Development of a 3D Hybrid Finite-Discrete Element Simulator Based on GPGPU-Parallelized Computation for Modelling Rock Fracturing Under Quasi-Static and Dynamic Loading Conditions

As a state-of-the-art computational method for simulating rock fracturing and fragmentation, the combined finite-discrete element method (FDEM) has become widely accepted since Munjiza ( 2004 ) published his comprehensive book of FDEM. This study developed a general-purpose graphic-processing-unit (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rock mechanics and rock engineering Jg. 53; H. 3; S. 1079 - 1112
Hauptverfasser: Fukuda, Daisuke, Mohammadnejad, Mojtaba, Liu, Hongyuan, Zhang, Qianbing, Zhao, Jian, Dehkhoda, Sevda, Chan, Andrew, Kodama, Jun-ichi, Fujii, Yoshiaki
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Vienna Springer Vienna 01.03.2020
Springer Nature B.V
Schlagworte:
ISSN:0723-2632, 1434-453X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As a state-of-the-art computational method for simulating rock fracturing and fragmentation, the combined finite-discrete element method (FDEM) has become widely accepted since Munjiza ( 2004 ) published his comprehensive book of FDEM. This study developed a general-purpose graphic-processing-unit (GPGPU)-parallelized FDEM using the compute unified device architecture C/C ++ based on the authors’ former sequential two-dimensional (2D) and three-dimensional (3D) Y-HFDEM IDE (integrated development environment) code. The theory and algorithm of the GPGPU-parallelized 3D Y-HFDEM IDE code are first introduced by focusing on the implementation of the contact detection algorithm, which is different from that in the sequential code, contact damping and contact friction. 3D modelling of the failure process of limestone under quasi-static loading conditions in uniaxial compressive strength (UCS) tests and Brazilian tensile strength (BTS) tests are then conducted using the GPGPU-parallelized 3D Y-HFDEM IDE code. The 3D FDEM modelling results show that mixed-mode I–II failures are the dominant failure mechanisms along the shear and splitting failure planes in the UCS and BTS models, respectively, with unstructured meshes. Pure mode I splitting failure planes and pure mode II shear failure planes are only possible in the UCS and BTS models, respectively, with structured meshes. Subsequently, 3D modelling of the dynamic fracturing of marble in dynamic Brazilian tests with a split Hopkinson pressure bar (SHPB) apparatus is conducted using the GPGPU-parallelized 3D HFDEM IDE code considering the entire SHPB testing system. The modelled failure process, final fracture pattern and time histories of the dynamic compressive wave, reflective tensile wave and transmitted compressive wave are compared quantitatively and qualitatively with those from experiments, and good agreements are achieved between them. The computing performance analysis shows the GPGPU-parallelized 3D HFDEM IDE code is 284 times faster than its sequential version and can achieve the computational complexity of O( N ). The results demonstrate that the GPGPU-parallelized 3D Y-HFDEM IDE code is a valuable and powerful numerical tool for investigating rock fracturing under quasi-static and dynamic loading conditions in rock engineering applications although very fine elements with maximum element size no bigger than the length of the fracture process zone must be used in the area where fracturing process is modelled.
