Accelerating the Hit-To-Lead Optimization of a SARS-CoV-2 Mpro Inhibitor Series by Combining High-Throughput Medicinal Chemistry and Computational Simulations
In this study, we performed the hit-to-lead optimization of a SARS-CoV-2 Mpro diazepane hit (identified by computational methods in a previous work) by combining computational simulations with high-throughput medicinal chemistry (HTMC). Leveraging the 3D structural information of Mpro, we refined th...
Uložené v:
| Vydané v: | Journal of medicinal chemistry Ročník 68; číslo 8; s. 8269 - 8294 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
WASHINGTON
Amer Chemical Soc
24.04.2025
|
| Predmet: | |
| ISSN: | 0022-2623, 1520-4804, 1520-4804 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this study, we performed the hit-to-lead optimization of a SARS-CoV-2 Mpro diazepane hit (identified by computational methods in a previous work) by combining computational simulations with high-throughput medicinal chemistry (HTMC). Leveraging the 3D structural information of Mpro, we refined the original hit by targeting the S1 and S2 binding pockets of the protein. Additionally, we identified a novel exit vector pointing toward the S1 ' pocket, which significantly enhanced the binding affinity. This strategy enabled us to transform, rapidly with a limited number of compounds synthesized, a 14 mu M hit into a potent 16 nM lead compound, for which key pharmacological properties were subsequently evaluated. This result demonstrated that combining computational technologies such as machine learning, molecular docking, and molecular dynamics simulation with HTMC can efficiently accelerate hit identification and subsequent lead generation. |
|---|---|
| AbstractList | In this study, we performed the hit-to-lead optimization of a SARS-CoV-2 Mpro diazepane hit (identified by computational methods in a previous work) by combining computational simulations with high-throughput medicinal chemistry (HTMC). Leveraging the 3D structural information of Mpro, we refined the original hit by targeting the S1 and S2 binding pockets of the protein. Additionally, we identified a novel exit vector pointing toward the S1' pocket, which significantly enhanced the binding affinity. This strategy enabled us to transform, rapidly with a limited number of compounds synthesized, a 14 μM hit into a potent 16 nM lead compound, for which key pharmacological properties were subsequently evaluated. This result demonstrated that combining computational technologies such as machine learning, molecular docking, and molecular dynamics simulation with HTMC can efficiently accelerate hit identification and subsequent lead generation. In this study, we performed the hit-to-lead optimization of a SARS-CoV-2 Mpro diazepane hit (identified by computational methods in a previous work) by combining computational simulations with high-throughput medicinal chemistry (HTMC). Leveraging the 3D structural information of Mpro, we refined the original hit by targeting the S1 and S2 binding pockets of the protein. Additionally, we identified a novel exit vector pointing toward the S1' pocket, which significantly enhanced the binding affinity. This strategy enabled us to transform, rapidly with a limited number of compounds synthesized, a 14 μM hit into a potent 16 nM lead compound, for which key pharmacological properties were subsequently evaluated. This result demonstrated that combining computational technologies such as machine learning, molecular docking, and molecular dynamics simulation with HTMC can efficiently accelerate hit identification and subsequent lead generation.In this study, we performed the hit-to-lead optimization of a SARS-CoV-2 Mpro diazepane hit (identified by computational methods in a previous work) by combining computational simulations with high-throughput medicinal chemistry (HTMC). Leveraging the 3D structural information of Mpro, we refined the original hit by