Toward a Global Model for Soil Inorganic Phosphorus Dynamics: Dependence of Exchange Kinetics and Soil Bioavailability on Soil Physicochemical Properties

The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usua...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Global biogeochemical cycles Ročník 36; číslo 3; s. e2021GB007061 - n/a
Hlavní autori: Wang, Ying‐Ping, Huang, Yuanyuan, Augusto, Laurent, Goll, Daniel S., Helfenstein, Julian, Hou, Enqing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Washington Blackwell Publishing Ltd 01.03.2022
John Wiley and Sons Inc
Predmet:
ISSN:0886-6236, 1944-9224
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usually based on expert knowledge or data from few sites with debatable global representativeness in most global land models. To overcome these issues, we compiled from data of inorganic soil P fractions and calculated the fraction of added P remaining in soil solution over time of 147 soil samples to optimize three parameters in a model of soil inorganic P dynamics. The calibrated model performed well (r2 > 0.7 for 122 soil samples). Model parameters vary by several orders of magnitude, and correlate with soil P fractions of different inorganic pools, soil organic carbon and oxalate extractable metal oxide concentrations among the soil samples. The modeled bioavailability of soil P depends on, not only, the desorption rates of labile and sorbed pool, inorganic phosphorus fractions, the slope of P sorbed against solution P concentration, but also on the ability of biological uptake to deplete solution P concentration and the time scale. The model together with the empirical relationships of model parameters on soil properties can be used to quantify bioavailability of soil inorganic P on various timescale especially when coupled within global land models. Plain Language Summary Phosphorus (P) is a major nutrient limiting the productivity of many terrestrial ecosystems. About 20%–60% of soil phosphorus is in inorganic form, and most inorganic soil P is sorbed or fixed on soil particles, leaving a small fraction (<1%) in soil solution available for direct uptake by plants. Sorption and desorption control inorganic P in solution and vary significantly with soil properties. However, sorption and desorption are not explicitly represented in most global land models. This study developed and calibrated a model of inorganic P dynamics using the observations from 147 soils worldwide. We found that the parameters in the model can vary by several orders of magnitude, and that a significant proportion of those variations can be explained by soil chemical properties, particularly soil P fractions, oxalate extractable metal oxide and soil organic carbon concentrations. The model and empirical relationships between model parameters and soil properties as developed in this study can be used to improve the representation of P cycle in land models. Key Points We developed and calibrated a model of soil inorganic P dynamics using the measured soil Phosphorus (P) fractions and isotopic exchange kinetics of 147 soils We derived empirical relationships between model parameters and some soil chemical properties Soil P bioavailability depends on soil P fractions, solution P concentration, desorption rate constants and the time scale
AbstractList The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usually based on expert knowledge or data from few sites with debatable global representativeness in most global land models. To overcome these issues, we compiled from data of inorganic soil P fractions and calculated the fraction of added P remaining in soil solution over time of 147 soil samples to optimize three parameters in a model of soil inorganic P dynamics. The calibrated model performed well (r2 > 0.7 for 122 soil samples). Model parameters vary by several orders of magnitude, and correlate with soil P fractions of different inorganic pools, soil organic carbon and oxalate extractable metal oxide concentrations among the soil samples. The modeled bioavailability of soil P depends on, not only, the desorption rates of labile and sorbed pool, inorganic phosphorus fractions, the slope of P sorbed against solution P concentration, but also on the ability of biological uptake to deplete solution P concentration and the time scale. The model together with the empirical relationships of model parameters on soil properties can be used to quantify bioavailability of soil inorganic P on various timescale especially when coupled within global land models.
The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usually based on expert knowledge or data from few sites with debatable global representativeness in most global land models. To overcome these issues, we compiled from data of inorganic soil P fractions and calculated the fraction of added P remaining in soil solution over time of 147 soil samples to optimize three parameters in a model of soil inorganic P dynamics. The calibrated model performed well (r 2 > 0.7 for 122 soil samples). Model parameters vary by several orders of magnitude, and correlate with soil P fractions of different inorganic pools, soil organic carbon and oxalate extractable metal oxide concentrations among the soil samples. The modeled bioavailability of soil P depends on, not only, the desorption rates of labile and sorbed pool, inorganic phosphorus fractions, the slope of P sorbed against solution P concentration, but also on the ability of biological uptake to deplete solution P concentration and the time scale. The model together with the empirical relationships of model parameters on soil properties can be used to quantify bioavailability of soil inorganic P on various timescale especially when coupled within global land models. We developed and calibrated a model of soil inorganic P dynamics using the measured soil Phosphorus (P) fractions and isotopic exchange kinetics of 147 soilsWe derived empirical relationships between model parameters and some soil chemical propertiesSoil P bioavailability depends on soil P fractions, solution P concentration, desorption rate constants and the time scale
The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usually based on expert knowledge or data from few sites with debatable global representativeness in most global land models. To overcome these issues, we compiled from data of inorganic soil P fractions and calculated the fraction of added P remaining in soil solution over time of 147 soil samples to optimize three parameters in a model of soil inorganic P dynamics. The calibrated model performed well (r2 > 0.7 for 122 soil samples). Model parameters vary by several orders of magnitude, and correlate with soil P fractions of different inorganic pools, soil organic carbon and oxalate extractable metal oxide concentrations among the soil samples. The modeled bioavailability of soil P depends on, not only, the desorption rates of labile and sorbed pool, inorganic phosphorus fractions, the slope of P sorbed against solution P concentration, but also on the ability of biological uptake to deplete solution P concentration and the time scale. The model together with the empirical relationships of model parameters on soil properties can be used to quantify bioavailability of soil inorganic P on various timescale especially when coupled within global land models. Plain Language Summary Phosphorus (P) is a major nutrient limiting the productivity of many terrestrial ecosystems. About 20%–60% of soil phosphorus is in inorganic form, and most inorganic soil P is sorbed or fixed on soil particles, leaving a small fraction (<1%) in soil solution available for direct uptake by plants. Sorption and desorption control inorganic P in solution and vary significantly with soil properties. However, sorption and desorption are not explicitly represented in most global land models. This study developed and calibrated a model of inorganic P dynamics using the observations from 147 soils worldwide. We found that the parameters in the model can vary by several orders of magnitude, and that a significant proportion of those variations can be explained by soil chemical properties, particularly soil P fractions, oxalate extractable metal oxide and soil organic carbon concentrations. The model and empirical relationships between model parameters and soil properties as developed in this study can be used to improve the representation of P cycle in land models. Key Points We developed and calibrated a model of soil inorganic P dynamics using the measured soil Phosphorus (P) fractions and isotopic exchange kinetics of 147 soils We derived empirical relationships between model parameters and some soil chemical properties Soil P bioavailability depends on soil P fractions, solution P concentration, desorption rate constants and the time scale
The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usually based on expert knowledge or data from few sites with debatable global representativeness in most global land models. To overcome these issues, we compiled from data of inorganic soil P fractions and calculated the fraction of added P remaining in soil solution over time of 147 soil samples to optimize three parameters in a model of soil inorganic P dynamics. The calibrated model performed well (r 2 > 0.7 for 122 soil samples). Model parameters vary by several orders of magnitude, and correlate with soil P fractions of different inorganic pools, soil organic carbon and oxalate extractable metal oxide concentrations among the soil samples. The modeled bioavailability of soil P depends on, not only, the desorption rates of labile and sorbed pool, inorganic phosphorus fractions, the slope of P sorbed against solution P concentration, but also on the ability of biological uptake to deplete solution P concentration and the time scale. The model together with the empirical relationships of model parameters on soil properties can be used to quantify bioavailability of soil inorganic P on various timescale especially when coupled within global land models.The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usually based on expert knowledge or data from few sites with debatable global representativeness in most global land models. To overcome these issues, we compiled from data of inorganic soil P fractions and calculated the fraction of added P remaining in soil solution over time of 147 soil samples to optimize three parameters in a model of soil inorganic P dynamics. The calibrated model performed well (r 2 > 0.7 for 122 soil samples). Model parameters vary by several orders of magnitude, and correlate with soil P fractions of different inorganic pools, soil organic carbon and oxalate extractable metal oxide concentrations among the soil samples. The modeled bioavailability of soil P depends on, not only, the desorption rates of labile and sorbed pool, inorganic phosphorus fractions, the slope of P sorbed against solution P concentration, but also on the ability of biological uptake to deplete solution P concentration and the time scale. The model together with the empirical relationships of model parameters on soil properties can be used to quantify bioavailability of soil inorganic P on various timescale especially when coupled within global land models.