AbstractList As a state-of-the-art computational method for simulating rock fracturing and fragmentation, the combined finite-discrete element method (FDEM) has become widely accepted since Munjiza ( 2004 ) published his comprehensive book of FDEM. This study developed a general-purpose graphic-processing-unit (GPGPU)-parallelized FDEM using the compute unified device architecture C/C ++ based on the authors’ former sequential two-dimensional (2D) and three-dimensional (3D) Y-HFDEM IDE (integrated development environment) code. The theory and algorithm of the GPGPU-parallelized 3D Y-HFDEM IDE code are first introduced by focusing on the implementation of the contact detection algorithm, which is different from that in the sequential code, contact damping and contact friction. 3D modelling of the failure process of limestone under quasi-static loading conditions in uniaxial compressive strength (UCS) tests and Brazilian tensile strength (BTS) tests are then conducted using the GPGPU-parallelized 3D Y-HFDEM IDE code. The 3D FDEM modelling results show that mixed-mode I–II failures are the dominant failure mechanisms along the shear and splitting failure planes in the UCS and BTS models, respectively, with unstructured meshes. Pure mode I splitting failure planes and pure mode II shear failure planes are only possible in the UCS and BTS models, respectively, with structured meshes. Subsequently, 3D modelling of the dynamic fracturing of marble in dynamic Brazilian tests with a split Hopkinson pressure bar (SHPB) apparatus is conducted using the GPGPU-parallelized 3D HFDEM IDE code considering the entire SHPB testing system. The modelled failure process, final fracture pattern and time histories of the dynamic compressive wave, reflective tensile wave and transmitted compressive wave are compared quantitatively and qualitatively with those from experiments, and good agreements are achieved between them. The computing performance analysis shows the GPGPU-parallelized 3D HFDEM IDE code is 284 times faster than its sequential version and can achieve the computational complexity of O( N ). The results demonstrate that the GPGPU-parallelized 3D Y-HFDEM IDE code is a valuable and powerful numerical tool for investigating rock fracturing under quasi-static and dynamic loading conditions in rock engineering applications although very fine elements with maximum element size no bigger than the length of the fracture process zone must be used in the area where fracturing process is modelled.
As a state-of-the-art computational method for simulating rock fracturing and fragmentation, the combined finite-discrete element method (FDEM) has become widely accepted since Munjiza (2004) published his comprehensive book of FDEM. This study developed a general-purpose graphic-processing-unit (GPGPU)-parallelized FDEM using the compute unified device architecture C/C ++ based on the authors’ former sequential two-dimensional (2D) and three-dimensional (3D) Y-HFDEM IDE (integrated development environment) code. The theory and algorithm of the GPGPU-parallelized 3D Y-HFDEM IDE code are first introduced by focusing on the implementation of the contact detection algorithm, which is different from that in the sequential code, contact damping and contact friction. 3D modelling of the failure process of limestone under quasi-static loading conditions in uniaxial compressive strength (UCS) tests and Brazilian tensile strength (BTS) tests are then conducted using the GPGPU-parallelized 3D Y-HFDEM IDE code. The 3D FDEM modelling results show that mixed-mode I–II failures are the dominant failure mechanisms along the shear and splitting failure planes in the UCS and BTS models, respectively, with unstructured meshes. Pure mode I splitting failure planes and pure mode II shear failure planes are only possible in the UCS and BTS models, respectively, with structured meshes. Subsequently, 3D modelling of the dynamic fracturing of marble in dynamic Brazilian tests with a split Hopkinson pressure bar (SHPB) apparatus is conducted using the GPGPU-parallelized 3D HFDEM IDE code considering the entire SHPB testing system. The modelled failure process, final fracture pattern and time histories of the dynamic compressive wave, reflective tensile wave and transmitted compressive wave are compared quantitatively and qualitatively with those from experiments, and good agreements are achieved between them. The computing performance analysis shows the GPGPU-parallelized 3D HFDEM IDE code is 284 times faster than its sequential version and can achieve the computational complexity of O(N). The results demonstrate that the GPGPU-parallelized 3D Y-HFDEM IDE code is a valuable and powerful numerical tool for investigating rock fracturing under quasi-static and dynamic loading conditions in rock engineering applications although very fine elements with maximum element size no bigger than the length of the fracture process zone must be used in the area where fracturing process is modelled.
