Accelerating the Hit-To-Lead Optimization of a SARS-CoV-2 Mpro Inhibitor Series by Combining High-Throughput Medicinal Chemistry and Computational Simulations

In this study, we performed the hit-to-lead optimization of a SARS-CoV-2 Mpro diazepane hit (identified by computational methods in a previous work) by combining computational simulations with high-throughput medicinal chemistry (HTMC). Leveraging the 3D structural information of Mpro, we refined th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of medicinal chemistry Ročník 68; číslo 8; s. 8269 - 8294
Hlavní autori: Hazemann, Julien, Kimmerlin, Thierry, Mac Sweeney, Aengus, Bourquin, Geoffroy, Lange, Roland, Ritz, Daniel, Richard-Bildstein, Sylvia, Regeon, Sylvain, Czodrowski, Paul
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: WASHINGTON Amer Chemical Soc 24.04.2025
Predmet:
ISSN:0022-2623, 1520-4804, 1520-4804
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this study, we performed the hit-to-lead optimization of a SARS-CoV-2 Mpro diazepane hit (identified by computational methods in a previous work) by combining computational simulations with high-throughput medicinal chemistry (HTMC). Leveraging the 3D structural information of Mpro, we refined the original hit by targeting the S1 and S2 binding pockets of the protein. Additionally, we identified a novel exit vector pointing toward the S1 ' pocket, which significantly enhanced the binding affinity. This strategy enabled us to transform, rapidly with a limited number of compounds synthesized, a 14 mu M hit into a potent 16 nM lead compound, for which key pharmacological properties were subsequently evaluated. This result demonstrated that combining computational technologies such as machine learning, molecular docking, and molecular dynamics simulation with HTMC can efficiently accelerate hit identification and subsequent lead generation.
AbstractList In this study, we performed the hit-to-lead optimization of a SARS-CoV-2 Mpro diazepane hit (identified by computational methods in a previous work) by combining computational simulations with high-throughput medicinal chemistry (HTMC). Leveraging the 3D structural information of Mpro, we refined the original hit by targeting the S1 and S2 binding pockets of the protein. Additionally, we identified a novel exit vector pointing toward the S1' pocket, which significantly enhanced the binding affinity. This strategy enabled us to transform, rapidly with a limited number of compounds synthesized, a 14 μM hit into a potent 16 nM lead compound, for which key pharmacological properties were subsequently evaluated. This result demonstrated that combining computational technologies such as machine learning, molecular docking, and molecular dynamics simulation with HTMC can efficiently accelerate hit identification and subsequent lead generation.
In this study, we performed the hit-to-lead optimization of a SARS-CoV-2 Mpro diazepane hit (identified by computational methods in a previous work) by combining computational simulations with high-throughput medicinal chemistry (HTMC). Leveraging the 3D structural information of Mpro, we refined the original hit by targeting the S1 and S2 binding pockets of the protein. Additionally, we identified a novel exit vector pointing toward the S1' pocket, which significantly enhanced the binding affinity. This strategy enabled us to transform, rapidly with a limited number of compounds synthesized, a 14 μM hit into a potent 16 nM lead compound, for which key pharmacological properties were subsequently evaluated. This result demonstrated that combining computational technologies such as machine learning, molecular docking, and molecular dynamics simulation with HTMC can efficiently accelerate hit identification and subsequent lead generation.In this study, we performed the hit-to-lead optimization of a SARS-CoV-2 Mpro diazepane hit (identified by computational methods in a previous work) by combining computational simulations with high-throughput medicinal chemistry (HTMC). Leveraging the 3D structural information of Mpro, we refined the original hit by targeting the S1 and S2 binding pockets of the protein. Additionally, we identified a novel exit vector pointing toward the S1' pocket, which significantly enhanced the binding affinity. This strategy enabled us to transform, rapidly with a limited number of compounds synthesized, a 14 μM hit into a potent 16 nM lead compound, for which key pharmacological properties were subsequently evaluated. This result demonstrated that combining computational technologies such as machine learning, molecular docking, and molecular dynamics simulation with HTMC can efficiently accelerate hit identification and subsequent lead generation.