The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usually based on expert knowledge or data from few sites with debatable global representativeness in most global land models. To overcome these issues, we compiled from data of inorganic soil P fractions and calculated the fraction of added P remaining in soil solution over time of 147 soil samples to optimize three parameters in a model of soil inorganic P dynamics. The calibrated model performed well ( r 2  > 0.7 for 122 soil samples). Model parameters vary by several orders of magnitude, and correlate with soil P fractions of different inorganic pools, soil organic carbon and oxalate extractable metal oxide concentrations among the soil samples. The modeled bioavailability of soil P depends on, not only, the desorption rates of labile and sorbed pool, inorganic phosphorus fractions, the slope of P sorbed against solution P concentration, but also on the ability of biological uptake to deplete solution P concentration and the time scale. The model together with the empirical relationships of model parameters on soil properties can be used to quantify bioavailability of soil inorganic P on various timescale especially when coupled within global land models. Phosphorus (P) is a major nutrient limiting the productivity of many terrestrial ecosystems. About 20%–60% of soil phosphorus is in inorganic form, and most inorganic soil P is sorbed or fixed on soil particles, leaving a small fraction (<1%) in soil solution available for direct uptake by plants. Sorption and desorption control inorganic P in solution and vary significantly with soil properties. However, sorption and desorption are not explicitly represented in most global land models. This study developed and calibrated a model of inorganic P dynamics using the observations from 147 soils worldwide. We found that the parameters in the model can vary by several orders of magnitude, and that a significant proportion of those variations can be explained by soil chemical properties, particularly soil P fractions, oxalate extractable metal oxide and soil organic carbon concentrations. The model and empirical relationships between model parameters and soil properties as developed in this study can be used to improve the representation of P cycle in land models. We developed and calibrated a model of soil inorganic P dynamics using the measured soil Phosphorus (P) fractions and isotopic exchange kinetics of 147 soils We derived empirical relationships between model parameters and some soil chemical properties Soil P bioavailability depends on soil P fractions, solution P concentration, desorption rate constants and the time scale
Author Hou, Enqing
Wang, Ying‐Ping
Helfenstein, Julian
Augusto, Laurent
Goll, Daniel S.
Huang, Yuanyuan
AuthorAffiliation 3 Université Paris Saclay CEA‐CNRS‐UVSQ LSCE/IPSL Gif sur Yvette France
1 CSIRO Oceans and Atmosphere Aspendale VIC Australia
5 Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden Chinese Academy of Sciences Guangzhou China
4 Agroscope Zurich Switzerland
2 INRAE Bordeaux Sciences Agro UMR 1391 ISPA Villenave d'Ornon France
AuthorAffiliation_xml – name: 5 Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden Chinese Academy of Sciences Guangzhou China
– name: 1 CSIRO Oceans and Atmosphere Aspendale VIC Australia
– name: 3 Université Paris Saclay CEA‐CNRS‐UVSQ LSCE/IPSL Gif sur Yvette France
– name: 2 INRAE Bordeaux Sciences Agro UMR 1391 ISPA Villenave d'Ornon France
– name: 4 Agroscope Zurich Switzerland
Author_xml – sequence: 1
  givenname: Ying‐Ping
  orcidid: 0000-0002-4614-6203
  surname: Wang
  fullname: Wang, Ying‐Ping
  email: Yingping.wang@csiro.au
  organization: CSIRO Oceans and Atmosphere
– sequence: 2
  givenname: Yuanyuan
  surname: Huang
  fullname: Huang, Yuanyuan
  organization: CSIRO Oceans and Atmosphere
– sequence: 3
  givenname: Laurent
  orcidid: 0000-0002-7049-6000
  surname: Augusto
  fullname: Augusto, Laurent
  organization: UMR 1391 ISPA
– sequence: 4
  givenname: Daniel S.
  orcidid: 0000-0001-9246-9671
  surname: Goll
  fullname: Goll, Daniel S.