Author Fukuda, Daisuke
Mohammadnejad, Mojtaba
Liu, Hongyuan
Zhao, Jian
Dehkhoda, Sevda
Chan, Andrew
Fujii, Yoshiaki
Zhang, Qianbing
Kodama, Jun-ichi
Author_xml – sequence: 1
  givenname: Daisuke
  surname: Fukuda
  fullname: Fukuda, Daisuke
  organization: Faculty of Engineering, Hokkaido University, College of Sciences and Engineering, University of Tasmania
– sequence: 2
  givenname: Mojtaba
  surname: Mohammadnejad
  fullname: Mohammadnejad, Mojtaba
  organization: College of Sciences and Engineering, University of Tasmania, CSIRO Minerals Resources Business Unit, Queensland Centre for Advanced Technologies
– sequence: 3
  givenname: Hongyuan
  orcidid: 0000-0002-5437-4695
  surname: Liu
  fullname: Liu, Hongyuan
  email: Hong.Liu@utas.edu.au
  organization: College of Sciences and Engineering, University of Tasmania
– sequence: 4
  givenname: Qianbing
  surname: Zhang
  fullname: Zhang, Qianbing
  organization: Department of Civil Engineering, Monash University
– sequence: 5
  givenname: Jian
  surname: Zhao
  fullname: Zhao, Jian
  organization: Department of Civil Engineering, Monash University
– sequence: 6
  givenname: Sevda
  surname: Dehkhoda
  fullname: Dehkhoda, Sevda
  organization: College of Sciences and Engineering, University of Tasmania, CSIRO Minerals Resources Business Unit, Queensland Centre for Advanced Technologies
– sequence: 7
  givenname: Andrew
  surname: Chan
  fullname: Chan, Andrew
  organization: College of Sciences and Engineering, University of Tasmania
– sequence: 8
  givenname: Jun-ichi
  surname: Kodama
  fullname: Kodama, Jun-ichi
  organization: Faculty of Engineering, Hokkaido University
– sequence: 9
  givenname: Yoshiaki
  surname: Fujii
  fullname: Fujii, Yoshiaki
  organization: Faculty of Engineering, Hokkaido University
BookMark eNp9kU1v1DAQhi1UJLaFP8DJEmeDP_LhHGG3u0XaqgtlJW7RJHaQi2MH26m0-7v4gSQNEhKHHix7PO8zM5r3El047zRCbxl9zygtP0RKCyoIZdV8CkrOL9CKZSIjWS6-X6AVLbkgvBD8FbqM8YHSKVnKFfq90Y_a-qHXLmHfYcBig29OTTAKb40zSZONiW3QSeNrq59k96YfLSQf8CeIWmHv8O6wOxzJAQJYq605T79r3w9jgmSmdDdpb73S1hr3A3_17U-8DdCmMczx0Skd8JcRoiH3M9FicApvTg766b33oGbZ2jtl5nLxNXrZgY36zd_7Ch2319_WN2R_t_u8_rgnkOU8kYyqhmsqy1x2rNUVk01XFhwkF0LnEqjoFIOsE1VTSchZ0VVFW4hC5I1sM6bEFXq31B2C_zXqmOoHPwY3taw5lxmvpJRsUvFF1QYfY9BdPQTTQzjVjNazO_XiTj05Uz-5U58nSP4HtWZZVgpg7POoWNA4zOvT4d9Uz1B_AOe2qQ8
CitedBy_id crossref_primary_10_1007_s00603_025_04454_3
crossref_primary_10_1016_j_compgeo_2022_104969
crossref_primary_10_1016_j_compgeo_2022_104726
crossref_primary_10_1016_j_tafmec_2025_104979
crossref_primary_10_1016_j_asr_2021_11_037
crossref_primary_10_1016_j_engfracmech_2021_107793
crossref_primary_10_3390_app11062504
crossref_primary_10_1007_s11440_021_01354_y
crossref_primary_10_1088_1755_1315_861_3_032027
crossref_primary_10_1016_j_jrmge_2025_05_023
crossref_primary_10_1016_j_compgeo_2024_107035
crossref_primary_10_1088_1755_1315_861_4_042100
crossref_primary_10_1016_j_engfracmech_2022_108929
crossref_primary_10_1016_j_ijrmms_2021_104645
crossref_primary_10_1007_s00603_023_03261_y
crossref_primary_10_1007_s00603_024_04218_5
crossref_primary_10_1016_j_engfracmech_2022_108924
crossref_primary_10_1016_j_engfracmech_2022_108926
crossref_primary_10_1016_j_compgeo_2022_105016
crossref_primary_10_1016_j_engfracmech_2024_109857
crossref_primary_10_1016_j_enggeo_2025_107960
crossref_primary_10_1007_s40571_020_00329_2