targeting the S1 and S2 binding pockets of the protein. Additionally, we identified a novel exit vector pointing toward the S1' pocket, which significantly enhanced the binding affinity. This strategy enabled us to transform, rapidly with a limited number of compounds synthesized, a 14 μM hit into a potent 16 nM lead compound, for which key pharmacological properties were subsequently evaluated. This result demonstrated that combining computational technologies such as machine learning, molecular docking, and molecular dynamics simulation with HTMC can efficiently accelerate hit identification and subsequent lead generation. In this study, we performed the hit-to-lead optimization of a SARS-CoV-2 Mpro diazepane hit (identified by computational methods in a previous work) by combining computational simulations with high-throughput medicinal chemistry (HTMC). Leveraging the 3D structural information of Mpro, we refined the original hit by targeting the S1 and S2 binding pockets of the protein. Additionally, we identified a novel exit vector pointing toward the S1 ' pocket, which significantly enhanced the binding affinity. This strategy enabled us to transform, rapidly with a limited number of compounds synthesized, a 14 mu M hit into a potent 16 nM lead compound, for which key pharmacological properties were subsequently evaluated. This result demonstrated that combining computational technologies such as machine learning, molecular docking, and molecular dynamics simulation with HTMC can efficiently accelerate hit identification and subsequent lead generation. |
| Author | Richard-Bildstein, Sylvia Kimmerlin, Thierry Ritz, Daniel Bourquin, Geoffroy Czodrowski, Paul Mac Sweeney, Aengus Regeon, Sylvain Hazemann, Julien Lange, Roland |
| Author_xml | – sequence: 1 givenname: Julien orcidid: 0009-0008-8946-2514 surname: Hazemann fullname: Hazemann, Julien organization: Idorsia Pharmaceut Ltd, Drug Discovery Chem, CH-4123 Allschwil, Switzerland – sequence: 2 givenname: Thierry surname: Kimmerlin fullname: Kimmerlin, Thierry email: thierry.kimmerlin@idorsia.com organization: Idorsia Pharmaceut Ltd, Drug Discovery Chem, CH-4123 Allschwil, Switzerland – sequence: 3 givenname: Aengus orcidid: 0000-0001-7250-9541 surname: Mac Sweeney fullname: Mac Sweeney, Aengus organization: Idorsia Pharmaceut Ltd, Drug Discovery Biol, CH-4123 Allschwil, Switzerland – sequence: 4 givenname: Geoffroy surname: Bourquin fullname: Bourquin, Geoffroy organization: Idorsia Pharmaceut Ltd, Drug Discovery Biol, CH-4123 Allschwil, Switzerland – sequence: 5 givenname: Roland surname: Lange fullname: Lange, Roland organization: Idorsia Pharmaceut Ltd, Drug Discovery Biol, CH-4123 Allschwil, Switzerland – sequence: 6 givenname: Daniel surname: Ritz fullname: Ritz, Daniel organization: Idorsia Pharmaceut Ltd, Drug Discovery Biol, CH-4123 Allschwil, Switzerland – sequence: 7 givenname: Sylvia orcidid: 0000-0001-6588-1599 surname: Richard-Bildstein fullname: Richard-Bildstein, Sylvia organization: Idorsia Pharmaceut Ltd, Drug Discovery Chem, CH-4123 Allschwil, Switzerland – sequence: 8 givenname: Sylvain surname: Regeon fullname: Regeon, Sylvain organization: Idorsia Pharmaceut Ltd, Drug Discovery Chem, CH-4123 Allschwil, Switzerland – sequence: 9 givenname: Paul orcidid: 0000-0002-7390-8795 surname: Czodrowski fullname: Czodrowski, Paul email: czodpaul@uni-mainz.de organization: Johannes Gutenberg Univ Mainz, Chem Dept, D-55128 Mainz, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40186586$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkd9q2zAUxsVoWZN0bzCGLgdDmSTLmn0ZTNcEUgJNutsgy8exgi1llszIHqbPWuXPer2rg_g-feec3xmjG-ssIPSZ0SmjnH1X2k_3HVS6gW4qNOW5YB_QiKWcEpFRcYNGlHJOuOTJHRp7v6eUJownH9GdoCyTaSZH6HWmNbTQq2DsDocG8NwEsnFkCarCq0MwnfkbRWexq7HC69nzmhTuF-H46dA7vLCNKU1wPV5Db8Dj8ogL15XGnvLmZteQTdO7YdcchoCfoDLaWNXiIk5tfOiPWNnq9CPK5zZRW5tuaM8Pf49ua9V6-HStE_Ty82FTzMly9bgoZkuiRMoD0YkEWkMmeJ7KWmQgKwlxSQ4yTSVIrQTPRCVFnkIKecWY5jLLmWIi0UxJPkFfL7lxp98D-LCN00UwrbLgBr9NIq8fMT7ym6AvV-tQRvzbQ2861R-3_5hGw7eL4Q-UrvbagNXwbqOUCRnvwvJ4DnqKy_7fXZgLpMINNvA3GHye4A |