  organization: LSCE/IPSL
– sequence: 5
  givenname: Julian
  surname: Helfenstein
  fullname: Helfenstein, Julian
  organization: Agroscope
– sequence: 6
  givenname: Enqing
  orcidid: 0000-0003-4864-2347
  surname: Hou
  fullname: Hou, Enqing
  organization: Chinese Academy of Sciences
BookMark eNqFkc9uEzEQhy1URNPCjQewxIUDAa__rZcDEklLqCgiEuW88npns64cT7A3LXmUvm03SoWgBziN5Pn8zYx-J-QoYgRCXhbsbcF49Y4zXixmjJVMF0_IpKiknFacyyMyYcboqeZCH5OTnK8ZK6RS1TNyLJTRqlRqQu6u8Namllq6CNjYQL9iC4F2mOh39IFeREwrG72jyx7zpse0zfRsF-3au_yensEGYgvRAcWOnv9yvY0roF98hGEEqI3twTPzaG-sD7bxwQ87ivHwvux32Tt0PYzCcfwy4QbS4CE_J087GzK8eKin5Men86v55-nlt8XF_OPl1I7HmKmQkkttOQMQTsnGCQfGQAeFdqJt2xKMMk5Kq5RimpWNdgDGQuU600DHxSn5cPButs0aWgdxSDbUm-TXNu1qtL7-uxN9X6_wpq640aLcC14_CBL-3EIe6rXPDkKwEXCba64rUZZaCDWirx6h17hNcTxvpKRkTI5hjtSbA-US5pyg-71Mwep95vWfmY84f4Q7P9jB435dH_7z6dYH2P1zQL2YzXnBpRH3xgHAUQ
CitedBy_id crossref_primary_10_1007_s42729_025_02684_6
crossref_primary_10_1016_j_catena_2025_109072
crossref_primary_10_1038_s41598_025_02522_w
crossref_primary_10_3390_biology14091200
crossref_primary_10_3390_app14188351
crossref_primary_10_3390_horticulturae11010064
crossref_primary_10_1016_j_eja_2024_127347
crossref_primary_10_1016_j_still_2024_106403
crossref_primary_10_1016_j_geoderma_2022_116076
crossref_primary_10_1016_j_catena_2025_108821
crossref_primary_10_1007_s44378_025_00059_y
crossref_primary_10_1016_j_soilbio_2024_109368
crossref_primary_10_1016_j_agsy_2022_103595
crossref_primary_10_1007_s10811_025_03485_1
crossref_primary_10_1016_j_envsci_2025_104168
crossref_primary_10_3390_f15060974
crossref_primary_10_1002_ldr_5594
crossref_primary_10_1007_s10533_025_01218_7
crossref_primary_10_5194_bg_20_4147_2023
crossref_primary_10_1007_s42106_024_00291_6
crossref_primary_10_1111_ejss_70033
crossref_primary_10_3389_fevo_2023_1105832
crossref_primary_10_3389_fpls_2023_1332864
crossref_primary_10_1016_j_still_2023_105840
crossref_primary_10_1016_j_jclepro_2024_141088
crossref_primary_10_1111_gcb_70485
crossref_primary_10_1080_03650340_2025_2484223
crossref_primary_10_26848_rbgf_v18_1_p518_536
crossref_primary_10_1029_2022JG006795
crossref_primary_10_1016_j_hpj_2025_06_008
crossref_primary_10_1038_s41597_023_02751_6
crossref_primary_10_3390_microorganisms12122582
crossref_primary_10_1016_j_catena_2023_107501
crossref_primary_10_1111_gcb_17001
crossref_primary_10_1016_j_oneear_2024_07_020
crossref_primary_10_1016_j_catena_2025_109424
Cites_doi 10.5194/gmd-10-3745-2017
10.1029/WS006p0089
10.2136/sssaj1978.03615995004200060007x
10.1046/j.1365-2389.2003.00542.x
10.1016/0016-7061(94)00023-4
10.1029/2018MS001571
10.5194/bg-17-441-2020
10.1002/2013GL058352
10.1002/2016EF000472
10.1111/j.1365-2389.2008.01041.x
10.1111/j.1365-2389.1983.tb01068.x
10.1038/ncomms3934
10.5194/bg-10-2525-2013
10.1007/s10533-015-0178-0
10.1002/2013ms000293
10.1029/2010JG001385
10.1007/bf00939380
10.2134/jeq2000.00472425002900010007x
10.1016/j.biombioe.2004.08.005
10.1023/a:1013351617532
10.12703/r/10-53
10.1021/es00006a020
10.1051/agro:19930409
10.1023/a:1026273529177
10.1002/2017GB005754
10.1016/0016-7061(81)90024-0
10.5194/bg-7-2261-2010
10.1016/j.chemgeo.2013.10.025
10.1038/s41467-020-14492-w
10.1007/978-94-010-1009-2
10.2134/jeq2000.00472425002900010003x
10.5194/bg-11-1667-2014
10.5194/bg-17-4173-2020
10.1038/s41561-019-0404-9
10.5194/bg-15-105-2018
10.1038/nclimate2177
10.1016/j.soilbio.2009.02.031
10.1051/agro:19910909
10.1071/sr02046
10.1007/bf00790659
10.2136/sssaj1982.03615995004600050017x
10.1016/j.soilbio.2021.108216
10.1029/2018GL077736
10.2136/sssaj2002.8680
10.1080/00380768.1983.10434628
10.1088/1748-9326/10/014001
10.1111/gcb.13618
10.2136/sssaj1996.03615995006000010009x
10.1016/j.agrformet.2013.04.003
10.1111/gcb.13691
10.1016/j.still.2016.04.018
10.1007/s00442-002-1164-5
10.1007/s10533-016-0274-9
10.1071/sr98115
10.1007/s11368-010-02329-9
10.1080/00015128609435799
10.1038/s41467-018-05731-2
10.1111/ejss.12285
10.1201/b16500-4
10.01007/s11368-011-0363-2
10.1071/sr02021
10.1080/00103629309368807
10.5194/essd-2021-166
10.1038/sdata.2018.166
10.1007/s10533-0375-0
10.1016/j.tree.2007.10.008
10.1006/bioe.2002.0054
10.1002/jpin.201900402
10.1890/06-2057.1
10.1029/2020JG006205
10.1016/s0016-7061(03)00183-6
10.5194/bg-9-3547-2012
ContentType Journal Article
Copyright 2022 Commonwealth of Australia.
2022. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 Commonwealth of Australia.
– notice: 2022. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SN
7TG
C1K
F1W
H96
KL.
L.G
7X8
5PM
DOI 10.1029/2021GB007061
DatabaseName Wiley Online Library Open Access
CrossRef
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Biology
DocumentTitleAlternate Wang et al
EISSN 1944-9224
EndPage n/a
ExternalDocumentID PMC9286372
10_1029_2021GB007061
GBC21248
Genre article
GrantInformation_xml – fundername: European Research Council
  funderid: SyG‐2013‐610028
– fundername: National Science Foundation Research COordination
  funderid: INCyTE, DEB‐1754126
– fundername: Australian Government (Federal Government)
  funderid: NESP
– fundername: ;
  grantid: NESP
– fundername: National Science Foundation Research COordination
  grantid: INCyTE, DEB‐1754126
– fundername: European Research Council
  grantid: SyG‐2013‐610028
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
31~
33P
3V.
50Y
5GY
7X2
7XC
8-1
88I
8CJ
8FE
8FH
8G5
8R4
8R5
A00
AAESR
AAHBH
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABPPZ
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOD
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D1J
D1K
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
ECGQY
EJD
F5P
FEDTE
G-S
GNUQQ
GODZA
GUQSH
HCIFZ
HGLYW
HVGLF
HZ~
K6-
LATKE
LEEKS
LITHE
LK5
LK8
LOXES
LUTES
LYRES
M0K
M2O
M2P
M7P
M7R
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2W
PATMY
PCBAR
PQQKQ
PROAC
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
UQL
VH1
WBKPD
WIN
WXSBR
WYJ
Y6R
ZZTAW
~02
~KM
~OA
~~A
AAMMB
AAYXX
ADXHL
AEFGJ
AEYWJ
AFFHD
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
PHGZM
PHGZT
PQGLB
7SN
7TG
C1K
F1W
H96
KL.