In this study, we performed the hit-to-lead optimization of a SARS-CoV-2 Mpro diazepane hit (identified by computational methods in a previous work) by combining computational simulations with high-throughput medicinal chemistry (HTMC). Leveraging the 3D structural information of Mpro, we refined the original hit by targeting the S1 and S2 binding pockets of the protein. Additionally, we identified a novel exit vector pointing toward the S1 ' pocket, which significantly enhanced the binding affinity. This strategy enabled us to transform, rapidly with a limited number of compounds synthesized, a 14 mu M hit into a potent 16 nM lead compound, for which key pharmacological properties were subsequently evaluated. This result demonstrated that combining computational technologies such as machine learning, molecular docking, and molecular dynamics simulation with HTMC can efficiently accelerate hit identification and subsequent lead generation.
Author Richard-Bildstein, Sylvia
Kimmerlin, Thierry
Ritz, Daniel
Bourquin, Geoffroy
Czodrowski, Paul
Mac Sweeney, Aengus
Regeon, Sylvain
Hazemann, Julien
Lange, Roland
Author_xml – sequence: 1
  givenname: Julien
  orcidid: 0009-0008-8946-2514
  surname: Hazemann
  fullname: Hazemann, Julien
  organization: Idorsia Pharmaceut Ltd, Drug Discovery Chem, CH-4123 Allschwil, Switzerland
– sequence: 2
  givenname: Thierry
  surname: Kimmerlin
  fullname: Kimmerlin, Thierry
  email: thierry.kimmerlin@idorsia.com
  organization: Idorsia Pharmaceut Ltd, Drug Discovery Chem, CH-4123 Allschwil, Switzerland
– sequence: 3
  givenname: Aengus
  orcidid: 0000-0001-7250-9541
  surname: Mac Sweeney
  fullname: Mac Sweeney, Aengus
  organization: Idorsia Pharmaceut Ltd, Drug Discovery Biol, CH-4123 Allschwil, Switzerland
– sequence: 4
  givenname: Geoffroy
  surname: Bourquin
  fullname: Bourquin, Geoffroy
  organization: Idorsia Pharmaceut Ltd, Drug Discovery Biol, CH-4123 Allschwil, Switzerland
– sequence: 5
  givenname: Roland
  surname: Lange
  fullname: Lange, Roland
  organization: Idorsia Pharmaceut Ltd, Drug Discovery Biol, CH-4123 Allschwil, Switzerland
– sequence: 6
  givenname: Daniel
  surname: Ritz
  fullname: Ritz, Daniel
  organization: Idorsia Pharmaceut Ltd, Drug Discovery Biol, CH-4123 Allschwil, Switzerland
– sequence: 7
  givenname: Sylvia
  orcidid: 0000-0001-6588-1599
  surname: Richard-Bildstein
  fullname: Richard-Bildstein, Sylvia
  organization: Idorsia Pharmaceut Ltd, Drug Discovery Chem, CH-4123 Allschwil, Switzerland
– sequence: 8
  givenname: Sylvain
  surname: Regeon
  fullname: Regeon, Sylvain
  organization: Idorsia Pharmaceut Ltd, Drug Discovery Chem, CH-4123 Allschwil, Switzerland
– sequence: 9
  givenname: Paul
  orcidid: 0000-0002-7390-8795
  surname: Czodrowski
  fullname: Czodrowski, Paul
  email: czodpaul@uni-mainz.de
  organization: Johannes Gutenberg Univ Mainz, Chem Dept, D-55128 Mainz, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40186586$$D View this record in MEDLINE/PubMed
