representativeness in most global land models. To overcome these issues, we compiled from data of inorganic soil P fractions and calculated the fraction of added P remaining in soil solution over time of 147 soil samples to optimize three parameters in a model of soil inorganic P dynamics. The calibrated model performed well (r2 > 0.7 for 122 soil samples). Model parameters vary by several orders of magnitude, and correlate with soil P fractions of different inorganic pools, soil organic carbon and oxalate extractable metal oxide concentrations among the soil samples. The modeled bioavailability of soil P depends on, not only, the desorption rates of labile and sorbed pool, inorganic phosphorus fractions, the slope of P sorbed against solution P concentration, but also on the ability of biological uptake to deplete solution P concentration and the time scale. The model together with the empirical relationships of model parameters on soil properties can be used to quantify bioavailability of soil inorganic P on various timescale especially when coupled within global land models.
Plain Language Summary
Phosphorus (P) is a major nutrient limiting the productivity of many terrestrial ecosystems. About 20%–60% of soil phosphorus is in inorganic form, and most inorganic soil P is sorbed or fixed on soil particles, leaving a small fraction (<1%) in soil solution available for direct uptake by plants. Sorption and desorption control inorganic P in solution and vary significantly with soil properties. However, sorption and desorption are not explicitly represented in most global land models. This study developed and calibrated a model of inorganic P dynamics using the observations from 147 soils worldwide. We found that the parameters in the model can vary by several orders of magnitude, and that a significant proportion of those variations can be explained by soil chemical properties, particularly soil P fractions, oxalate extractable metal oxide and soil organic carbon concentrations. The model and empirical relationships between model parameters and soil properties as developed in this study can be used to improve the representation of P cycle in land models.
Key Points
We developed and calibrated a model of soil inorganic P dynamics using the measured soil Phosphorus (P) fractions and isotopic exchange kinetics of 147 soils
We derived empirical relationships between model parameters and some soil chemical properties
Soil P bioavailability depends on soil P fractions, solution P concentration, desorption rate constants and the time scale |
|---|---|
| AbstractList | The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usually based on expert knowledge or data from few sites with debatable global representativeness in most global land models. To overcome these issues, we compiled from data of inorganic soil P fractions and calculated the fraction of added P remaining in soil solution over time of 147 soil samples to optimize three parameters in a model of soil inorganic P dynamics. The calibrated model performed well (r2 > 0.7 for 122 soil samples). Model parameters vary by several orders of magnitude, and correlate with soil P fractions of different inorganic pools, soil organic carbon and oxalate extractable metal oxide concentrations among the soil samples. The modeled bioavailability of soil P depends on, not only, the desorption rates of labile and sorbed pool, inorganic phosphorus fractions, the slope of P sorbed against solution P concentration, but also on the ability of biological uptake to deplete solution P concentration and the time scale. The model together with the empirical relationships of model parameters on soil properties can be used to quantify bioavailability of soil inorganic P on various timescale especially when coupled within global land models. The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usually based on expert knowledge or data from few sites with debatable global representativeness in most global land models. To overcome these issues, we compiled from data of inorganic soil P fractions and calculated the fraction of added P remaining in soil solution over time of 147 soil samples to optimize three parameters in a model of soil inorganic P dynamics. The calibrated model performed well (r 2 > 0.7 for 122 soil samples). Model parameters vary by several orders of magnitude, and correlate with soil P fractions of different inorganic pools, soil organic carbon and oxalate extractable metal oxide concentrations among the soil samples. The modeled bioavailability of soil P depends on, not only, the desorption rates of labile and sorbed pool, inorganic phosphorus fractions, the slope of P sorbed against solution P concentration, but also on the ability of biological uptake to deplete solution P concentration and the time scale. The model together with the empirical relationships of model parameters on soil properties can be used to quantify bioavailability of soil inorganic P on various timescale especially when coupled within global land models. We developed and calibrated a model of soil inorganic P dynamics using the measured soil Phosphorus (P) fractions and isotopic exchange kinetics of 147 soilsWe derived empirical relationships between model parameters and some soil chemical propertiesSoil P bioavailability depends on soil P fractions, solution P concentration, desorption rate constants and the time scale The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usually based on expert knowledge or data from few sites with debatable global representativeness in most global land models. To overcome these issues, we compiled from data of inorganic soil P fractions and calculated the fraction of added P remaining in soil solution over time of 147 soil samples to optimize three parameters in a model of soil inorganic P dynamics. The calibrated model performed well (r2 > 0.7 for 122 soil samples). Model parameters vary by several orders of magnitude, and correlate with soil P fractions of different inorganic pools, soil organic