L.G
7X8
5PM
ID FETCH-LOGICAL-a4558-344246a20ee3c54bc3ce88efe16c3ddd7e858c44a5550607b6cee8ae9cf8bef23
IEDL.DBID DRFUL
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000776571300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0886-6236
IngestDate Tue Sep 30 16:35:33 EDT 2025
Thu Oct 02 07:41:50 EDT 2025
Sat Nov 08 06:08:02 EST 2025
Thu Nov 27 01:03:35 EST 2025
Tue Nov 18 21:44:59 EST 2025
Wed Jan 22 16:25:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution-NonCommercial-NoDerivs
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4558-344246a20ee3c54bc3ce88efe16c3ddd7e858c44a5550607b6cee8ae9cf8bef23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9246-9671
0000-0002-7049-6000
0000-0002-4614-6203
0000-0003-4864-2347
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GB007061
PMID 35865755
PQID 2644004021
PQPubID 54624
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9286372
proquest_miscellaneous_2693776335
proquest_journals_2644004021
crossref_primary_10_1029_2021GB007061
crossref_citationtrail_10_1029_2021GB007061
wiley_primary_10_1029_2021GB007061_GBC21248
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
– name: Hoboken
PublicationTitle Global biogeochemical cycles
PublicationYear 2022
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2017; 5
2011; 116
1993; 24
2009; 41
2013; 4
2021; 126
2019; 11
1991; 11
2019; 12
1986; 36
2002; 54
2020; 17
2011; 11
2020; 11
2018; 45
2005; 28
2003; 54
1995; 64
2018; 9
2014; 4
2018; 5
2001
2021; 156
2013; 10
2002; 40
1993; 76
2013; 182–183
1996; 60
2008; 23
1995; 29
2014; 363
1983; 29
2018; 32
2003; 41
2014; 6
2014; 125
2010; 7
2014; 11
2000; 29
2017; 23
2020; 183
2015; 10
2008; 59
1995
1981; 26
2016; 127
2002; 82
2004
1993
2003
2014; 41
2003; 256
2003; 135
2017; 136
2016; 162
1983; 34
1982; 46
1993; 13
2021; 10
2021
1978; 42
2017; 10
1999; 37
2015; 66
2002; 66
2008; 89
2004; 118
2016; 131
2018; 15
1996; 45
2012; 9
2001; 237
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
Saltelli A. (e_1_2_9_63_1) 2004
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
Barber S. A. (e_1_2_9_8_1) 1995
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Tiessen H. (e_1_2_9_68_1) 1993
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 237
  start-page: 173
  issue: 2
  year: 2001
  end-page: 195
  article-title: Bioavailability of soil inorganic P in the rhizosphere as affected by root‐ induced chemical changes: A review
  publication-title: Plant and Soil
– volume: 136
  start-page: 5
  issue: 1
  year: 2017
  end-page: 29
  article-title: Soil phosphorus supply controls P nutrition strategies of beech forest ecosystems in central Europe
  publication-title: Biogeochemistry
– volume: 162
  start-page: 46
  year: 2016
  end-page: 54
  article-title: Adsorption and desorption kinetics and phosphorus hysteresis in highly weathered soil by stirred flow chamber experiments
  publication-title: Soil and Tillage Research
– volume: 29
  start-page: 271
  issue: 3
  year: 1983
  end-page: 283
  article-title: Hysteresis in the phosphorus sorption and desorption processes of soils
  publication-title: Soil Science & Plant Nutrition
– volume: 41
  start-page: 1355
  issue: 7
  year: 2009
  end-page: 1379
  article-title: Soil carbon and nitrogen mineralization: Theory and model across scales
  publication-title: Soil Biology and Biochemistry
– volume: 7
  start-page: 2261
  year: 2010
  end-page: 2282
  article-title: A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere
  publication-title: Biogeosciences
– volume: 64
  start-page: 197
  issue: 3–4
  year: 1995
  end-page: 214
  article-title: A literature review and evaluation of the Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems
  publication-title: Geoderma
– volume: 4
  start-page: 2934
  issue: 1
  year: 2013
  article-title: Human‐induced nitrogen phosphorus imbalances alter nature and managed ecosystem across the globe
  publication-title: Nature Communications
– volume: 23
  start-page: 95
  issue: 2
  year: 2008
  end-page: 103
  article-title: Plant nutrient‐acquisition strategies change with soil age
  publication-title: Trends in Ecology & Evolution
– volume: 6
  start-page: 249
  issue: 1
  year: 2014
  end-page: 263
  article-title: A global soil data set for Earth system modeling
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 54
  start-page: 605
  year: 2002
  end-page: 616
  article-title: Isotope methods for assessing plant available phosphorus in acid tropical soils
  publication-title: European Journal of Soil Science
– year: 2021
  article-title: Global patterns and drivers of soil total phosphorus concentration
  publication-title: Earth System Science Data Discussions
– volume: 10
  issue: 1
  year: 2015
  article-title: Nitrogen and phosphorus limitation reduces the effects of land use change on net atmosphere‐land CO exchange
  publication-title: Environmental Research Letters
– volume: 23
  start-page: 3418
  issue: 8
  year: 2017
  end-page: 3432
  article-title: Phosphorus in agricultural soils: Drivers of its distribution at the global scale
  publication-title: Global Change Biology
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  end-page: 9
  article-title: Global meta‐analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems
  publication-title: Nature Communications
– start-page: 849
  year: 2001
– volume: 66
  start-page: 867
  issue: 5
  year: 2015
  end-page: 875
  article-title: Adsorption of phosphate and organic matter on metal (hydr)oxides in arable and forest soil: A mechanistic modelling study
  publication-title: European Journal of Soil Science
– start-page: 75
  year: 1993
  end-page: 86
– volume: 127
  start-page: 255
  issue: 2–3
  year: 2016
  end-page: 272
  article-title: Soil properties controlling inorganic phosphorus availability: General results from a national forest network and a global compilation of the literature
  publication-title: Biogeochemistry
– volume: 76
  start-page: 501
  issue: 3
  year: 1993
  end-page: 521
  article-title: Shuffled complex evolution approach for effective and efficient global minimization
  publication-title: Journal of Optimization Theory and Applications
– volume: 42
  start-page: 878
  issue: 6
  year: 1978
  end-page: 882
  article-title: A universal dimensionless phosphate adsorption isotherm for soil
  publication-title: Soil Science Society Journal of America Journal
– volume: 45
  start-page: 101
  issue: 2
  year: 1996
  end-page: 109
  article-title: The role of isotopic techniques on the evaluation of the agronomic effectiveness of P fertilizers
  publication-title: Fertilizer Research
– volume: 156
  year: 2021
  article-title: Antagonistic and additive interactions dominate the response of belowground carbon‐cycling processes to nitrogen and phosphorus additions
  publication-title: Soil Biology and Biochemistry
– volume: 41
  start-page: 61
  issue: 1
  year: 2003
  end-page: 76
  article-title: Chemical characteristics of phosphorus in alkaline soils from southern Australia
  publication-title: Australian Journal of Soil Research
– volume: 54
  start-page: 605
  issue: 3
  year: 2003
  end-page: 616
  article-title: Isotope methods for assessing plant available phosphorus in acid tropical soils
  publication-title: European Journal of Soil Science
– volume: 26
  start-page: 267
  issue: 4
  year: 1981
  end-page: 286
  article-title: Comparative aspects of cycling of organic C, N, S and P through soil organic matter
  publication-title: Geoderma
– volume: 183
  start-page: 338
  issue: 3
  year: 2020
  end-page: 344
  article-title: Is occluded phosphate plat‐available?
