Advanced Markov Chain Monte Carlo Methods Learning from Past Samples

Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods with an emphasis on those making use of past sample information during simulations. The application examples are drawn from diverse fields such as bi...

Full description

Saved in:
Bibliographic Details
Main Authors: Liang, Faming, Liu, Chuanhai, Carroll, Raymond
Format: eBook
Language:English
Published: Newark John Wiley & Sons, Incorporated 2010
Wiley-Blackwell
Edition:1
Series:Wiley series in computational statistics
Subjects:
ISBN:0470748265, 9780470748268
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods with an emphasis on those making use of past sample information during simulations. The application examples are drawn from diverse fields such as bioinformatics, machine learning, social science, combinatorial optimization, and computational physics. Key Features: Expanded coverage of the stochastic approximation Monte Carlo and dynamic weighting algorithms that are essentially immune to local trap problems. A detailed discussion of the Monte Carlo Metropolis-Hastings algorithm that can be used for sampling from distributions with intractable normalizing constants. Up-to-date accounts of recent developments of the Gibbs sampler. Comprehensive overviews of the population-based MCMC algorithms and the MCMC algorithms with adaptive proposals. This book can be used as a textbook or a reference book for a one-semester graduate course in statistics, computational biology, engineering, and computer sciences. Applied or theoretical researchers will also find this book beneficial.
AbstractList Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods with an emphasis on those making use of past sample information during simulations. The application examples are drawn from diverse fields such as bioinformatics, machine learning, social science, combinatorial optimization, and computational physics. Key Features: Expanded coverage of the stochastic approximation Monte Carlo and dynamic weighting algorithms that are essentially immune to local trap problems. A detailed discussion of the Monte Carlo Metropolis-Hastings algorithm that can be used for sampling from distributions with intractable normalizing constants. Up-to-date accounts of recent developments of the Gibbs sampler. Comprehensive overviews of the population-based MCMC algorithms and the MCMC algorithms with adaptive proposals. This book can be used as a textbook or a reference book for a one-semester graduate course in statistics, computational biology, engineering, and computer sciences. Applied or theoretical researchers will also find this book beneficial.
Author Liu, Chuanhai
Carroll, Raymond
Liang, Faming
Author_xml – sequence: 1
  fullname: Liang, Faming
– sequence: 2
  fullname: Liu, Chuanhai
– sequence: 3
  fullname: Carroll, Raymond
BookMark eNpNj01Lw0AQhlf8wLb26D0noYfobLKfxxrqBzR4EfEWNrsTUhKymo3x7zcYBWFgeOB5h3mX5KzzHRJyTeGWAiR3WipgEoTQMklPyPIP0vfTGSRTieAXZCE4FUC1FJdkHcKhhCkPCU_Egmy2bjSdRRflpm_8GGW1OXRR7rsBo8z0rY9yHGrvwhU5r0wbcP27V-TtYfeaPcX7l8fnbLuPDeOM6lg6LaYRlTWaMmS00kJZ4Ior5EogOOOoRSZFWWqjWOmm7xJ0pXIS0Np0RTbzYRMa_A61b4dQjC2W3jeh-Nc6hcm9md2P3n9-YRiKH81iN_SmLXb3GeccmE6P7s1V7A
ContentType eBook
DEWEY 518/.282
DOI 10.1002/9780470669723
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Applied Sciences
EISBN 047066973X
9780470669730
Edition 1
ExternalDocumentID 9780470669730
EBC555049
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
089
20A
38.