crossref_primary_10_1007_s40571_023_00700_z
crossref_primary_10_1016_j_tafmec_2024_104729
crossref_primary_10_3390_ma17020282
crossref_primary_10_1007_s00603_024_03874_x
crossref_primary_10_1016_j_cma_2022_114981
crossref_primary_10_1016_j_enganabound_2025_106228
crossref_primary_10_1016_j_engfailanal_2022_106686
crossref_primary_10_1007_s00366_023_01932_6
crossref_primary_10_1016_j_engfailanal_2025_109498
crossref_primary_10_3390_su14094896
crossref_primary_10_3389_fevo_2023_1288870
crossref_primary_10_1007_s00603_023_03531_9
crossref_primary_10_1002_nag_3368
crossref_primary_10_1080_19648189_2022_2134931
crossref_primary_10_1016_j_compgeo_2021_104554
crossref_primary_10_1007_s10706_025_03149_4
crossref_primary_10_1016_j_compgeo_2024_106517
crossref_primary_10_1007_s12665_024_11632_z
crossref_primary_10_1016_j_enganabound_2025_106336
crossref_primary_10_1016_j_compstruct_2025_118880
crossref_primary_10_1016_j_pnucene_2023_104905
crossref_primary_10_1016_j_powtec_2021_117070
crossref_primary_10_1016_j_enganabound_2025_106291
crossref_primary_10_1007_s10346_024_02239_3
crossref_primary_10_1038_s41598_024_66397_z
crossref_primary_10_1007_s00603_022_03111_3
crossref_primary_10_1007_s40571_019_00287_4
crossref_primary_10_1016_j_compgeo_2023_105470
crossref_primary_10_1016_j_soildyn_2024_108652
crossref_primary_10_1016_j_compgeo_2022_104982
crossref_primary_10_1007_s40571_020_00349_y
crossref_primary_10_1061__ASCE_GM_1943_5622_0001686
crossref_primary_10_1007_s00603_023_03680_x
crossref_primary_10_1016_j_tust_2024_105644
crossref_primary_10_1016_j_compgeo_2022_104918
crossref_primary_10_1007_s40571_024_00809_9
crossref_primary_10_1155_2022_8232332
crossref_primary_10_1016_j_compgeo_2024_107031
crossref_primary_10_3390_app12063073
crossref_primary_10_1007_s11831_022_09851_3
crossref_primary_10_1016_j_tust_2024_106210
crossref_primary_10_1016_j_enganabound_2023_09_009
crossref_primary_10_1016_j_compgeo_2022_105045
crossref_primary_10_1007_s00603_020_02202_3
crossref_primary_10_1007_s00603_023_03738_w
crossref_primary_10_1016_j_ijrmms_2025_106236
crossref_primary_10_3390_geosciences15080314
crossref_primary_10_1016_j_ijrmms_2025_106233
crossref_primary_10_3390_su141610200
crossref_primary_10_3390_app13158911
crossref_primary_10_3390_math11194197
crossref_primary_10_1016_j_enganabound_2022_08_041
crossref_primary_10_1007_s40571_025_01066_0
crossref_primary_10_1016_j_ijrmms_2020_104448
crossref_primary_10_1016_j_ijrmms_2021_104964
crossref_primary_10_1016_j_compgeo_2025_107354
crossref_primary_10_1007_s00603_021_02671_0
crossref_primary_10_1016_j_simpat_2025_103138
crossref_primary_10_1007_s00603_024_04239_0
crossref_primary_10_1007_s00603_023_03746_w
crossref_primary_10_1088_1755_1315_861_3_032077
crossref_primary_10_1016_j_tust_2024_105782
crossref_primary_10_1016_j_compgeo_2022_105065
crossref_primary_10_1016_j_enganabound_2022_09_006
crossref_primary_10_1016_j_enganabound_2022_02_006
crossref_primary_10_1007_s11666_022_01334_y
crossref_primary_10_1007_s11440_023_01895_4
crossref_primary_10_1016_j_simpat_2025_103081
crossref_primary_10_1088_1755_1315_1124_1_012117
crossref_primary_10_1016_j_compgeo_2023_105837
crossref_primary_10_1016_j_ijimpeng_2022_104420
crossref_primary_10_1016_j_compgeo_2024_106250
crossref_primary_10_1016_j_engfracmech_2025_111237
crossref_primary_10_1007_s40571_023_00629_3
crossref_primary_10_1016_j_compgeo_2024_106643