  publication-title: Journal of Plant Nutrition and Soil Science
– start-page: 89
  year: 2003
  end-page: 104
– volume: 131
  start-page: 173
  issue: 1–2
  year: 2016
  end-page: 202
  article-title: Future challenges in coupled C–N–P cycle models for terrestrial ecosystems under global change: A review
  publication-title: Biogeochemistry
– volume: 5
  start-page: 730
  issue: 7
  year: 2017
  end-page: 749
  article-title: Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models
  publication-title: Earth's Future
– volume: 89
  start-page: 371
  issue: 2
  year: 2008
  end-page: 379
  article-title: Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed
  publication-title: Ecology
– volume: 11
  start-page: 452
  issue: 3
  year: 2011
  end-page: 466
  article-title: Predicting available phosphate ions from physical‐chemical soil properties in acidic sandy soils under pine forests
  publication-title: Journal of Soils and Sediments
– volume: 59
  start-page: 900
  issue: 5
  year: 2008
  end-page: 910
  article-title: The description of sorption curves
  publication-title: European Journal of Soil Science
– volume: 10
  start-page: 3745
  year: 2017
  end-page: 3770
  article-title: A representation of the phosphorus cycle for ORCHIDEE (revision 4520)
  publication-title: Geoscientific Model Development
– volume: 135
  start-page: 487
  issue: 4
  year: 2003
  end-page: 499
  article-title: Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure
  publication-title: Oecologia
– volume: 11
  start-page: 2238
  issue: 7
  year: 2019
  end-page: 2258
  article-title: Representing nitrogen, phosphorus, and carbon interactions in the E3SM land model: Development and global benchmarking
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 23
  start-page: 3808
  issue: 9
  year: 2017
  end-page: 3824
  article-title: Soil parent material – A major driver of plant nutrient limitations in terrestrial ecosystems
  publication-title: Global Change Biology
– volume: 11
  start-page: 1667
  issue: 6
  year: 2014
  end-page: 1681
  article-title: The role of phosphorus dynamics in tropical forests – A modeling study using CLM‐CNP
  publication-title: Biogeosciences
– start-page: 414
  year: 1995
– volume: 36
  start-page: 107
  issue: 1
  year: 1986
  end-page: 118
  article-title: Iron oxides in relation to phosphate adsorption by soils
  publication-title: Acta Agriculturae Scandinavica
– volume: 24
  start-page: 367
  issue: 5–6
  year: 1993
  end-page: 377
  article-title: Can an isotopic method allow for the determination of the phosphate‐fixing capacity of soils?
  publication-title: Communications in Soil Science and Plant Analysis
– volume: 46
  start-page: 970
  issue: 5
  year: 1982
  end-page: 976
  article-title: Changes in inorganic and organic phosphorus fractions induced by cultivation practices and by laboratory incubation
  publication-title: Soil Science Society of America Journal
– volume: 10
  issue: 53
  year: 2021
  article-title: Modelling of land nutrient cycles: Recent progresses and future development
  publication-title: F1000 Research, Faculty Review
– volume: 9
  start-page: 3226
  issue: 1
  year: 2018
  article-title: Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil
  publication-title: Nature Communications
– start-page: 287
  year: 2004
– volume: 82
  start-page: 1
  year: 2002
  end-page: 24
  article-title: Sorption of phosphorus by soil, Part 1: Principles, equations and models
  publication-title: Biosystems Engineering
– volume: 4
  start-page: 471
  issue: 6
  year: 2014
  end-page: 476
  article-title: Nutrient availability as the key regulator of global forest carbon balance
  publication-title: Nature Climate Change
– volume: 17
  start-page: 4173
  issue: 16
  year: 2020
  end-page: 4222
  article-title: Carbon0concentration and carbon‐climate feedbacks in CMIP6 models and their comparison to CMIP5 models
  publication-title: Biogeosciences
– volume: 29
  start-page: 50
  issue: 1
  year: 2000
  end-page: 59
  article-title: Transfer of phosphate ions between soil and solution: Perspectives in soil testing
  publication-title: Journal of Environmental Quality
– volume: 45
  start-page: 8231
  year: 2018
  end-page: 8240
  article-title: Low phosphorus availability decreases susceptibility of tropical primary productivity to droughts
  publication-title: Geophysical research Letter
– volume: 17
  start-page: 441
  issue: 2
  year: 2020
  end-page: 454
  article-title: Estimates of mean residence times of phosphorus in commonly considered inorganic soil phosphorus pools
  publication-title: Biogeocsciences
– volume: 66
  start-page: 868
  issue: 3
  year: 2002
  end-page: 877
  article-title: Sequential phosphorus extraction of a 33P‐labeled oxisol under contrasting agricultural systems
  publication-title: Soil Science Society of America Journal
– volume: 125
  start-page: 93
  year: 2014
  end-page: 134
  article-title: GlobalSoilMap: Toward a fine‐resolution global grid of soil properties
  publication-title: Advances in Agronomy
– volume: 126
  issue: 4
  year: 2021