carbon and oxalate extractable metal oxide concentrations among the soil samples. The modeled bioavailability of soil P depends on, not only, the desorption rates of labile and sorbed pool, inorganic phosphorus fractions, the slope of P sorbed against solution P concentration, but also on the ability of biological uptake to deplete solution P concentration and the time scale. The model together with the empirical relationships of model parameters on soil properties can be used to quantify bioavailability of soil inorganic P on various timescale especially when coupled within global land models. Plain Language Summary Phosphorus (P) is a major nutrient limiting the productivity of many terrestrial ecosystems. About 20%–60% of soil phosphorus is in inorganic form, and most inorganic soil P is sorbed or fixed on soil particles, leaving a small fraction (<1%) in soil solution available for direct uptake by plants. Sorption and desorption control inorganic P in solution and vary significantly with soil properties. However, sorption and desorption are not explicitly represented in most global land models. This study developed and calibrated a model of inorganic P dynamics using the observations from 147 soils worldwide. We found that the parameters in the model can vary by several orders of magnitude, and that a significant proportion of those variations can be explained by soil chemical properties, particularly soil P fractions, oxalate extractable metal oxide and soil organic carbon concentrations. The model and empirical relationships between model parameters and soil properties as developed in this study can be used to improve the representation of P cycle in land models. Key Points We developed and calibrated a model of soil inorganic P dynamics using the measured soil Phosphorus (P) fractions and isotopic exchange kinetics of 147 soils We derived empirical relationships between model parameters and some soil chemical properties Soil P bioavailability depends on soil P fractions, solution P concentration, desorption rate constants and the time scale The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usually based on expert knowledge or data from few sites with debatable global representativeness in most global land models. To overcome these issues, we compiled from data of inorganic soil P fractions and calculated the fraction of added P remaining in soil solution over time of 147 soil samples to optimize three parameters in a model of soil inorganic P dynamics. The calibrated model performed well (r 2 > 0.7 for 122 soil samples). Model parameters vary by several orders of magnitude, and correlate with soil P fractions of different inorganic pools, soil organic carbon and oxalate extractable metal oxide concentrations among the soil samples. The modeled bioavailability of soil P depends on, not only, the desorption rates of labile and sorbed pool, inorganic phosphorus fractions, the slope of P sorbed against solution P concentration, but also on the ability of biological uptake to deplete solution P concentration and the time scale. The model together with the empirical relationships of model parameters on soil properties can be used to quantify bioavailability of soil inorganic P on various timescale especially when coupled within global land models.The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usually based on expert knowledge or data from few sites with debatable global representativeness in most global land models. To overcome these issues, we compiled from data of inorganic soil P fractions and calculated the fraction of added P remaining in soil solution over time of 147 soil samples to optimize three parameters in a model of soil inorganic P dynamics. The calibrated model performed well (r 2 > 0.7 for 122 soil samples). Model parameters vary by several orders of magnitude, and correlate with soil P fractions of different inorganic pools, soil organic carbon and oxalate extractable metal oxide concentrations among the soil samples. The modeled bioavailability of soil P depends on, not only, the desorption rates of labile and sorbed pool, inorganic phosphorus fractions, the slope of P sorbed against solution P concentration, but also on the ability of biological uptake to deplete solution P concentration and the time scale. The model together with the empirical relationships of model parameters on soil properties can be used to quantify bioavailability of soil inorganic P on various timescale especially when coupled within global land models. The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usually based on expert knowledge or data from few sites with debatable global representativeness in most global land models. To overcome these issues, we compiled from data of inorganic soil P fractions and calculated the fraction of added P remaining in soil solution over time of 147 soil samples to optimize three parameters in a model of soil inorganic P dynamics. The calibrated model performed well ( r 2 > 0.7 for 122 soil samples). Model parameters vary by several orders of magnitude, and correlate with soil P fractions of different inorganic pools, soil organic carbon and oxalate extractable metal oxide concentrations among the soil samples. The modeled bioavailability of soil P depends on, not only, the desorption rates of labile and sorbed pool, inorganic phosphorus fractions, the slope of P sorbed against solution P concentration, but also on the ability of biological uptake to deplete solution P concentration and the time scale. The model together with the empirical relationships of model parameters on soil properties can be used to quantify bioavailability of soil inorganic P on various timescale especially when coupled within global land models. Phosphorus (P) is a major nutrient limiting the productivity of many terrestrial ecosystems. About 20%–60% of soil phosphorus is in inorganic form, and most inorganic soil P is sorbed or fixed on soil particles, leaving a small fraction (<1%) in soil solution available for direct uptake