BookMark eNqNkd9q2zAUxsVoWZN0bzCGLgdDmSTLmn0ZTNcEUgJNutsgy8exgi1llszIHqbPWuXPer2rg_g-feec3xmjG-ssIPSZ0SmjnH1X2k_3HVS6gW4qNOW5YB_QiKWcEpFRcYNGlHJOuOTJHRp7v6eUJownH9GdoCyTaSZH6HWmNbTQq2DsDocG8NwEsnFkCarCq0MwnfkbRWexq7HC69nzmhTuF-H46dA7vLCNKU1wPV5Db8Dj8ogL15XGnvLmZteQTdO7YdcchoCfoDLaWNXiIk5tfOiPWNnq9CPK5zZRW5tuaM8Pf49ua9V6-HStE_Ty82FTzMly9bgoZkuiRMoD0YkEWkMmeJ7KWmQgKwlxSQ4yTSVIrQTPRCVFnkIKecWY5jLLmWIi0UxJPkFfL7lxp98D-LCN00UwrbLgBr9NIq8fMT7ym6AvV-tQRvzbQ2861R-3_5hGw7eL4Q-UrvbagNXwbqOUCRnvwvJ4DnqKy_7fXZgLpMINNvA3GHye4A
CitedBy_id crossref_primary_10_1111_cns_70476
Cites_doi 10.1038/s43586-021-00084-5
10.1021/acs.joc.1c01427
10.1038/s41591-023-02361-0
10.3390/metabo13020309
10.1021/acs.jmedchem.0c00473
10.1021/acs.jmedchem.2c01146
10.4155/fmc-2020-0285
10.2174/1568026617666170414141452
10.1038/s41598-023-30089-x
10.1039/d0ra09889b
10.1080/17460441.2023.2267015
10.1021/acscentsci.2c00369
10.1126/science.abo7201
10.1021/acs.jmedchem.3c00521
10.3390/molecules27092723
10.1093/nar/gky1075
10.1039/d4md00106k
10.1021/acsptsci.1c00118
10.1021/acs.jmedchem.3c01876
ContentType Journal Article
DBID 17B
1KM
ACAAO
BLEPL
DTL
EGQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.jmedchem.4c02941
DatabaseName Web of Knowledge
Index Chemicus
Web of Science - Science Citation Index Expanded - 2025
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle Web of Science
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Web of Science
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
Pharmacy, Therapeutics, & Pharmacology
EISSN 1520-4804
EndPage 8294
ExternalDocumentID 40186586
001460221900001
Genre Journal Article
GroupedDBID ---
-~X
.K2
17B
1KM
4.4
55A
5GY
5RE
5VS
6P2
7~N
AABXI
AAHBH
ABBLG
ABJNI
ABLBI
ABMVS
ABOCM
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BLEPL
CS3
CUPRZ
DTL
DU5
EBS
ED~
F5P
GGK
GNL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
IH2
IH9
IHE
JG~
L7B
LG6
P2P
ROL
TN5
UI2
VF5
VG9
W1F
WH7
XSW
YQT
YZZ
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a452t-c36e0fe842956f48e6d6e4012e6556e6ca4284d6495e5e9d11c26891a143c1a62
IEDL.DBID 7X8
ISICitedReferencesCount 2
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=001460221900001
ISSN 0022-2623
1520-4804
IngestDate Wed Jul 02 05:07:23 EDT 2025
Mon Jul 21 05:58:15 EDT 2025
Mon Oct 27 23:24:02 EDT 2025
Fri Nov 28 19:34:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords LIBRARIES
Language English
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-a452t-c36e0fe842956f48e6d6e4012e6556e6ca4284d6495e5e9d11c26891a143c1a62
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0008-8946-2514
0000-0001-6588-1599
0000-0002-7390-8795
0000-0001-7250-9541
OpenAccessLink https://doi.org/10.1021/acs.jmedchem.4c02941
PMID 40186586
PQID 3186784231
PQPubID 23479
PageCount 26
ParticipantIDs webofscience_primary_001460221900001
webofscience_primary_001460221900001CitationCount
pubmed_primary_40186586
proquest_miscellaneous_3186784231
PublicationCentury 2000
PublicationDate 2025-04-24
PublicationDateYYYYMMDD 2025-04-24
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-24
  day: 24
PublicationDecade 2020
PublicationPlace WASHINGTON
PublicationPlace_xml – name: WASHINGTON
– name: United States
PublicationTitle Journal of medicinal chemistry
PublicationTitleAbbrev J MED CHEM
PublicationTitleAlternate J Med Chem
PublicationYear 2025
Publisher Amer Chemical Soc
Publisher_xml – name: Amer Chemical Soc