3X9
3XJ
3XM
5VX
69Y
92K
A4J
AABBV
AAHOG
AARDG
ABQPW
ADVEM
AHCZW
AIMYK
AXBAO
AZZ
CZZ
IVUIE
JFSCD
KKBTI
LQKAK
MYL
UZ6
W1A
WIIVT
YPLAZ
ZEEST
ID FETCH-LOGICAL-a45419-7d96d966fca914e41f968c05858e586e0dad1ce476bb9a84bd5162edb8d70ecc3
ISBN 0470748265
9780470748268
IngestDate Thu Feb 27 10:06:46 EST 2025
Wed Dec 10 09:17:36 EST 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident QA298.L53 2010
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a45419-7d96d966fca914e41f968c05858e586e0dad1ce476bb9a84bd5162edb8d70ecc3
OCLC 651601976
PQID EBC555049
PageCount 379
ParticipantIDs askewsholts_vlebooks_9780470669730
proquest_ebookcentral_EBC555049
PublicationCentury 2000
PublicationDate 2010
2010-06-24
PublicationDateYYYYMMDD 2010-01-01
2010-06-24
PublicationDate_xml – year: 2010
  text: 2010
PublicationDecade 2010
PublicationPlace Newark
PublicationPlace_xml – name: Newark
PublicationSeriesTitle Wiley series in computational statistics
PublicationYear 2010
Publisher John Wiley & Sons, Incorporated
Wiley-Blackwell
Publisher_xml – name: John Wiley & Sons, Incorporated
– name: Wiley-Blackwell
SSID ssib010002526
ssib013441563
ssj0000411019
Score 2.3405852
Snippet Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods with an...
SourceID askewsholts
proquest
SourceType Aggregation Database
Publisher
SubjectTerms Markov processes
Monte Carlo method
Subtitle Learning from Past Samples
TableOfContents 6.2 DynamicallyWeighted Importance Sampling -- 6.2.1 The Basic Idea -- 6.2.2 A Theory of DWIS -- 6.2.3 Some IWIWp Transition Rules -- 6.2.4 Two DWIS Schemes -- 6.2.5 Weight Behavior Analysis -- 6.2.6 A Numerical Example -- 6.3 Monte Carlo Dynamically Weighted Importance Sampling -- 6.3.1 Sampling from Distributions with Intractable Normalizing Constants -- 6.3.2 Monte Carlo Dynamically Weighted Importance Sampling -- 6.3.3 Bayesian Analysis for Spatial Autologistic Models -- 6.4 Sequentially Dynamically Weighted Importance Sampling -- Exercises -- 7 Stochastic Approximation Monte Carlo -- 7.1 MulticanonicalMonte Carlo -- 7.2 1/k-Ensemble Sampling -- 7.3 The Wang-Landau Algorithm -- 7.4 Stochastic ApproximationMonte Carlo -- 7.5 Applications of Stochastic ApproximationMonte Carlo -- 7.5.1 Efficient p-Value Evaluation for Resampling- Based Tests -- 7.5.2 Bayesian Phylogeny Inference -- 7.5.3 Bayesian Network Learning -- 7.6 Variants of Stochastic ApproximationMonte Carlo -- 7.6.1 Smoothing SAMC forModel Selection Problems -- 7.6.2 Continuous SAMC for Marginal Density Estimation -- 7.6.3 Annealing SAMC for Global Optimization -- 7.7 Theory of Stochastic ApproximationMonte Carlo -- 7.7.1 Convergence -- 7.7.2 Convergence Rate -- 7.7.3 Ergodicity and its IWIWProperty -- 7.8 Trajectory Averaging: Toward the Optimal Convergence Rate -- 7.8.1 Trajectory Averaging for a SAMCMC Algorithm -- 7.8.2 Trajectory Averaging for SAMC -- 7.8.3 Proof of Theorems 7.8.2 and 7.8.3. -- Exercises -- Appendix 7A: Test Functions for Global Optimization -- 8 Markov Chain Monte Carlo with Adaptive Proposals -- 8.1 Stochastic Approximation-Based Adaptive Algorithms -- 8.1.1 Ergodicity and Weak Law of Large Numbers -- 8.1.2 Adaptive Metropolis Algorithms -- 8.2 Adaptive Independent Metropolis-Hastings Algorithms -- 8.3 Regeneration-Based Adaptive Algorithms