by plants. Sorption and desorption control inorganic P in solution and vary significantly with soil properties. However, sorption and desorption are not explicitly represented in most global land models. This study developed and calibrated a model of inorganic P dynamics using the observations from 147 soils worldwide. We found that the parameters in the model can vary by several orders of magnitude, and that a significant proportion of those variations can be explained by soil chemical properties, particularly soil P fractions, oxalate extractable metal oxide and soil organic carbon concentrations. The model and empirical relationships between model parameters and soil properties as developed in this study can be used to improve the representation of P cycle in land models. We developed and calibrated a model of soil inorganic P dynamics using the measured soil Phosphorus (P) fractions and isotopic exchange kinetics of 147 soils We derived empirical relationships between model parameters and some soil chemical properties Soil P bioavailability depends on soil P fractions, solution P concentration, desorption rate constants and the time scale |
| Author | Hou, Enqing Wang, Ying‐Ping Helfenstein, Julian Augusto, Laurent Goll, Daniel S. Huang, Yuanyuan |
| AuthorAffiliation | 3 Université Paris Saclay CEA‐CNRS‐UVSQ LSCE/IPSL Gif sur Yvette France 1 CSIRO Oceans and Atmosphere Aspendale VIC Australia 5 Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden Chinese Academy of Sciences Guangzhou China 4 Agroscope Zurich Switzerland 2 INRAE Bordeaux Sciences Agro UMR 1391 ISPA Villenave d'Ornon France |
| AuthorAffiliation_xml | – name: 5 Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden Chinese Academy of Sciences Guangzhou China – name: 1 CSIRO Oceans and Atmosphere Aspendale VIC Australia – name: 3 Université Paris Saclay CEA‐CNRS‐UVSQ LSCE/IPSL Gif sur Yvette France – name: 2 INRAE Bordeaux Sciences Agro UMR 1391 ISPA Villenave d'Ornon France – name: 4 Agroscope Zurich Switzerland |
| Author_xml | – sequence: 1 givenname: Ying‐Ping orcidid: 0000-0002-4614-6203 surname: Wang fullname: Wang, Ying‐Ping email: Yingping.wang@csiro.au organization: CSIRO Oceans and Atmosphere – sequence: 2 givenname: Yuanyuan surname: Huang fullname: Huang, Yuanyuan organization: CSIRO Oceans and Atmosphere – sequence: 3 givenname: Laurent orcidid: 0000-0002-7049-6000 surname: Augusto fullname: Augusto, Laurent organization: UMR 1391 ISPA – sequence: 4 givenname: Daniel S. orcidid: 0000-0001-9246-9671 surname: Goll fullname: Goll, Daniel S. organization: LSCE/IPSL – sequence: 5 givenname: Julian surname: Helfenstein fullname: Helfenstein, Julian organization: Agroscope – sequence: 6 givenname: Enqing orcidid: 0000-0003-4864-2347 surname: Hou fullname: Hou, Enqing organization: Chinese Academy of Sciences |
| BookMark | eNqFkc9uEzEQhy1URNPCjQewxIUDAa__rZcDEklLqCgiEuW88npns64cT7A3LXmUvm03SoWgBziN5Pn8zYx-J-QoYgRCXhbsbcF49Y4zXixmjJVMF0_IpKiknFacyyMyYcboqeZCH5OTnK8ZK6RS1TNyLJTRqlRqQu6u8Namllq6CNjYQL9iC4F2mOh39IFeREwrG72jyx7zpse0zfRsF-3au_yensEGYgvRAcWOnv9yvY0roF98hGEEqI3twTPzaG-sD7bxwQ87ivHwvux32Tt0PYzCcfwy4QbS4CE_J087GzK8eKin5Men86v55-nlt8XF_OPl1I7HmKmQkkttOQMQTsnGCQfGQAeFdqJt2xKMMk5Kq5RimpWNdgDGQuU600DHxSn5cPButs0aWgdxSDbUm-TXNu1qtL7-uxN9X6_wpq640aLcC14_CBL-3EIe6rXPDkKwEXCba64rUZZaCDWirx6h17hNcTxvpKRkTI5hjtSbA-US5pyg-71Mwep95vWfmY84f4Q7P9jB435dH_7z6dYH2P1zQL2YzXnBpRH3xgHAUQ |
| CitedBy_id | crossref_primary_10_1007_s42729_025_02684_6 crossref_primary_10_1016_j_catena_2025_109072 crossref_primary_10_1038_s41598_025_02522_w crossref_primary_10_3390_biology14091200 crossref_primary_10_3390_app14188351 crossref_primary_10_3390_horticulturae11010064 crossref_primary_10_1016_j_eja_2024_127347 crossref_primary_10_1016_j_still_2024_106403 crossref_primary_10_1016_j_geoderma_2022_116076 crossref_primary_10_1016_j_catena_2025_108821 crossref_primary_10_1007_s44378_025_00059_y crossref_primary_10_1016_j_soilbio_2024_109368 crossref_primary_10_1016_j_agsy_2022_103595 crossref_primary_10_1007_s10811_025_03485_1 crossref_primary_10_1016_j_envsci_2025_104168 crossref_primary_10_3390_f15060974 crossref_primary_10_1002_ldr_5594 crossref_primary_10_1007_s10533_025_01218_7 crossref_primary_10_5194_bg_20_4147_2023 crossref_primary_10_1007_s42106_024_00291_6 crossref_primary_10_1111_ejss_70033 crossref_primary_10_3389_fevo_2023_1105832 crossref_primary_10_3389_fpls_2023_1332864 crossref_primary_10_1016_j_still_2023_105840 crossref_primary_10_1016_j_jclepro_2024_141088 crossref_primary_10_1111_gcb_70485 crossref_primary_10_1080_03650340_2025_2484223 crossref_primary_10_26848_rbgf_v18_1_p518_536 crossref_primary_10_1029_2022JG006795 crossref_primary_10_1016_j_hpj_2025_06_008 crossref_primary_10_1038_s41597_023_02751_6 crossref_primary_10_3390_microorganisms12122582 crossref_primary_10_1016_j_catena_2023_107501 crossref_primary_10_1111_gcb_17001 crossref_primary_10_1016_j_oneear_2024_07_020 crossref_primary_10_1016_j_catena_2025_109424 |
| Cites_doi | 10.5194/gmd-10-3745-2017 10.1029/WS006p0089 10.2136/sssaj1978.03615995004200060007x 10.1046/j.1365-2389.2003.00542.x 10.1016/0016-7061(94)00023-4 10.1029/2018MS001571 10.5194/bg-17-441-2020 10.1002/2013GL058352 10.1002/2016EF000472 10.1111/j.1365-2389.2008.01041.x 10.1111/j.1365-2389.1983.tb01068.x 10.1038/ncomms3934 10.5194/bg-10-2525-2013 10.1007/s10533-015-0178-0 10.1002/2013ms000293 10.1029/2010JG001385 10.1007/bf00939380 10.2134/jeq2000.00472425002900010007x 10.1016/j.biombioe.2004.08.005 10.1023/a:1013351617532 10.12703/r/10-53 10.1021/es00006a020 10.1051/agro:19930409 10.1023/a:1026273529177 10.1002/2017GB005754 10.1016/0016-7061(81)90024-0 10.5194/bg-7-2261-2010 10.1016/j.chemgeo.2013.10.025 10.1038/s41467-020-14492-w 10.1007/978-94-010-1009-2 10.2134/jeq2000.00472425002900010003x 10.5194/bg-11-1667-2014 10.5194/bg-17-4173-2020 10.1038/s41561-019-0404-9 10.5194/bg-15-105-2018 10.1038/nclimate2177 10.1016/j.soilbio.2009.02.031 10.1051/agro:19910909 10.1071/sr02046 10.1007/bf00790659 10.2136/sssaj1982.03615995004600050017x 10.1016/j.soilbio.2021.108216 10.1029/2018GL077736 10.2136/sssaj2002.8680 10.1080/00380768.1983.10434628 10.1088/1748-9326/10/014001 10.1111/gcb.13618 10.2136/sssaj1996.03615995006000010009x 10.1016/j.agrformet.2013.04.003 10.1111/gcb.13691 10.1016/j.still.2016.04.018 10.1007/s00442-002-1164-5 10.1007/s10533-016-0274-9 10.1071/sr98115 10.1007/s11368-010-02329-9 10.1080/00015128609435799 10.1038/s41467-018-05731-2 10.1111/ejss.12285 10.1201/b16500-4 10.01007/s11368-011-0363-2 10.1071/sr02021 10.1080/00103629309368807 10.5194/essd-2021-166 10.1038/sdata.2018.166 10.1007/s10533-0375-0 10.1016/j.tree.2007.10.008 10.1006/bioe.2002.0054 10.1002/jpin.201900402 10.1890/06-2057.1 10.1029/2020JG006205 10.1016/s0016-7061(03)00183-6 10.5194/bg-9-3547-2012 |