References Arnold, C (WOS:001000348500003) 2023; 29
Mendez, D (WOS:000462587400129) 2019; 47
Bohacek, RS (WOS:A1996TM82900002) 1996; 16
Boby, ML (WOS:001138596500002) 2023; 382
Shi, Y (WOS:000609773700049) 2021; 11
Conole, D (WOS:000596030300001) 2021; 13
Brown, DG (WOS:001004177300001) 2023; 66
Satz, AL (WOS:000888555700002) 2022; 2
Gao, SH (WOS:000858874600001) 2022; 65
Cappel, D (WOS:000407547900003) 2017; 17
Halford, B (WOS:000806839100002) 2022; 8
Kaczor, AA (WOS:001118298500001) 2024; 19
Ghiandoni, GM (WOS:000988825800047) 2023; 13
Hazemann, J (WOS:001227145500001) 2024; 15
github (001460221900001.21) 2022
Rodrigues, L (WOS:000799342600001) 2022; 27
Stecula, A (WOS:000566757500018) 2020; 63
Gao, SH (WOS:001125237700001) 2023; 66
Teli, D (WOS:000941393300001) 2023; 13
Dombrowski, AW (WOS:000762795100002) 2022; 87
knime (001460221900001.20) 2022
Gironda-Martínez, A (WOS:000686103400003) 2021; 4
References_xml – volume: 2
  start-page: ARTN 3
  year: 2022
  ident: WOS:000888555700002
  article-title: DNA-encoded chemical libraries
  publication-title: NATURE REVIEWS METHODS PRIMERS
  doi: 10.1038/s43586-021-00084-5
– volume: 87
  start-page: 1880
  year: 2022
  ident: WOS:000762795100002
  article-title: The Chosen Few: Parallel Library Reaction Methodologies for Drug Discovery
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.1c01427
– volume: 29
  start-page: 1292
  year: 2023
  ident: WOS:001000348500003
  article-title: Inside the nascent industry of AI-designed drugs
  publication-title: NATURE MEDICINE
  doi: 10.1038/s41591-023-02361-0
– volume: 13
  start-page: ARTN 309
  year: 2023
  ident: WOS:000941393300001
  article-title: Molnupiravir: A Versatile Prodrug against SARS-CoV-2 Variants
  publication-title: METABOLITES
  doi: 10.3390/metabo13020309
– volume: 63
  start-page: 8867
  year: 2020
  ident: WOS:000566757500018
  article-title: Discovery of Novel Inhibitors of a Critical Brain Enzyme Using a Homology Model and a Deep Convolutional Neural Network
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/acs.jmedchem.0c00473
– volume: 65
  start-page: 13343
  year: 2022
  ident: WOS:000858874600001
  article-title: Discovery and Crystallographic Studies of Trisubstituted Piperazine Derivatives as Non-Covalent SARS-CoV-2 Main Protease Inhibitors with High Target Specificity and Low Toxicity
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/acs.jmedchem.2c01146
– volume: 13
  year: 2021
  ident: WOS:000596030300001
  article-title: The maturation of DNA encoded libraries: opportunities for new users
  publication-title: FUTURE MEDICINAL CHEMISTRY
  doi: 10.4155/fmc-2020-0285
– volume: 17
  start-page: 2586
  year: 2017
  ident: WOS:000407547900003
  article-title: Calculating Water Thermodynamics in the Binding Site of Proteins - Applications of WaterMap to Drug Discovery
  publication-title: CURRENT TOPICS IN MEDICINAL CHEMISTRY
  doi: 10.2174/1568026617666170414141452
– volume: 16
  start-page: 3
  year: 1996
  ident: WOS:A1996TM82900002
  article-title: The art and practice of structure-based drug design: A molecular modeling perspective
  publication-title: MEDICINAL RESEARCH REVIEWS
– volume: 13
  start-page: ARTN 4143
  year: 2023