| CitedBy_id | crossref_primary_10_1111_cns_70476 |
| Cites_doi | 10.1038/s43586-021-00084-5 10.1021/acs.joc.1c01427 10.1038/s41591-023-02361-0 10.3390/metabo13020309 10.1021/acs.jmedchem.0c00473 10.1021/acs.jmedchem.2c01146 10.4155/fmc-2020-0285 10.2174/1568026617666170414141452 10.1038/s41598-023-30089-x 10.1039/d0ra09889b 10.1080/17460441.2023.2267015 10.1021/acscentsci.2c00369 10.1126/science.abo7201 10.1021/acs.jmedchem.3c00521 10.3390/molecules27092723 10.1093/nar/gky1075 10.1039/d4md00106k 10.1021/acsptsci.1c00118 10.1021/acs.jmedchem.3c01876 |
| ContentType | Journal Article |
| DBID | 17B 1KM ACAAO BLEPL DTL EGQ CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/acs.jmedchem.4c02941 |
| DatabaseName | Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2025 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | Web of Science MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Web of Science |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1520-4804 |
| EndPage | 8294 |
| ExternalDocumentID | 40186586 001460221900001 |
| Genre | Journal Article |
| GroupedDBID | --- -~X .K2 17B 1KM 4.4 55A 5GY 5RE 5VS 6P2 7~N AABXI AAHBH ABBLG ABJNI ABLBI ABMVS ABOCM ABQRX ABUCX ACGFO ACGFS ACJ ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BLEPL CS3 CUPRZ DTL DU5 EBS ED~ F5P GGK GNL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE IH2 IH9 IHE JG~ L7B LG6 P2P ROL TN5 UI2 VF5 VG9 W1F WH7 XSW YQT YZZ ZY4 CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-a452t-c36e0fe842956f48e6d6e4012e6556e6ca4284d6495e5e9d11c26891a143c1a62 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=001460221900001 |
| ISSN | 0022-2623 1520-4804 |
| IngestDate | Wed Jul 02 05:07:23 EDT 2025 Mon Jul 21 05:58:15 EDT 2025 Mon Oct 27 23:24:02 EDT 2025 Fri Nov 28 19:34:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | LIBRARIES |
| Language | English |
| LinkModel | DirectLink |
| LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
| MergedId | FETCHMERGED-LOGICAL-a452t-c36e0fe842956f48e6d6e4012e6556e6ca4284d6495e5e9d11c26891a143c1a62 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0009-0008-8946-2514 0000-0001-6588-1599 0000-0002-7390-8795 0000-0001-7250-9541 |
| OpenAccessLink | https://doi.org/10.1021/acs.jmedchem.4c02941 |
| PMID | 40186586 |
| PQID | 3186784231 |
| PQPubID | 23479 |
| PageCount | 26 |
| ParticipantIDs | webofscience_primary_001460221900001 webofscience_primary_001460221900001CitationCount pubmed_primary_40186586 proquest_miscellaneous_3186784231 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-24 |
| PublicationDateYYYYMMDD | 2025-04-24 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | WASHINGTON |
| PublicationPlace_xml | – name: WASHINGTON – name: United States |
| PublicationTitle | Journal of medicinal chemistry |
| PublicationTitleAbbrev | J MED CHEM |
| PublicationTitleAlternate | J Med Chem |
| PublicationYear | 2025 |
| Publisher | Amer Chemical Soc |
| Publisher_xml | – name: Amer Chemical Soc |
| References | Arnold, C (WOS:001000348500003) 2023; 29 Mendez, D (WOS:000462587400129) 2019; 47 Bohacek, RS (WOS:A1996TM82900002) 1996; 16 Boby, ML (WOS:001138596500002) 2023; 382 Shi, Y (WOS:000609773700049) 2021; 11 Conole, D (WOS:000596030300001) 2021; 13 Brown, DG (WOS:001004177300001) 2023; 66 Satz, AL (WOS:000888555700002) 2022; 2 Gao, SH (WOS:000858874600001) 2022; 65 Cappel, D (WOS:000407547900003) 2017; 17 Halford, B (WOS:000806839100002) 2022; 8 Kaczor, AA (WOS:001118298500001) 2024; 19 Ghiandoni, GM (WOS:000988825800047) 2023; 13 Hazemann, J (WOS:001227145500001) 2024; 15 github (001460221900001.21) 2022 Rodrigues, L (WOS:000799342600001) 2022; 27 Stecula, A (WOS:000566757500018) 2020; 63 Gao, SH (WOS:001125237700001) 2023; 66 Teli, D (WOS:000941393300001) 2023; 13 Dombrowski, AW (WOS:000762795100002) 2022; 87 knime (001460221900001.20) 2022 Gironda-Martínez, A (WOS:000686103400003) 2021; 4 |