  article-title: Microbial activity and root carbon inputs are more important than soil carbon diffusion in simulating soil carbon profiles
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 11
  start-page: 787
  issue: 9
  year: 1991
  end-page: 797
  article-title: Phosphate ion transfer from soil to soil solution: Kinetic parameters
  publication-title: Agronomie
– volume: 40
  start-page: 1371
  issue: 8
  year: 2002
  end-page: 1381
  article-title: Use and abuse of isotopic exchange data in soil chemistry
  publication-title: Australian Journal of Soil Sciences
– volume: 12
  start-page: 736
  issue: 9
  year: 2019
  end-page: 741
  article-title: Amazon forest response to CO fertilization dependent on plant phosphorus acquisition
  publication-title: Nature Geoscience
– volume: 32
  start-page: 143
  issue: 1
  year: 2018
  end-page: 157
  article-title: Quantifying the limitation to world cereal production due to soil phosphorus status
  publication-title: Global Biogeochemical Cycles
– volume: 34
  start-page: 733
  issue: 4
  year: 1983
  end-page: 750
  article-title: A mechanistic model for describing the sorption and desorption of phosphate by soil
  publication-title: Journal of Soil Science
– volume: 15
  start-page: 105
  issue: 1
  year: 2018
  end-page: 114
  article-title: Soil solution phosphorus turnover: Derivation, interpretation, and insights from a global compilation of isotope exchange kinetics studies
  publication-title: Biogeosciences
– volume: 29
  start-page: 15
  issue: 1
  year: 2000
  end-page: 23
  article-title: Processes governing phosphorus availability in temperate soils
  publication-title: Journal of Environmental Quality
– volume: 363
  start-page: 145
  year: 2014
  end-page: 163
  article-title: Global chemical weathering and associated P‐release‐ the role of lithology, temperature and soil properties
  publication-title: Chemical Geology
– volume: 29
  start-page: 1569
  issue: 6
  year: 1995
  end-page: 1575
  article-title: Long term kinetics of phosphate release from soil
  publication-title: Environmental Science & Technology
– volume: 182–183
  start-page: 292
  year: 2013
  end-page: 303
  article-title: An efficient method for global parameter sensitivity analysis and its applications to the Australian community land surface models (CABLE)
  publication-title: Agricultural and Forest Meteorology
– volume: 118
  start-page: 55
  issue: 1–2
  year: 2004
  end-page: 61
  article-title: Estimation of soil phosphate adsorption capacity by means of a pedotransfer function
  publication-title: Geoderma
– volume: 11
  start-page: 830
  issue: 5
  year: 2011
  end-page: 840
  article-title: Revisiting the fundamentals of phosphorus fractionation of sediments and soils
  publication-title: Journal of Soils and Sediments
– volume: 37
  start-page: 787
  issue: 5
  year: 1999
  end-page: 829
  article-title: The four laws of soil chemistry: The Leeper lecture 1998
  publication-title: Australian Journal of Soil Sciences
– volume: 13
  start-page: 317
  year: 1993
  end-page: 331
  article-title: Le phosphore assimilable des sols: Sa repre´sentation par un mode` le fonctionnel a` plusieurs compartiments
  publication-title: Agronomie
– volume: 9
  start-page: 3547
  issue: 9
  year: 2012
  end-page: 3569
  article-title: Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling
  publication-title: Biogeosciences
– volume: 28
  start-page: 229
  issue: 2
  year: 2005
  end-page: 236
  article-title: Phosphorus sorption, desorption, and resorption by soils of the Brazilian Cerrado supporting eucalypt
  publication-title: Biomass and Bioenergy
– volume: 116
  year: 2011
  article-title: Diagnosing errors in a land surface model (CABLE) in the time and frequency domains
  publication-title: Journal of Geophysical Research
– volume: 10
  start-page: 2525
  issue: 4
  year: 2013
  end-page: 2537
  article-title: The distribution of soil phosphorus for global biogeochemical modeling
  publication-title: Biogeosciences
– volume: 41
  start-page: 632
  issue: 2
  year: 2014
  end-page: 637
  article-title: Nitrogen and phosphorous limitations significantly reduce future allowable CO emissions
  publication-title: Geophysical Research Letters
– volume: 256
  start-page: 115
  issue: 1
  year: 2003
  end-page: 130
  article-title: Effects of plant species on phosphorus availability in a range of grassland soils
  publication-title: Plant and Soil
– volume: 5
  issue: 1
  year: 2018
  article-title: A global dataset of plant available and unavailable phosphorus in natural soils derived by Hedley method
  publication-title: Scientific Data
– volume: 60
  start-page: 42
  issue: 1
  year: 1996
  end-page: 48
  article-title: Phosphorus transport during transient, unsaturated water flow in an acid sandy soil
  publication-title: Soil Science Society of America Journal
– ident: e_1_2_9_34_1
  doi: 10.5194/gmd-10-3745-2017
– ident: e_1_2_9_23_1
  doi: 10.1029/WS006p0089
– ident: e_1_2_9_66_1
  doi: 10.2136/sssaj1978.03615995004200060007x
– ident: e_1_2_9_18_1
  doi: 10.1046/j.1365-2389.2003.00542.x
– ident: e_1_2_9_22_1