  ident: WOS:000988825800047
  article-title: Fast calculation of hydrogen-bond strengths and free energy of hydration of small molecules
  publication-title: SCIENTIFIC REPORTS
  doi: 10.1038/s41598-023-30089-x
– volume: 11
  start-page: 2359
  year: 2021
  ident: WOS:000609773700049
  article-title: DNA-encoded libraries (DELs): a review of on-DNA chemistries and their output
  publication-title: RSC ADVANCES
  doi: 10.1039/d0ra09889b
– volume: 19
  start-page: 73
  year: 2024
  ident: WOS:001118298500001
  article-title: The application of WaterMap-guided structure-based virtual screening in novel drug discovery
  publication-title: EXPERT OPINION ON DRUG DISCOVERY
  doi: 10.1080/17460441.2023.2267015
– volume: 8
  start-page: 405
  year: 2022
  ident: WOS:000806839100002
  article-title: The Path to Paxlovid
  publication-title: ACS CENTRAL SCIENCE
  doi: 10.1021/acscentsci.2c00369
– volume: 382
  start-page: ARTN eabo7201
  year: 2023
  ident: WOS:001138596500002
  article-title: Open science discovery of potent noncovalent SARS-CoV-2 main protease inhibitors
  publication-title: SCIENCE
  doi: 10.1126/science.abo7201
– volume: 66
  start-page: 7101
  year: 2023
  ident: WOS:001004177300001
  article-title: An Analysis of Successful Hit-to-Clinical Candidate Pairs
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/acs.jmedchem.3c00521
– volume: 27
  start-page: ARTN 2723
  year: 2022
  ident: WOS:000799342600001
  article-title: Drug Repurposing for COVID-19: A Review and a Novel Strategy to Identify New Targets and Potential Drug Candidates
  publication-title: MOLECULES
  doi: 10.3390/molecules27092723
– volume: 47
  start-page: D930
  year: 2019
  ident: WOS:000462587400129
  article-title: ChEMBL: towards direct deposition of bioassay data
  publication-title: NUCLEIC ACIDS RESEARCH
  doi: 10.1093/nar/gky1075
– volume: 15
  start-page: 2146
  year: 2024
  ident: WOS:001227145500001
  article-title: Identification of SARS-CoV-2 Mpro inhibitors through deep reinforcement learning for de novo drug design and computational chemistry approaches
  publication-title: RSC MEDICINAL CHEMISTRY
  doi: 10.1039/d4md00106k
– volume: 4
  start-page: 1265
  year: 2021
  ident: WOS:000686103400003
  article-title: DNA-Encoded Chemical Libraries: A Comprehensive Review with Succesful Stories and Future Challenges
  publication-title: ACS PHARMACOLOGY & TRANSLATIONAL SCIENCE
  doi: 10.1021/acsptsci.1c00118
– year: 2022
  ident: 001460221900001.21
  publication-title: Idorsia OpenChemLib KNIME Nodes
– volume: 66
  start-page: 16426
  year: 2023
  ident: WOS:001125237700001
  article-title: Design, Synthesis, and Biological Evaluation of Trisubstituted Piperazine Derivatives as Noncovalent Severe Acute Respiratory Syndrome Coronavirus 2 Main Protease Inhibitors with Improved Antiviral Activity and Favorable Druggability
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/acs.jmedchem.3c01876
– year: 2022
  ident: 001460221900001.20
  publication-title: KNIME Analytics Platform
SSID ssj0003123
Score 2.4879653
Snippet In this study, we performed the hit-to-lead optimization of a SARS-CoV-2 Mpro diazepane hit (identified by computational methods in a previous work) by...