| References_xml | – volume: 2 start-page: ARTN 3 year: 2022 ident: WOS:000888555700002 article-title: DNA-encoded chemical libraries publication-title: NATURE REVIEWS METHODS PRIMERS doi: 10.1038/s43586-021-00084-5 – volume: 87 start-page: 1880 year: 2022 ident: WOS:000762795100002 article-title: The Chosen Few: Parallel Library Reaction Methodologies for Drug Discovery publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.1c01427 – volume: 29 start-page: 1292 year: 2023 ident: WOS:001000348500003 article-title: Inside the nascent industry of AI-designed drugs publication-title: NATURE MEDICINE doi: 10.1038/s41591-023-02361-0 – volume: 13 start-page: ARTN 309 year: 2023 ident: WOS:000941393300001 article-title: Molnupiravir: A Versatile Prodrug against SARS-CoV-2 Variants publication-title: METABOLITES doi: 10.3390/metabo13020309 – volume: 63 start-page: 8867 year: 2020 ident: WOS:000566757500018 article-title: Discovery of Novel Inhibitors of a Critical Brain Enzyme Using a Homology Model and a Deep Convolutional Neural Network publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/acs.jmedchem.0c00473 – volume: 65 start-page: 13343 year: 2022 ident: WOS:000858874600001 article-title: Discovery and Crystallographic Studies of Trisubstituted Piperazine Derivatives as Non-Covalent SARS-CoV-2 Main Protease Inhibitors with High Target Specificity and Low Toxicity publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/acs.jmedchem.2c01146 – volume: 13 year: 2021 ident: WOS:000596030300001 article-title: The maturation of DNA encoded libraries: opportunities for new users publication-title: FUTURE MEDICINAL CHEMISTRY doi: 10.4155/fmc-2020-0285 – volume: 17 start-page: 2586 year: 2017 ident: WOS:000407547900003 article-title: Calculating Water Thermodynamics in the Binding Site of Proteins - Applications of WaterMap to Drug Discovery publication-title: CURRENT TOPICS IN MEDICINAL CHEMISTRY doi: 10.2174/1568026617666170414141452 – volume: 16 start-page: 3 year: 1996 ident: WOS:A1996TM82900002 article-title: The art and practice of structure-based drug design: A molecular modeling perspective publication-title: MEDICINAL RESEARCH REVIEWS – volume: 13 start-page: ARTN 4143 year: 2023 ident: WOS:000988825800047 article-title: Fast calculation of hydrogen-bond strengths and free energy of hydration of small molecules publication-title: SCIENTIFIC REPORTS doi: 10.1038/s41598-023-30089-x – volume: 11 start-page: 2359 year: 2021 ident: WOS:000609773700049 article-title: DNA-encoded libraries (DELs): a review of on-DNA chemistries and their output publication-title: RSC ADVANCES doi: 10.1039/d0ra09889b – volume: 19 start-page: 73 year: 2024 ident: WOS:001118298500001 article-title: The application of WaterMap-guided structure-based virtual screening in novel drug discovery publication-title: EXPERT OPINION ON DRUG DISCOVERY doi: 10.1080/17460441.2023.2267015 – volume: 8 start-page: 405 year: 2022 ident: WOS:000806839100002 article-title: The Path to Paxlovid publication-title: ACS CENTRAL SCIENCE doi: 10.1021/acscentsci.2c00369 – volume: 382 start-page: ARTN eabo7201 year: 2023 ident: WOS:001138596500002 article-title: Open science discovery of potent noncovalent SARS-CoV-2 main protease inhibitors publication-title: SCIENCE doi: 10.1126/science.abo7201 – volume: 66 start-page: 7101 year: 2023 ident: WOS:001004177300001 article-title: An Analysis of Successful Hit-to-Clinical Candidate Pairs publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/acs.jmedchem.3c00521 – volume: 27 start-page: ARTN 2723 year: 2022 ident: WOS:000799342600001 article-title: Drug Repurposing for COVID-19: A Review and a Novel Strategy to Identify New Targets and Potential Drug Candidates publication-title: MOLECULES doi: 10.3390/molecules27092723 – volume: 47 start-page: D930 year: 2019 ident: WOS:000462587400129 article-title: ChEMBL: towards direct deposition of bioassay data publication-title: NUCLEIC ACIDS RESEARCH doi: 10.1093/nar/gky1075 – volume: 15 start-page: 2146 year: 2024 ident: WOS:001227145500001 article-title: Identification of SARS-CoV-2 Mpro inhibitors through deep reinforcement learning for de novo drug design and computational chemistry approaches publication-title: RSC MEDICINAL CHEMISTRY doi: 10.1039/d4md00106k – volume: 4 start-page: 1265 year: 2021 ident: WOS:000686103400003 article-title: DNA-Encoded Chemical Libraries: A Comprehensive Review with Succesful Stories and Future Challenges publication-title: ACS PHARMACOLOGY & TRANSLATIONAL SCIENCE doi: 10.1021/acsptsci.1c00118 – year: 2022 ident: 001460221900001.21 publication-title: Idorsia OpenChemLib KNIME Nodes – volume: 66 start-page: 16426 year: 2023 ident: WOS:001125237700001 article-title: Design, Synthesis, and Biological Evaluation of Trisubstituted Piperazine Derivatives as Noncovalent Severe Acute Respiratory Syndrome Coronavirus 2 Main Protease Inhibitors with Improved Antiviral Activity and Favorable Druggability publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/acs.jmedchem.3c01876 – year: 2022 ident: 001460221900001.20 publication-title: KNIME Analytics Platform |
| SSID | ssj0003123 |
| Score | 2.4879653 |
| Snippet | In this study, we performed the hit-to-lead optimization of a SARS-CoV-2 Mpro diazepane hit (identified by computational methods in a previous work) by... |
| Source | Web of Science |
| SourceID | proquest pubmed webofscience |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 8269 |
| SubjectTerms | Antiviral Agents - chemistry Antiviral Agents - pharmacology Binding Sites Chemistry, Medicinal Chemistry, Pharmaceutical Coronavirus 3C Proteases - antagonists & inhibitors Coronavirus 3C Proteases - chemistry Coronavirus 3C Proteases - metabolism COVID-19 - virology COVID-19 Drug Treatment High-Throughput Screening Assays Humans Life Sciences & Biomedicine Machine Learning Molecular Docking Simulation Molecular Dynamics Simulation Pharmacology & Pharmacy SARS-CoV-2 - drug effects SARS-CoV-2 - enzymology Science & Technology |
| Title | Accelerating the Hit-To-Lead Optimization of a SARS-CoV-2 Mpro Inhibitor Series by Combining High-Throughput Medicinal Chemistry and Computational Simulations |
| URI | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=001460221900001 https://www.ncbi.nlm.nih.gov/pubmed/40186586 https://www.proquest.com/docview/3186784231 |
| Volume | 68 |
| WOS | 001460221900001 |
| WOSCitedRecordID | wos001460221900001 |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB4BRYILj_IKj2qQqp7qdu04jn1CUURVhBIiElBukdf20iBlN3S3SPkz_FbGu5uGQw-VuOxlV9ZoPZr5vhl7PoDDJBMidcowwg5EUHimmHbeMW-NcJR-RfC6Fpvoj8d6PjeTtuBWtscqtzGxDtS-cLFGftqNk9c0JX_-Yf2LRdWo2F1tJTTuwl6XoEz06v58Ny28y2t5N0pRCZM6kdurc4KfWlee_IxHIC_C6kS6RBjJbwKZN-ajOvecPf5fq5_AoxZ14qBxk6dwJ-T78GC4FXvbh6NJM8J6c4yz3Y2s8hiPcLIbbr15Bn8GzlGmin6T_0BCj3i-rNisYFGrE79QAFq1NzuxyNDidPB1yobFdyZwRLbjp_ximVIUucRYlwslphukmJTWOhUYT52wWSMdtL6qcNR0_sn0a1vR5h4bLYq2jonT5aoVISufw7ezj7PhOWs1HpiVPVEx11UhyQL9IiJqmdRBeRWI84mgej0VlLPEj6RXxONCLxjPuRNKG24J5zlulXgB9_IiD68A-9xImwTjAq3A09RENhRFTT1FMc91B95v92hBFsfGiM1DcVUudrvUgZfNvi_WzbCPBdmiCaWpDhz-6wjX7yPHVASEuKkbJR3gt_ls2A5gj4MHqte3MOwNPBRReTiRTMi3sJdRcArv4L77XS3LywMiBp9HB7X303M8Gf0FDIsOtA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+the+Hit-To-Lead+Optimization+of+a+SARS-CoV-2+Mpro+Inhibitor+Series+by+Combining+High-Throughput+Medicinal+Chemistry+and+Computational+Simulations&rft.jtitle=Journal+of+medicinal+chemistry&rft.au=Hazemann%2C+Julien&rft.au=Kimmerlin%2C+Thierry&rft.au=Mac+Sweeney%2C+Aengus&rft.au=Bourquin%2C+Geoffroy&rft.date=2025-04-24&rft.issn=1520-4804&rft.eissn=1520-4804&rft_id=info:doi/10.1021%2Facs.jmedchem.4c02941&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2623&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2623&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2623&client=summon |