  doi: 10.1016/0016-7061(94)00023-4
– ident: e_1_2_9_77_1
  doi: 10.1029/2018MS001571
– ident: e_1_2_9_41_1
  doi: 10.5194/bg-17-441-2020
– ident: e_1_2_9_76_1
  doi: 10.1002/2013GL058352
– ident: e_1_2_9_67_1
  doi: 10.1002/2016EF000472
– ident: e_1_2_9_12_1
  doi: 10.1111/j.1365-2389.2008.01041.x
– ident: e_1_2_9_10_1
  doi: 10.1111/j.1365-2389.1983.tb01068.x
– ident: e_1_2_9_60_1
  doi: 10.1038/ncomms3934
– ident: e_1_2_9_74_1
  doi: 10.5194/bg-10-2525-2013
– ident: e_1_2_9_4_1
  doi: 10.1007/s10533-015-0178-0
– ident: e_1_2_9_65_1
  doi: 10.1002/2013ms000293
– ident: e_1_2_9_70_1
  doi: 10.1029/2010JG001385
– ident: e_1_2_9_24_1
  doi: 10.1007/bf00939380
– ident: e_1_2_9_58_1
  doi: 10.2134/jeq2000.00472425002900010007x
– ident: e_1_2_9_9_1
  doi: 10.1016/j.biombioe.2004.08.005
– ident: e_1_2_9_43_1
  doi: 10.1023/a:1013351617532
– ident: e_1_2_9_69_1
  doi: 10.12703/r/10-53
– start-page: 75
  volume-title: Soil sampling and methods of analysis
  year: 1993
  ident: e_1_2_9_68_1
– ident: e_1_2_9_52_1
  doi: 10.1021/es00006a020
– ident: e_1_2_9_25_1
  doi: 10.1051/agro:19930409
– ident: e_1_2_9_19_1
  doi: 10.1023/a:1026273529177
– ident: e_1_2_9_48_1
  doi: 10.1002/2017GB005754
– ident: e_1_2_9_56_1
  doi: 10.1016/0016-7061(81)90024-0
– start-page: 414
  volume-title: Soil nutrient bioavailability: A mechanistic approach
  year: 1995
  ident: e_1_2_9_8_1
– ident: e_1_2_9_71_1
  doi: 10.5194/bg-7-2261-2010
– ident: e_1_2_9_17_1
  doi: 10.1046/j.1365-2389.2003.00542.x
– ident: e_1_2_9_37_1
  doi: 10.1016/j.chemgeo.2013.10.025
– ident: e_1_2_9_44_1
  doi: 10.1038/s41467-020-14492-w
– ident: e_1_2_9_57_1
  doi: 10.1007/978-94-010-1009-2
– ident: e_1_2_9_30_1
  doi: 10.2134/jeq2000.00472425002900010003x
– ident: e_1_2_9_75_1
  doi: 10.5194/bg-11-1667-2014
– ident: e_1_2_9_5_1
  doi: 10.5194/bg-17-4173-2020
– ident: e_1_2_9_29_1
  doi: 10.1038/s41561-019-0404-9
– ident: e_1_2_9_40_1
  doi: 10.5194/bg-15-105-2018
– start-page: 287
  volume-title: Global sensitivity analysis. The Primer
  year: 2004
  ident: e_1_2_9_63_1
– ident: e_1_2_9_28_1
  doi: 10.1038/nclimate2177
– ident: e_1_2_9_54_1
  doi: 10.1016/j.soilbio.2009.02.031
– ident: e_1_2_9_27_1
  doi: 10.1051/agro:19910909
– ident: e_1_2_9_36_1
  doi: 10.1071/sr02046
– ident: e_1_2_9_26_1
  doi: 10.1007/bf00790659
– ident: e_1_2_9_39_1
  doi: 10.2136/sssaj1982.03615995004600050017x
– ident: e_1_2_9_46_1
  doi: 10.1016/j.soilbio.2021.108216
– ident: e_1_2_9_33_1
  doi: 10.1029/2018GL077736
– ident: e_1_2_9_16_1
  doi: 10.2136/sssaj2002.8680
– ident: e_1_2_9_59_1
  doi: 10.1080/00380768.1983.10434628
– ident: e_1_2_9_73_1
  doi: 10.1088/1748-9326/10/014001
– ident: e_1_2_9_62_1
  doi: 10.1111/gcb.13618
– ident: e_1_2_9_20_1
  doi: 10.2136/sssaj1996.03615995006000010009x
– ident: e_1_2_9_53_1
  doi: 10.1016/j.agrformet.2013.04.003
– ident: e_1_2_9_7_1
  doi: 10.1111/gcb.13691
– ident: e_1_2_9_35_1
  doi: 10.1016/j.still.2016.04.018
– ident: e_1_2_9_47_1
  doi: 10.1007/s00442-002-1164-5
– ident: e_1_2_9_2_1
  doi: 10.1007/s10533-016-0274-9
– ident: e_1_2_9_11_1
  doi: 10.1071/sr98115
– ident: e_1_2_9_3_1
  doi: 10.1007/s11368-010-02329-9
– ident: e_1_2_9_14_1
  doi: 10.1080/00015128609435799
– ident: e_1_2_9_42_1
  doi: 10.1038/s41467-018-05731-2
– ident: e_1_2_9_61_1
  doi: 10.1111/ejss.12285
– ident: e_1_2_9_6_1
  doi: 10.1201/b16500-4
– ident: e_1_2_9_21_1
  doi: 10.01007/s11368-011-0363-2
– ident: e_1_2_9_13_1
  doi: 10.1071/sr02021
– ident: e_1_2_9_31_1
  doi: 10.1080/00103629309368807
– ident: e_1_2_9_38_1
  doi: 10.5194/essd-2021-166
– ident: e_1_2_9_45_1
  doi: 10.1038/sdata.2018.166
– ident: e_1_2_9_50_1
  doi: 10.1007/s10533-0375-0
– ident: e_1_2_9_49_1
  doi: 10.1016/j.tree.2007.10.008
– ident: e_1_2_9_55_1
  doi: 10.1006/bioe.2002.0054
– ident: e_1_2_9_64_1
  doi: 10.1002/jpin.201900402
– ident: e_1_2_9_51_1
  doi: 10.1890/06-2057.1
– ident: e_1_2_9_72_1
  doi: 10.1029/2020JG006205
– ident: e_1_2_9_15_1
  doi: 10.1016/s0016-7061(03)00183-6
– ident: e_1_2_9_32_1
  doi: 10.5194/bg-9-3547-2012
SSID ssj0014559
Score 2.5399098
Snippet The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption...
SourceID pubmedcentral
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2021GB007061
SubjectTerms Abrupt/Rapid Climate Change
Air/Sea Constituent Fluxes
Air/Sea Interactions
Atmospheric
Atmospheric Composition and Structure
Atmospheric Effects
Atmospheric Processes
available phosphorus
Avalanches
Benefit‐cost Analysis
Bioavailability
Biogeochemical Cycles, Processes, and Modeling
Biogeochemical Kinetics and Reaction Modeling
Biogeochemistry
Biogeosciences
Biological uptake
Carbon
Carbon content
Chemical properties
Chemicophysical properties
Climate and Interannual Variability
Climate Change and Variability
Climate Dynamics
Climate Impact
Climate Impacts
Climate Variability
Climatology
Computational Geophysics
Cryosphere
Decadal Ocean Variability
Desorption
Disaster Risk Analysis and Assessment
Dynamics
Earth System Modeling
Earthquake Ground Motions and Engineering Seismology
Effusive Volcanism
Explosive Volcanism
General Circulation
Geochemistry
Geodesy and Gravity
Geological
Global Change