| ContentType | Journal Article |
| Copyright | 2022 Commonwealth of Australia. 2022. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 Commonwealth of Australia. – notice: 2022. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7SN 7TG C1K F1W H96 KL. L.G 7X8 5PM |
| DOI | 10.1029/2021GB007061 |
| DatabaseName | Wiley Online Library Open Access CrossRef Ecology Abstracts Meteorological & Geoastrophysical Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Ecology Abstracts Meteorological & Geoastrophysical Abstracts - Academic Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) Biology |
| DocumentTitleAlternate | Wang et al |
| EISSN | 1944-9224 |
| EndPage | n/a |
| ExternalDocumentID | PMC9286372 10_1029_2021GB007061 GBC21248 |
| Genre | article |
| GrantInformation_xml | – fundername: European Research Council funderid: SyG‐2013‐610028 – fundername: National Science Foundation Research COordination funderid: INCyTE, DEB‐1754126 – fundername: Australian Government (Federal Government) funderid: NESP – fundername: ; grantid: NESP – fundername: National Science Foundation Research COordination grantid: INCyTE, DEB‐1754126 – fundername: European Research Council grantid: SyG‐2013‐610028 |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 31~ 33P 3V. 50Y 5GY 7X2 7XC 8-1 88I 8CJ 8FE 8FH 8G5 8R4 8R5 A00 AAESR AAHBH AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ABPPZ ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOD ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AHBTC AI. AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BBNVY BDRZF BENPR BFHJK BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D1J D1K DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS ECGQY EJD F5P FEDTE G-S GNUQQ GODZA GUQSH HCIFZ HGLYW HVGLF HZ~ K6- LATKE LEEKS LITHE LK5 LK8 LOXES LUTES LYRES M0K M2O M2P M7P M7R MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2W PATMY PCBAR PQQKQ PROAC PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ UQL VH1 WBKPD WIN WXSBR WYJ Y6R ZZTAW ~02 ~KM ~OA ~~A AAMMB AAYXX ADXHL AEFGJ AEYWJ AFFHD AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION LH4 PHGZM PHGZT PQGLB 7SN 7TG C1K F1W H96 KL. L.G 7X8 5PM |
| ID | FETCH-LOGICAL-a4558-344246a20ee3c54bc3ce88efe16c3ddd7e858c44a5550607b6cee8ae9cf8bef23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000776571300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0886-6236 |
| IngestDate | Tue Sep 30 16:35:33 EDT 2025 Thu Oct 02 07:41:50 EDT 2025 Sat Nov 08 06:08:02 EST 2025 Thu Nov 27 01:03:35 EST 2025 Tue Nov 18 21:44:59 EST 2025 Wed Jan 22 16:25:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4558-344246a20ee3c54bc3ce88efe16c3ddd7e858c44a5550607b6cee8ae9cf8bef23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9246-9671 0000-0002-7049-6000 0000-0002-4614-6203 0000-0003-4864-2347 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GB007061 |
| PMID | 35865755 |
| PQID | 2644004021 |
| PQPubID | 54624 |
| PageCount | 20 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9286372 proquest_miscellaneous_2693776335 proquest_journals_2644004021 crossref_primary_10_1029_2021GB007061 crossref_citationtrail_10_1029_2021GB007061 wiley_primary_10_1029_2021GB007061_GBC21248 |
| PublicationCentury | 2000 |
| PublicationDate | March 2022 2022-03-00 20220301 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington – name: Hoboken |
| PublicationTitle | Global biogeochemical cycles |
| PublicationYear | 2022 |
| Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
| References | 2017; 5 2011; 116 1993; 24 2009; 41 2013; 4 2021; 126 2019; 11 1991; 11 2019; 12 1986; 36 2002; 54 2020; 17 2011; 11 2020; 11 2018; 45 2005; 28 2003; 54 1995; 64 2018; 9 2014; 4 2018; 5 2001 2021; 156 2013; 10 2002; 40 1993; 76 2013; 182–183 1996; 60 2008; 23 1995; 29 2014; 363 1983; 29 2018; 32 2003; 41 2014; 6 2014; 125 2010; 7 2014; 11 2000; 29 2017; 23 2020; 183 2015; 10 2008; 59 1995 1981; 26 2016; 127 2002; 82 2004 1993 2003 2014; 41 2003; 256 2003; 135 2017; 136 2016; 162 1983; 34 1982; 46 1993; 13 2021; 10 2021 1978; 42 2017; 10 1999; 37 2015; 66 2002; 66 2008; 89 2004; 118 2016; 131 2018; 15 1996; 45 2012; 9 2001; 237 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 Saltelli A. (e_1_2_9_63_1) 2004 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 Barber S. A. (e_1_2_9_8_1) 1995 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 Tiessen H. (e_1_2_9_68_1) 1993 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