8.3.1 Identification of Regeneration Times -- 8.3.2 Proposal Adaptation at Regeneration Times -- 8.4 Population-Based Adaptive Algorithms -- 8.4.1 ADS, EMC, NKC andMore -- 8.4.2 Adaptive EMC -- 8.4.3 Application to Sensor Placement Problems -- Exercises -- References -- Index
3.3.1 Reversible Jump MCMC Algorithm -- 3.3.2 Change-Point Identification -- 3.4 Metropolis-Within-Gibbs Sampler for ChIP-chip Data Analysis -- 3.4.1 Metropolis-Within-Gibbs Sampler -- 3.4.2 Bayesian Analysis for ChIP-chip Data -- Exercises -- 4 Auxiliary Variable MCMC Methods -- 4.1 Simulated Annealing -- 4.2 Simulated Tempering -- 4.3 The Slice Sampler -- 4.4 The Swendsen-Wang Algorithm -- 4.5 The Wolff Algorithm -- 4.6 The Mo/ller Algorithm -- 4.7 The Exchange Algorithm -- 4.8 The Double MH Sampler -- 4.8.1 Spatial AutologisticModels -- 4.9 Monte CarloMH Sampler -- 4.9.1 Monte Carlo MH Algorithm -- 4.9.2 Convergence -- 4.9.3 Spatial AutologisticModels (Revisited) -- 4.9.4 Marginal Inference -- 4.10 Applications -- 4.10.1 AutonormalModels -- 4.10.2 Social Networks -- Exercises -- 5 Population-Based MCMC Methods -- 5.1 Adaptive Direction Sampling -- 5.2 Conjugate GradientMonte Carlo -- 5.3 Sample Metropolis-Hastings Algorithm -- 5.4 Parallel Tempering -- 5.5 EvolutionaryMonte Carlo -- 5.5.1 Evolutionary Monte Carlo in Binary-Coded Space -- 5.5.2 EvolutionaryMonte Carlo in Continuous Space -- 5.5.3 Implementation Issues -- 5.5.4 Two Illustrative Examples -- 5.5.5 Discussion -- 5.6 Sequential Parallel Tempering for Simulation of High Dimensional Systems -- 5.6.1 Build-up Ladder Construction -- 5.6.2 Sequential Parallel Tempering -- 5.6.3 An Illustrative Example: the Witch's Hat Distribution -- 5.6.4 Discussion -- 5.7 Equi-Energy Sampler -- 5.8 Applications -- 5.8.1 Bayesian Curve Fitting -- 5.8.2 Protein Folding Simulations: 2D HPModel -- 5.8.3 Bayesian Neural Networks for Nonlinear Time Series Forecasting -- Exercises -- Appendix 5A: Protein Sequences for 2D HPModels -- 6 Dynamic Weighting -- 6.1 DynamicWeighting -- 6.1.1 The IWIWPrinciple -- 6.1.2 Tempering Dynamic Weighting Algorithm -- 6.1.3 DynamicWeighting in Optimization