Source Web of Science
SourceID proquest
pubmed
webofscience
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 8269
SubjectTerms Antiviral Agents - chemistry
Antiviral Agents - pharmacology
Binding Sites
Chemistry, Medicinal
Chemistry, Pharmaceutical
Coronavirus 3C Proteases - antagonists & inhibitors
Coronavirus 3C Proteases - chemistry
Coronavirus 3C Proteases - metabolism
COVID-19 - virology
COVID-19 Drug Treatment
High-Throughput Screening Assays
Humans
Life Sciences & Biomedicine
Machine Learning
Molecular Docking Simulation
Molecular Dynamics Simulation
Pharmacology & Pharmacy
SARS-CoV-2 - drug effects
SARS-CoV-2 - enzymology
Science & Technology
Title Accelerating the Hit-To-Lead Optimization of a SARS-CoV-2 Mpro Inhibitor Series by Combining High-Throughput Medicinal Chemistry and Computational Simulations
URI http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=001460221900001
https://www.ncbi.nlm.nih.gov/pubmed/40186586
https://www.proquest.com/docview/3186784231
Volume 68
WOS 001460221900001
WOSCitedRecordID wos001460221900001
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB4BRYILj_IKj2qQqp7qdu04jn1CUURVhBIiElBukdf20iBlN3S3SPkz_FbGu5uGQw-VuOxlV9ZoPZr5vhl7PoDDJBMidcowwg5EUHimmHbeMW-NcJR-RfC6Fpvoj8d6PjeTtuBWtscqtzGxDtS-cLFGftqNk9c0JX_-Yf2LRdWo2F1tJTTuwl6XoEz06v58Ny28y2t5N0pRCZM6kdurc4KfWlee_IxHIC_C6kS6RBjJbwKZN-ajOvecPf5fq5_AoxZ14qBxk6dwJ-T78GC4FXvbh6NJM8J6c4yz3Y2s8hiPcLIbbr15Bn8GzlGmin6T_0BCj3i-rNisYFGrE79QAFq1NzuxyNDidPB1yobFdyZwRLbjp_ximVIUucRYlwslphukmJTWOhUYT52wWSMdtL6qcNR0_sn0a1vR5h4bLYq2jonT5aoVISufw7ezj7PhOWs1HpiVPVEx11UhyQL9IiJqmdRBeRWI84mgej0VlLPEj6RXxONCLxjPuRNKG24J5zlulXgB9_IiD68A-9xImwTjAq3A09RENhRFTT1FMc91B95v92hBFsfGiM1DcVUudrvUgZfNvi_WzbCPBdmiCaWpDhz-6wjX7yPHVASEuKkbJR3gt_ls2A5gj4MHqte3MOwNPBRReTiRTMi3sJdRcArv4L77XS3LywMiBp9HB7X303M8Gf0FDIsOtA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+the+Hit-To-Lead+Optimization+of+a+SARS-CoV-2+Mpro+Inhibitor+Series+by+Combining+High-Throughput+Medicinal+Chemistry+and+Computational+Simulations&rft.jtitle=Journal+of+medicinal+chemistry&rft.au=Hazemann%2C+Julien&rft.au=Kimmerlin%2C+Thierry&rft.au=Mac+Sweeney%2C+Aengus&rft.au=Bourquin%2C+Geoffroy&rft.date=2025-04-24&rft.issn=1520-4804&rft.eissn=1520-4804&rft_id=info:doi/10.1021%2Facs.jmedchem.4c02941&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2623&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2623&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2623&client=summon