| References_xml | – volume: 237 start-page: 173 issue: 2 year: 2001 end-page: 195 article-title: Bioavailability of soil inorganic P in the rhizosphere as affected by root‐ induced chemical changes: A review publication-title: Plant and Soil – volume: 136 start-page: 5 issue: 1 year: 2017 end-page: 29 article-title: Soil phosphorus supply controls P nutrition strategies of beech forest ecosystems in central Europe publication-title: Biogeochemistry – volume: 162 start-page: 46 year: 2016 end-page: 54 article-title: Adsorption and desorption kinetics and phosphorus hysteresis in highly weathered soil by stirred flow chamber experiments publication-title: Soil and Tillage Research – volume: 29 start-page: 271 issue: 3 year: 1983 end-page: 283 article-title: Hysteresis in the phosphorus sorption and desorption processes of soils publication-title: Soil Science & Plant Nutrition – volume: 41 start-page: 1355 issue: 7 year: 2009 end-page: 1379 article-title: Soil carbon and nitrogen mineralization: Theory and model across scales publication-title: Soil Biology and Biochemistry – volume: 7 start-page: 2261 year: 2010 end-page: 2282 article-title: A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere publication-title: Biogeosciences – volume: 64 start-page: 197 issue: 3–4 year: 1995 end-page: 214 article-title: A literature review and evaluation of the Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems publication-title: Geoderma – volume: 4 start-page: 2934 issue: 1 year: 2013 article-title: Human‐induced nitrogen phosphorus imbalances alter nature and managed ecosystem across the globe publication-title: Nature Communications – volume: 23 start-page: 95 issue: 2 year: 2008 end-page: 103 article-title: Plant nutrient‐acquisition strategies change with soil age publication-title: Trends in Ecology & Evolution – volume: 6 start-page: 249 issue: 1 year: 2014 end-page: 263 article-title: A global soil data set for Earth system modeling publication-title: Journal of Advances in Modeling Earth Systems – volume: 54 start-page: 605 year: 2002 end-page: 616 article-title: Isotope methods for assessing plant available phosphorus in acid tropical soils publication-title: European Journal of Soil Science – year: 2021 article-title: Global patterns and drivers of soil total phosphorus concentration publication-title: Earth System Science Data Discussions – volume: 10 issue: 1 year: 2015 article-title: Nitrogen and phosphorus limitation reduces the effects of land use change on net atmosphere‐land CO exchange publication-title: Environmental Research Letters – volume: 23 start-page: 3418 issue: 8 year: 2017 end-page: 3432 article-title: Phosphorus in agricultural soils: Drivers of its distribution at the global scale publication-title: Global Change Biology – volume: 11 start-page: 1 issue: 1 year: 2020 end-page: 9 article-title: Global meta‐analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems publication-title: Nature Communications – start-page: 849 year: 2001 – volume: 66 start-page: 867 issue: 5 year: 2015 end-page: 875 article-title: Adsorption of phosphate and organic matter on metal (hydr)oxides in arable and forest soil: A mechanistic modelling study publication-title: European Journal of Soil Science – start-page: 75 year: 1993 end-page: 86 – volume: 127 start-page: 255 issue: 2–3 year: 2016 end-page: 272 article-title: Soil properties controlling inorganic phosphorus availability: General results from a national forest network and a global compilation of the literature publication-title: Biogeochemistry – volume: 76 start-page: 501 issue: 3 year: 1993 end-page: 521 article-title: Shuffled complex evolution approach for effective and efficient global minimization publication-title: Journal of Optimization Theory and Applications – volume: 42 start-page: 878 issue: 6 year: 1978 end-page: 882 article-title: A universal dimensionless phosphate adsorption isotherm for soil publication-title: Soil Science Society Journal of America Journal – volume: 45 start-page: 101 issue: 2 year: 1996 end-page: 109 article-title: The role of isotopic techniques on the evaluation of the agronomic effectiveness of P fertilizers publication-title: Fertilizer Research – volume: 156 year: 2021 article-title: Antagonistic and additive interactions dominate the response of belowground carbon‐cycling processes to nitrogen and phosphorus additions publication-title: Soil Biology and Biochemistry – volume: 41 start-page: 61 issue: 1 year: 2003 end-page: 76 article-title: Chemical characteristics of phosphorus in alkaline soils from southern Australia publication-title: Australian Journal of Soil Research – volume: 54 start-page: 605 issue: 3 year: 2003 end-page: 616 article-title: Isotope methods for assessing plant available phosphorus in acid tropical soils publication-title: European Journal of Soil Science – volume: 26 start-page: 267 issue: 4 year: 1981 end-page: 286 article-title: Comparative aspects of cycling of organic C, N, S and P through soil organic matter publication-title: Geoderma – volume: 183 start-page: 338 issue: 3 year: 2020 end-page: 344 article-title: Is occluded phosphate plat‐available? publication-title: Journal of Plant Nutrition and Soil Science – start-page: 89 year: 2003 end-page: 104 – volume: 131 start-page: 173 issue: 1–2 year: 2016 end-page: 202 article-title: Future challenges in coupled C–N–P cycle models for terrestrial ecosystems under global change: A review publication-title: Biogeochemistry – volume: 5 start-page: 730 issue: 7 year: 2017 end-page: 749 article-title: Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models publication-title: Earth's Future – volume: 89 start-page: 371 issue: 2 year: 2008 end-page: 379 article-title: Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed publication-title: Ecology – volume: 11 start-page: 452 issue: 3 year: 2011 end-page: 466 article-title: Predicting available phosphate ions from physical‐chemical soil properties in acidic sandy soils under pine forests publication-title: Journal of Soils and Sediments – volume: 59 start-page: 900 issue: 5 year: 2008 end-page: 910 article-title: The description of sorption curves publication-title: European Journal of Soil Science – volume: 10 start-page: 3745 year: 2017 end-page: 3770 article-title: A representation of the phosphorus cycle for ORCHIDEE (revision 4520) publication-title: Geoscientific Model Development – volume: 135 start-page: 487 issue: 4 year: 2003 end-page: 499 article-title: Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure publication-title: Oecologia – volume: 11 start-page: 2238 issue: 7 year: 2019 end-page: 2258 article-title: Representing nitrogen, phosphorus, and carbon interactions in the E3SM land model: Development and global benchmarking publication-title: Journal of Advances in Modeling Earth Systems – volume: 23 start-page: 3808 issue: 