Intro -- Advanced Markov Chain Monte Carlo Methods -- Contents -- Preface -- Acknowledgments -- Publisher's Acknowledgments -- 1 Bayesian Inference and Markov Chain Monte Carlo -- 1.1 Bayes -- 1.1.1 Specification of BayesianModels -- 1.1.2 The Jeffreys Priors and Beyond -- 1.2 Bayes Output -- 1.2.1 Credible Intervals and Regions -- 1.2.2 Hypothesis Testing: Bayes Factors -- 1.3 Monte Carlo Integration -- 1.3.1 The Problem -- 1.3.2 Monte Carlo Approximation -- 1.3.3 Monte Carlo via Importance Sampling -- 1.4 Random Variable Generation -- 1.4.1 Direct or TransformationMethods -- 1.4.2 Acceptance-Rejection Methods -- 1.4.3 The Ratio-of-UniformsMethod and Beyond -- 1.4.4 Adaptive Rejection Sampling -- 1.4.5 Perfect Sampling -- 1.5 Markov ChainMonte Carlo -- 1.5.1 Markov Chains -- 1.5.2 Convergence Results -- 1.5.3 Convergence Diagnostics -- Exercises -- 2 The Gibbs Sampler -- 2.1 The Gibbs Sampler -- 2.2 Data Augmentation -- 2.3 Implementation Strategies and Acceleration Methods -- 2.3.1 Blocking and Collapsing -- 2.3.2 Hierarchical Centering and Reparameterization -- 2.3.3 Parameter Expansion for Data Augmentation -- 2.3.4 Alternating Subspace-Spanning Resampling -- 2.4 Applications -- 2.4.1 The Student-tModel -- 2.4.2 Robit Regression or Binary Regression with the Student-t Link -- 2.4.3 Linear Regression with Interval-Censored Responses -- Exercises -- Appendix 2A: The EM and PX-EM Algorithms -- 3 The Metropolis-Hastings Algorithm -- 3.1 The Metropolis-Hastings Algorithm -- 3.1.1 Independence Sampler -- 3.1.2 RandomWalk Chains -- 3.1.3 Problems withMetropolis-Hastings Simulations -- 3.2 Variants of the Metropolis-Hastings Algorithm -- 3.2.1 The Hit-and-Run Algorithm -- 3.2.2 The Langevin Algorithm -- 3.2.3 The Multiple-Try MH Algorithm -- 3.3 Reversible Jump MCMC Algorithm for Bayesian Model Selection Problems
Title Advanced Markov Chain Monte Carlo Methods
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=555049
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780470669730&uid=none
Volume 706
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFD5syR6ap91Ks-5iyvIwhqll6_q6Lt1gbTdGN_oWZEuG0OBkcRLaf78jWXHSZjD2MDDCliwZ-bOlI33nAvA20cSgWMFiZoWNKZd5LE3KYiNZIZNcZyZvgk2Iiwt5daW-haiAtQ8nIKpK3tyo2X-FGvMQbGc6-w9wt41iBp4j6Jgi7Jjek4jby6BvvKbznf3NdOWY9HHlftqFdXodk-n7cx8uupWiz8Zhs9hFvwgzmM9eNkT8UlfYxIalmM-nDUnxXd9id8z2joFXPNveMfiDSk4Yj4Lv5NaqqllkJlSgXKJE4E_CqCm8o4DdEbjx6LpVrTEnvufUevjhhOHaiKpBdjr7FbsgYI4sH2QfG0AeQjelLKMd6H4afv3xZT1EODYiZRuJkWRuPciz4D0VC4_vPLoHPV1f43SBU8mi3plvvRBx-Ri61lmWPIEHtnoKvfPWYW79DN6twYsa8CIPXuTBizx4UQDvOfw8HV6efI5DFItYU0aJioVRHA9eFloRaikpFZdFgus0aZnkNjHakMJSwfNcaUlzwwhPrcmlEQn-Ydk-dKppZQ8gkqWikpusYGVCS4IVqXUOElMU4nNGRB-Otro7Wk08416P7qDYhzfrtzDy5UENeNSC8uKvdxzC3ubLegmdxXxpX8GjYrUY1_PXAbTfiaw5qQ
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Advanced+Markov+Chain+Monte+Carlo+Methods&rft.au=Liang%2C+Faming&rft.au=Liu%2C+Chuanhai&rft.au=Carroll%2C+Raymond&rft.date=2010-01-01&rft.pub=John+Wiley+%26+Sons%2C+Incorporated&rft.isbn=9780470669730&rft.volume=706&rft_id=info:doi/10.1002%2F9780470669723&rft.externalDocID=EBC555049
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97804706%2F9780470669730.jpg