Global Change from Geodesy
global modeling
Gravity and Isostasy
Hedley fractionation
Hydrological Cycles and Budgets
Hydrology
Impacts of Global Change
Informatics
isotopic exchange kinetics
Kinetics
Land/Atmosphere Interactions
Marine Geochemistry
Marine Geology and Geophysics
Marine Inorganic Chemistry
Marine Organic Chemistry
Mass Balance
Mathematical models
Metal concentrations
Metal oxides
Metals
Modeling
Modelling
Mud Volcanism
Natural Hazards
Numerical Modeling
Numerical Solutions
Nutrients and Nutrient Cycling
Ocean influence of Earth rotation
Ocean Monitoring with Geodetic Techniques
Ocean/Atmosphere Interactions
Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions
Oceanic
Oceanography: Biological and Chemical
Oceanography: General
Oceanography: Physical
Oceans
Organic carbon
Oxalic acid
Paleoceanography
Parameters
Phosphorus
phosphorus fractions
Physical Modeling
Physicochemical processes
Physicochemical properties
Policy Sciences
Radio Oceanography
Radio Science
Regional Climate Change
Regional Modeling
Representations
Risk
Sea Level Change
Sea Level: Variations and Mean
Seismology
Soil chemistry
Soil dynamics
Soil particles
Soil properties
Soil solution
Solid Earth
Sorption
Surface Waves and Tides
Terrestrial ecosystems
Theoretical Modeling
Tsunamis and Storm Surges
Volcanic Effects
Volcanic Hazards and Risks
Volcano Monitoring
Volcano Seismology
Volcano/Climate Interactions
Volcanology
Water Cycles
Title Toward a Global Model for Soil Inorganic Phosphorus Dynamics: Dependence of Exchange Kinetics and Soil Bioavailability on Soil Physicochemical Properties
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GB007061
https://www.proquest.com/docview/2644004021
https://www.proquest.com/docview/2693776335
https://pubmed.ncbi.nlm.nih.gov/PMC9286372
Volume 36
WOSCitedRecordID wos000776571300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-9224
  dateEnd: 20231213
  omitProxy: false
  ssIdentifier: ssj0014559
  issn: 0886-6236
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-9224
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014559
  issn: 0886-6236
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3vaxMxGA66KegHdVWxOkcEBUWO9ZJckvrNrescjlJ0w347crkcLZS70VuH-1P8b33fJKutoCB-uV_J5XIkb_IkefM8hLzWUjrusl4ipC4TUVQqARSiE7hwzjqWVYVn1z9Vo5GeTPrjOOGGe2ECP8Rqwg0tw7fXaOCmaCPZAHJkwqg9PT5Auhoc_WzjvioYfG0PvgzPT1frCCLzcmlgSjKBjl5G13dIYX_9_c1O6RfS_N1Pch2_-g5o-PB_s_6IPIjQk34MdWWH3HJ1h9wNYpTXHXJ_jZqwQ3ai0bf0bWSmfveY_DjzTrbU0CAVQFFJbU4B99KvzWxOT-ogEmXpeNq0F9NmsWzpIGjetx_oIAruWkebih59D5uO6Wf4KpJFU1OXIR3Ik7kys3ngEL-mTR2ee3dVixpfnuSAjnElYYGUsE_I-fDo7PBTErUdEgNlohMuBBPSsJ5z3GaisNw6rV3lUml5WZbK6UxbIUyWIQWiKiT05tq4vq104SrGn5KtuqndM0JNxY02aQanVKieMqWuKsmLVDmD-K5L3t8Ubm4j8Tnqb8xzvwDP-vl6eXTJm1Xsi0D48Yd4uzf1JI9m3-aILrFZZBD8ahUMBourMKZ2zRLjACKEVp1nXaI26tfqe0j5vRlSz6ae-rvPtOSKwS_5-vXXHObHB4cATIR-_k-xX5B7DLd4eD-7XbJ1uVi6l-SOvbqctYs9cpuJMRzVRO9FY4O7byejn3Q7Km8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1di9QwFA2yKuqDuqPi6KoRFBQpTpM0yfjmfi87DgOOsG8lTVNmYGiX6c7i_hT_rfcm2TojKIhPLU3apCQ39yS5OYeQN1pKx102SITUZSKKSiWAQnQCN85Zx7Kq8Oz6IzUe67Oz4STqnOJZmMAP0S24oWX48RoNHBekI9sAkmTCtD092kW-Gpz-3BTgmDCmj4lJt40gMq-WBpYkE_DzMka-w_sf19_e9Em_gObvYZLr8NX7n8MH_13zh-R-hJ70c-gr2-SGq3vkdhCjvOqRe2vUhD2yHY2-pe8iM_X7R-TH1AfZUkODVABFJbUFBdxLvzbzBT2pg0iUpZNZ057PmuWqpftB8779RPej4K51tKnowfdw6JieQqlIFk1NXYbvQJ3MpZkvAof4FW3q8NyHq1rU-PIkB3SCOwlLpIR9TL4dHkz3jpOo7ZAYaBSdcCGYkIYNnOM2E4Xl1mntKpdKy8uyVE5n2gphsgwpEFUhwZtr44a20oWrGH9Ctuqmdk8JNRU32qQZXFKhBsqUuqokL1LlDOK7Pvlw3bq5jcTnqL-xyP0GPBvm6-3RJ2-73OeB8OMP-XauO0oezb7NEV3isMgg-XWXDAaLuzCmds0K8wAihFGdZ32iNjpYVx5Sfm-m1POZp_4eMi25YvBLvoP9tYb50e4eABOhn_1T7lfkzvH0yygfnYxPn5O7DI97-Ji7HbJ1sVy5F-SWvbyYt8uX3tZ-AtUTKfY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bixMxFA6yXtAHdatiddUICooMdnKvb-52uy67lIIr7NuQyZzQQpkpne3i_hT_rbnt2AoK4tMMk5NJhuQkXyYn34fQGyUEUOCDjAlVZay0MnMoRGXuBsAA4bYM7PqncjJR5-fDadI59WdhIj9E98PNe0YYr72Dw7KyiW3Ak2S6ZXt-tO_5avzy5ybjMngmYdNuG4HxoJbmPElkbp4XKfLd5f-4mXt7TvoFNH8Pk9yEr2H-GT_475o_RPcT9MSfY1_ZRTeg7qHbUYzyqofubVAT9tBucvoWv0vM1O8foR9nIcgWaxylArBXUltgh3vx12a-wMd1FIkyeDpr2uWsWa1bPIqa9-0nPEqCuwZwY_Hh93joGJ-4Uj1ZNNZ1Fd_j6qQv9XwROcSvcFPH5yFc1XiNr0BygKd-J2HlKWEfo2_jw7ODL1nSdsi0axSVUcYIE5oMAKjhrDTUgFJgIReGVlUlQXFlGNOcewpEWQo3mysNQ2NVCZbQJ2inbmp4irC2VCudc3fJmRxIXSlrBS1zCdrjuz76cN26hUnE515_Y1GEDXgyLDbbo4_edtbLSPjxB7u9645SJLdvC48u_bBIXPLrLtk5rN-F0TU0a2_jEKEb1SnvI7nVwbryPOX3dko9nwXq7yFRgkriPil0sL_WsDjaP3DAhKln_2T9Ct2ZjsbF6fHk5Dm6S_xpjxByt4d2LlZreIFumcuLebt6GVztJyIAKXE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+a+Global+Model+for+Soil+Inorganic+Phosphorus+Dynamics%3A+Dependence+of+Exchange+Kinetics+and+Soil+Bioavailability+on+Soil+Physicochemical+Properties&rft.jtitle=Global+biogeochemical+cycles&rft.au=Wang%2C+Ying-Ping&rft.au=Huang%2C+Yuanyuan&rft.au=Augusto%2C+Laurent&rft.au=Goll%2C+Daniel+S&rft.date=2022-03-01&rft.issn=0886-6236&rft.volume=36&rft.issue=3&rft.spage=e2021GB007061&rft_id=info:doi/10.1029%2F2021GB007061&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-6236&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-6236&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-6236&client=summon