9 year: 2017 end-page: 3824 article-title: Soil parent material – A major driver of plant nutrient limitations in terrestrial ecosystems publication-title: Global Change Biology – volume: 11 start-page: 1667 issue: 6 year: 2014 end-page: 1681 article-title: The role of phosphorus dynamics in tropical forests – A modeling study using CLM‐CNP publication-title: Biogeosciences – start-page: 414 year: 1995 – volume: 36 start-page: 107 issue: 1 year: 1986 end-page: 118 article-title: Iron oxides in relation to phosphate adsorption by soils publication-title: Acta Agriculturae Scandinavica – volume: 24 start-page: 367 issue: 5–6 year: 1993 end-page: 377 article-title: Can an isotopic method allow for the determination of the phosphate‐fixing capacity of soils? publication-title: Communications in Soil Science and Plant Analysis – volume: 46 start-page: 970 issue: 5 year: 1982 end-page: 976 article-title: Changes in inorganic and organic phosphorus fractions induced by cultivation practices and by laboratory incubation publication-title: Soil Science Society of America Journal – volume: 10 issue: 53 year: 2021 article-title: Modelling of land nutrient cycles: Recent progresses and future development publication-title: F1000 Research, Faculty Review – volume: 9 start-page: 3226 issue: 1 year: 2018 article-title: Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil publication-title: Nature Communications – start-page: 287 year: 2004 – volume: 82 start-page: 1 year: 2002 end-page: 24 article-title: Sorption of phosphorus by soil, Part 1: Principles, equations and models publication-title: Biosystems Engineering – volume: 4 start-page: 471 issue: 6 year: 2014 end-page: 476 article-title: Nutrient availability as the key regulator of global forest carbon balance publication-title: Nature Climate Change – volume: 17 start-page: 4173 issue: 16 year: 2020 end-page: 4222 article-title: Carbon0concentration and carbon‐climate feedbacks in CMIP6 models and their comparison to CMIP5 models publication-title: Biogeosciences – volume: 29 start-page: 50 issue: 1 year: 2000 end-page: 59 article-title: Transfer of phosphate ions between soil and solution: Perspectives in soil testing publication-title: Journal of Environmental Quality – volume: 45 start-page: 8231 year: 2018 end-page: 8240 article-title: Low phosphorus availability decreases susceptibility of tropical primary productivity to droughts publication-title: Geophysical research Letter – volume: 17 start-page: 441 issue: 2 year: 2020 end-page: 454 article-title: Estimates of mean residence times of phosphorus in commonly considered inorganic soil phosphorus pools publication-title: Biogeocsciences – volume: 66 start-page: 868 issue: 3 year: 2002 end-page: 877 article-title: Sequential phosphorus extraction of a 33P‐labeled oxisol under contrasting agricultural systems publication-title: Soil Science Society of America Journal – volume: 125 start-page: 93 year: 2014 end-page: 134 article-title: GlobalSoilMap: Toward a fine‐resolution global grid of soil properties publication-title: Advances in Agronomy – volume: 126 issue: 4 year: 2021 article-title: Microbial activity and root carbon inputs are more important than soil carbon diffusion in simulating soil carbon profiles publication-title: Journal of Geophysical Research: Biogeosciences – volume: 11 start-page: 787 issue: 9 year: 1991 end-page: 797 article-title: Phosphate ion transfer from soil to soil solution: Kinetic parameters publication-title: Agronomie – volume: 40 start-page: 1371 issue: 8 year: 2002 end-page: 1381 article-title: Use and abuse of isotopic exchange data in soil chemistry publication-title: Australian Journal of Soil Sciences – volume: 12 start-page: 736 issue: 9 year: 2019 end-page: 741 article-title: Amazon forest response to CO fertilization dependent on plant phosphorus acquisition publication-title: Nature Geoscience – volume: 32 start-page: 143 issue: 1 year: 2018 end-page: 157 article-title: Quantifying the limitation to world cereal production due to soil phosphorus status publication-title: Global Biogeochemical Cycles – volume: 34 start-page: 733 issue: 4 year: 1983 end-page: 750 article-title: A mechanistic model for describing the sorption and desorption of phosphate by soil publication-title: Journal of Soil Science – volume: 15 start-page: 105 issue: 1 year: 2018 end-page: 114 article-title: Soil solution phosphorus turnover: Derivation, interpretation, and insights from a global compilation of isotope exchange kinetics studies publication-title: Biogeosciences – volume: 29 start-page: 15 issue: 1 year: 2000 end-page: 23 article-title: Processes governing phosphorus availability in temperate soils publication-title: Journal of Environmental Quality – volume: 363 start-page: 145 year: 2014 end-page: 163 article-title: Global chemical weathering and associated P‐release‐ the role of lithology, temperature and soil properties publication-title: Chemical Geology – volume: 29 start-page: 1569 issue: 6 year: 1995 end-page: 1575 article-title: Long term kinetics of phosphate release from soil publication-title: Environmental Science & Technology – volume: 182–183 start-page: 292 year: 2013 end-page: 303 article-title: An efficient method for global parameter sensitivity analysis and its applications to the Australian community land surface models (CABLE) publication-title: Agricultural and Forest Meteorology – volume: 118 start-page: 55 issue: 1–2 year: 2004 end-page: 61 article-title: Estimation of soil phosphate adsorption capacity by means of a pedotransfer function publication-title: Geoderma – volume: 11 start-page: 830 issue: 5 year: 2011 end-page: 840 article-title: Revisiting the fundamentals of phosphorus fractionation of sediments and soils publication-title: Journal of Soils and Sediments – volume: 37 start-page: 787 issue: 5 year: 1999 end-page: 829 article-title: The four laws of soil chemistry: The Leeper lecture 1998 publication-title: Australian Journal of Soil Sciences – volume: 13 start-page: 317 year: 1993 end-page: 331 article-title: Le phosphore assimilable des sols: Sa repre´sentation par un mode` le fonctionnel a` plusieurs compartiments publication-title: Agronomie – volume: 9 start-page: 3547 issue: 9 year: 2012 end-page: 3569 article-title: Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling publication-title: Biogeosciences – volume: 28 start-page: 229 issue: 2 year: 2005 end-page: 236 article-title: Phosphorus sorption, desorption, and resorption by soils of the Brazilian Cerrado supporting eucalypt publication-title: Biomass and Bioenergy – volume: 116 year: 2011 article-title: Diagnosing errors in a land surface model (CABLE) in the time and frequency domains publication-title: Journal of Geophysical Research – volume: 10 start-page: 2525 issue: 4 year: 2013 end-page: 2537 article-title: The distribution of soil phosphorus for global biogeochemical modeling publication-title: Biogeosciences – volume: 41 start-page: 632 issue: 2 year: 2014 end-page: 637 article-title: Nitrogen and phosphorous limitations significantly reduce future allowable CO emissions publication-title: Geophysical Research Letters – volume: 256 start-page: 115 issue: 1 year: 2003 end-page: 130 article-title: Effects of plant species on phosphorus availability in a range of grassland soils publication-title: Plant and Soil – volume: 5 issue: 1 year: 2018 article-title: A global dataset of plant available and unavailable phosphorus in natural soils derived by Hedley method publication-title: Scientific Data – volume: 60 start-page: 42 issue: 1 year: 1996 end-page: 48 article-title: Phosphorus transport during transient, unsaturated water flow in an acid sandy soil publication-title: Soil Science Society of America Journal – ident: e_1_2_9_34_1 doi: 10.5194/gmd-10-3745-2017 – ident: e_1_2_9_23_1 doi: 10.1029/WS006p0089 – ident: e_1_2_9_66_1 doi: 10.2136/sssaj1978.03615995004200060007x – ident: e_1_2_9_18_1 doi: 10.1046/j.1365-2389.2003.00542.x – ident: e_1_2_9_22_1 doi: 10.1016/0016-7061(94)00023-4 – ident: e_1_2_9_77_1 doi: 10.1029/2018MS001571 – ident: e_1_2_9_41_1 doi: 10.5194/bg-17-441-2020 – ident: e_1_2_9_76_1 doi: 10.1002/2013GL058352 – ident: e_1_2_9_67_1 doi: 10.1002/2016EF000472 – ident: e_1_2_9_12_1 doi: 10.1111/j.1365-2389.2008.01041.x – ident: e_1_2_9_10_1 doi: 10.1111/j.1365-2389.1983.tb01068.x – ident: e_1_2_9_60_1 doi: 10.1038/ncomms3934 – ident: e_1_2_9_74_1 doi: 10.5194/bg-10-2525-2013 – ident: e_1_2_9_4_1 doi: 10.1007/s10533-015-0178-0 – ident: e_1_2_9_65_1 doi: 10.1002/2013ms000293 – ident: e_1_2_9_70_1 doi: 10.1029/2010JG001385 – ident: e_1_2_9_24_1 doi: 10.1007/bf00939380 – ident: e_1_2_9_58_1 doi: 10.2134/jeq2000.00472425002900010007x – ident: e_1_2_9_9_1 doi: 10.1016/j.biombioe.2004.08.005 – ident: e_1_2_9_43_1 doi: 10.1023/a:1013351617532 – ident: e_1_2_9_69_1 doi: 10.12703/r/10-53 – start-page: 75 volume-title: Soil sampling and methods of analysis year: 1993 ident: e_1_2_9_68_1 – ident: e_1_2_9_52_1 doi: 10.1021/es00006a020 – ident: e_1_2_9_25_1 doi: 10.1051/agro:19930409 – ident: e_1_2_9_19_1 doi: 10.1023/a:1026273529177 – ident: e_1_2_9_48_1 doi: 10.1002/2017GB005754 – ident: e_1_2_9_56_1 doi: 10.1016/0016-7061(81)90024-0 – start-page: 414 volume-title: Soil nutrient bioavailability: A mechanistic approach year: 1995 ident: e_1_2_9_8_1 – ident: e_1_2_9_71_1 doi: 10.5194/bg-7-2261-2010 – ident: e_1_2_9_17_1 doi: 10.1046/j.1365-2389.2003.00542.x – ident: e_1_2_9_37_1 doi: 10.1016/j.chemgeo.2013.10.025 – ident: e_1_2_9_44_1 doi: 10.1038/s41467-020-14492-w – ident: e_1_2_9_57_1 doi: 10.1007/978-94-010-1009-2 – ident: e_1_2_9_30_1 doi: 10.2134/jeq2000.00472425002900010003x – ident: e_1_2_9_75_1 doi: 10.5194/bg-11-1667-2014 – ident: e_1_2_9_5_1 doi: 10.5194/bg-17-4173-2020 – ident: e_1_2_9_29_1 doi: 10.1038/s41561-019-0404-9 – ident: e_1_2_9_40_1 doi: 10.5194/bg-15-105-2018 – start-page: 287 volume-title: Global sensitivity analysis. The Primer year: 2004 ident: e_1_2_9_63_1 – ident: e_1_2_9_28_1 doi: 10.1038/nclimate2177 – ident: e_1_2_9_54_1 doi: 10.1016/j.soilbio.2009.02.031 – ident: e_1_2_9_27_1 doi: 10.1051/agro:19910909 – ident: e_1_2_9_36_1 doi: 10.1071/sr02046 – ident: e_1_2_9_26_1 doi: 10.1007/bf00790659 – ident: e_1_2_9_39_1 doi: 10.2136/sssaj1982.03615995004600050017x – ident: e_1_2_9_46_1 doi: 10.1016/j.soilbio.2021.108216 – ident: e_1_2_9_33_1 doi: 10.1029/2018GL077736 – ident: e_1_2_9_16_1 doi: 10.2136/sssaj2002.8680 – ident: e_1_2_9_59_1 doi: 10.1080/00380768.1983.10434628 – ident: e_1_2_9_73_1 doi: 10.1088/1748-9326/10/014001 – ident: e_1_2_9_62_1 doi: 10.1111/gcb.13618 – ident: e_1_2_9_20_1 doi: 10.2136/sssaj1996.03615995006000010009x – ident: e_1_2_9_53_1 doi: 10.1016/j.agrformet.2013.04.003 – ident: e_1_2_9_7_1 doi: 10.1111/gcb.13691 – ident: e_1_2_9_35_1 doi: 10.1016/j.still.2016.04.018 – ident: e_1_2_9_47_1 doi: 10.1007/s00442-002-1164-5 – ident: e_1_2_9_2_1 doi: 10.1007/s10533-016-0274-9 – ident: e_1_2_9_11_1 doi: 10.1071/sr98115 – ident: e_1_2_9_3_1 doi: 10.1007/s11368-010-02329-9 – ident: e_1_2_9_14_1 doi: 10.1080/00015128609435799 – ident: e_1_2_9_42_1 doi: 10.1038/s41467-018-05731-2 – ident: e_1_2_9_61_1 doi: 10.1111/ejss.12285 – ident: e_1_2_9_6_1 doi: 10.1201/b16500-4 – ident: e_1_2_9_21_1 doi: 10.01007/s11368-011-0363-2 – ident: e_1_2_9_13_1 doi: 10.1071/sr02021 – ident: e_1_2_9_31_1 doi: 10.1080/00103629309368807 – ident: e_1_2_9_38_1 doi: 10.5194/essd-2021-166 – ident: e_1_2_9_45_1 doi: 10.1038/sdata.2018.166 – ident: e_1_2_9_50_1 doi: 10.1007/s10533-0375-0 – ident: e_1_2_9_49_1 doi: 10.1016/j.tree.2007.10.008 – ident: e_1_2_9_55_1 doi: 10.1006/bioe.2002.0054 – ident: e_1_2_9_64_1 doi: 10.1002/jpin.201900402 – ident: e_1_2_9_51_1 doi: 10.1890/06-2057.1 – ident: e_1_2_9_72_1 doi: 10.1029/2020JG006205 – ident: e_1_2_9_15_1 doi: 10.1016/s0016-7061(03)00183-6 – ident: e_1_2_9_32_1 doi: 10.5194/bg-9-3547-2012 |
| SSID | ssj0014559 |
| Score | 2.5399098 |
| Snippet | The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption... |
| SourceID | pubmedcentral proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e2021GB007061 |
| SubjectTerms | Abrupt/Rapid Climate Change Air/Sea Constituent Fluxes Air/Sea Interactions Atmospheric Atmospheric Composition and Structure Atmospheric Effects Atmospheric Processes available phosphorus Avalanches Benefit‐cost Analysis Bioavailability Biogeochemical Cycles, Processes, and Modeling Biogeochemical Kinetics and Reaction Modeling Biogeochemistry Biogeosciences Biological uptake Carbon Carbon content Chemical properties Chemicophysical properties Climate and Interannual Variability Climate Change and Variability Climate Dynamics Climate Impact Climate Impacts Climate Variability Climatology Computational Geophysics Cryosphere Decadal Ocean Variability Desorption Disaster Risk Analysis and Assessment Dynamics Earth System Modeling Earthquake Ground Motions and Engineering Seismology Effusive Volcanism Explosive Volcanism General Circulation Geochemistry Geodesy and Gravity Geological Global Change Global Change from Geodesy global modeling Gravity and Isostasy Hedley fractionation Hydrological Cycles and Budgets Hydrology Impacts of Global Change Informatics isotopic exchange kinetics Kinetics Land/Atmosphere Interactions Marine Geochemistry Marine Geology and Geophysics Marine Inorganic Chemistry Marine Organic Chemistry Mass Balance Mathematical models Metal concentrations Metal oxides Metals Modeling Modelling Mud Volcanism Natural Hazards Numerical Modeling Numerical Solutions Nutrients and Nutrient Cycling Ocean influence of Earth rotation Ocean Monitoring with Geodetic Techniques Ocean/Atmosphere Interactions Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions Oceanic Oceanography: Biological and Chemical Oceanography: General Oceanography: Physical Oceans Organic carbon Oxalic acid Paleoceanography Parameters Phosphorus phosphorus fractions Physical Modeling Physicochemical processes Physicochemical properties Policy Sciences Radio Oceanography Radio Science Regional Climate Change Regional Modeling Representations Risk Sea Level Change Sea Level: Variations and Mean Seismology Soil chemistry Soil dynamics Soil particles Soil properties Soil solution Solid Earth Sorption Surface Waves and Tides Terrestrial ecosystems Theoretical Modeling Tsunamis and Storm Surges Volcanic Effects Volcanic Hazards and Risks Volcano Monitoring Volcano Seismology Volcano/Climate Interactions Volcanology Water Cycles |
| Title | Toward a Global Model for Soil Inorganic Phosphorus Dynamics: Dependence of Exchange Kinetics and Soil Bioavailability on Soil Physicochemical Properties |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GB007061 https://www.proquest.com/docview/2644004021 https://www.proquest.com/docview/2693776335 https://pubmed.ncbi.nlm.nih.gov/PMC9286372 |
| Volume | 36 |
| WOSCitedRecordID | wos000776571300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-9224 dateEnd: 20231213 omitProxy: false ssIdentifier: ssj0014559 issn: 0886-6236 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-9224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014559 issn: 0886-6236 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3vaxMxGA66KegHdVWxOkcEBUWO9ZJckvrNrescjlJ0w347crkcLZS70VuH-1P8b33fJKutoCB-uV_J5XIkb_IkefM8hLzWUjrusl4ipC4TUVQqARSiE7hwzjqWVYVn1z9Vo5GeTPrjOOGGe2ECP8Rqwg0tw7fXaOCmaCPZAHJkwqg9PT5Auhoc_WzjvioYfG0PvgzPT1frCCLzcmlgSjKBjl5G13dIYX_9_c1O6RfS_N1Pch2_-g5o-PB_s_6IPIjQk34MdWWH3HJ1h9wNYpTXHXJ_jZqwQ3ai0bf0bWSmfveY_DjzTrbU0CAVQFFJbU4B99KvzWxOT-ogEmXpeNq0F9NmsWzpIGjetx_oIAruWkebih59D5uO6Wf4KpJFU1OXIR3Ik7kys3ngEL-mTR2ee3dVixpfnuSAjnElYYGUsE_I-fDo7PBTErUdEgNlohMuBBPSsJ5z3GaisNw6rV3lUml5WZbK6UxbIUyWIQWiKiT05tq4vq104SrGn5KtuqndM0JNxY02aQanVKieMqWuKsmLVDmD-K5L3t8Ubm4j8Tnqb8xzvwDP-vl6eXTJm1Xsi0D48Yd4uzf1JI9m3-aILrFZZBD8ahUMBourMKZ2zRLjACKEVp1nXaI26tfqe0j5vRlSz6ae-rvPtOSKwS_5-vXXHObHB4cATIR-_k-xX5B7DLd4eD-7XbJ1uVi6l-SOvbqctYs9cpuJMRzVRO9FY4O7byejn3Q7Km8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1di9QwFA2yKuqDuqPi6KoRFBQpTpM0yfjmfi87DgOOsG8lTVNmYGiX6c7i_hT_rfcm2TojKIhPLU3apCQ39yS5OYeQN1pKx102SITUZSKKSiWAQnQCN85Zx7Kq8Oz6IzUe67Oz4STqnOJZmMAP0S24oWX48RoNHBekI9sAkmTCtD092kW-Gpz-3BTgmDCmj4lJt40gMq-WBpYkE_DzMka-w_sf19_e9Em_gObvYZLr8NX7n8MH_13zh-R-hJ70c-gr2-SGq3vkdhCjvOqRe2vUhD2yHY2-pe8iM_X7R-TH1AfZUkODVABFJbUFBdxLvzbzBT2pg0iUpZNZ057PmuWqpftB8779RPej4K51tKnowfdw6JieQqlIFk1NXYbvQJ3MpZkvAof4FW3q8NyHq1rU-PIkB3SCOwlLpIR9TL4dHkz3jpOo7ZAYaBSdcCGYkIYNnOM2E4Xl1mntKpdKy8uyVE5n2gphsgwpEFUhwZtr44a20oWrGH9Ctuqmdk8JNRU32qQZXFKhBsqUuqokL1LlDOK7Pvlw3bq5jcTnqL-xyP0GPBvm6-3RJ2-73OeB8OMP-XauO0oezb7NEV3isMgg-XWXDAaLuzCmds0K8wAihFGdZ32iNjpYVx5Sfm-m1POZp_4eMi25YvBLvoP9tYb50e4eABOhn_1T7lfkzvH0yygfnYxPn5O7DI97-Ji7HbJ1sVy5F-SWvbyYt8uX3tZ-AtUTKfY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bixMxFA6yXtAHdatiddUICooMdnKvb-52uy67lIIr7NuQyZzQQpkpne3i_hT_rbnt2AoK4tMMk5NJhuQkXyYn34fQGyUEUOCDjAlVZay0MnMoRGXuBsAA4bYM7PqncjJR5-fDadI59WdhIj9E98PNe0YYr72Dw7KyiW3Ak2S6ZXt-tO_5avzy5ybjMngmYdNuG4HxoJbmPElkbp4XKfLd5f-4mXt7TvoFNH8Pk9yEr2H-GT_475o_RPcT9MSfY1_ZRTeg7qHbUYzyqofubVAT9tBucvoWv0vM1O8foR9nIcgWaxylArBXUltgh3vx12a-wMd1FIkyeDpr2uWsWa1bPIqa9-0nPEqCuwZwY_Hh93joGJ-4Uj1ZNNZ1Fd_j6qQv9XwROcSvcFPH5yFc1XiNr0BygKd-J2HlKWEfo2_jw7ODL1nSdsi0axSVUcYIE5oMAKjhrDTUgFJgIReGVlUlQXFlGNOcewpEWQo3mysNQ2NVCZbQJ2inbmp4irC2VCudc3fJmRxIXSlrBS1zCdrjuz76cN26hUnE515_Y1GEDXgyLDbbo4_edtbLSPjxB7u9645SJLdvC48u_bBIXPLrLtk5rN-F0TU0a2_jEKEb1SnvI7nVwbryPOX3dko9nwXq7yFRgkriPil0sL_WsDjaP3DAhKln_2T9Ct2ZjsbF6fHk5Dm6S_xpjxByt4d2LlZreIFumcuLebt6GVztJyIAKXE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+a+Global+Model+for+Soil+Inorganic+Phosphorus+Dynamics%3A+Dependence+of+Exchange+Kinetics+and+Soil+Bioavailability+on+Soil+Physicochemical+Properties&rft.jtitle=Global+biogeochemical+cycles&rft.au=Wang%2C+Ying-Ping&rft.au=Huang%2C+Yuanyuan&rft.au=Augusto%2C+Laurent&rft.au=Goll%2C+Daniel+S&rft.date=2022-03-01&rft.issn=0886-6236&rft.volume=36&rft.issue=3&rft.spage=e2021GB007061&rft_id=info:doi/10.1029%2F2021GB007061&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-6236&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-6236&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-6236&client=summon |