crossref_primary_10_1016_j_engfracmech_2025_111195
crossref_primary_10_1080_19475705_2023_2266663
crossref_primary_10_1016_j_enganabound_2024_105768
crossref_primary_10_1016_j_compgeo_2023_105271
crossref_primary_10_1016_j_compgeo_2021_104261
crossref_primary_10_1016_j_compgeo_2024_106483
crossref_primary_10_1016_j_ijrmms_2023_105439
crossref_primary_10_1134_S0025654424604427
crossref_primary_10_1016_j_compgeo_2021_104425
crossref_primary_10_1155_2020_8866621
crossref_primary_10_1016_j_compgeo_2022_104788
crossref_primary_10_1016_j_compgeo_2023_105831
crossref_primary_10_1016_j_powtec_2023_118441
crossref_primary_10_1016_j_enganabound_2020_03_013
crossref_primary_10_1061__ASCE_EM_1943_7889_0001933
crossref_primary_10_1016_j_trgeo_2021_100655
crossref_primary_10_1016_j_engfracmech_2025_111365
crossref_primary_10_1007_s11043_023_09597_w
crossref_primary_10_1016_j_ijrmms_2021_104782
crossref_primary_10_1007_s00603_025_04395_x
crossref_primary_10_3390_app10228033
crossref_primary_10_1016_j_compgeo_2023_105825
crossref_primary_10_1080_19648189_2021_1924863
crossref_primary_10_1016_j_compgeo_2023_105942
Cites_doi 10.1002/9781119971160
10.1002/nme.2030
10.1016/j.ijimpeng.2017.11.016
10.1016/j.ijrmms.2013.01.005
10.1016/j.jrmge.2017.03.019
10.1016/S0997-7538(00)00190-X
10.1016/j.partic.2009.04.008
10.1016/j.tecto.2015.10.013
10.1016/j.cageo.2006.07.006
10.1007/s00603-010-0092-7
10.1179/1939787913y.0000000035
10.1016/0020-7683(95)00255-3
10.1108/02644400910975469
10.1007/s00024-006-0066-6
10.1016/j.compgeo.2014.03.011
10.1007/s00603-014-0592-y
10.1007/s00603-009-0027-3
10.1016/j.compgeo.2016.07.009
10.1007/s00603-006-0107-6
10.1002/nag.2852
10.1016/j.compgeo.2016.08.014
10.1007/s00603-012-0257-7
10.1016/j.jrmge.2013.12.007
10.1016/j.ijrmms.2015.01.011
10.1016/j.compgeo.2018.04.011
10.1007/s00603-011-0205-y
10.1002/(SICI)1097-0207(19990110)44:1<41::AID-NME487>3.0.CO;2-A
10.1016/j.jrmge.2014.10.005
10.1002/0470020180
10.1016/j.ijrmms.2014.03.011
10.1007/s00603-013-0463-y
10.1007/s40789-016-0142-1
10.1002/nag.2934
10.1007/s40571-014-0026-3
10.1108/02644409510799532
10.1016/j.compstruc.2017.10.005
10.1016/j.jrmge.2014.10.001
10.1016/j.compgeo.2016.09.007
10.1080/12269328.2018.1448006
10.1061/(asce)gm.1943-5622.0000216
10.1016/j.ijrmms.2018.03.016
10.1016/j.advengsoft.2012.10.006
10.1016/0148-9062(64)90060-9
10.1016/j.engfracmech.2019.02.007
10.1007/978-981-10-1926-5_16
10.1109/IPDPS.2009.5161005
10.1016/C2014-0-01408-6
10.1016/b978-0-12-384988-5.00006-1
ContentType Journal Article
Copyright Springer-Verlag GmbH Austria, part of Springer Nature 2019
Rock Mechanics and Rock Engineering is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Austria, part of Springer Nature 2019
– notice: Rock Mechanics and Rock Engineering is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7TN
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KR7
L.G
L6V
M2P
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s00603-019-01960-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database (ProQuest)
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection (ProQuest)
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1434-453X
EndPage 1112
ExternalDocumentID 10_1007_s00603_019_01960_z
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 18K14165
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Department of Foreign Affairs and Trade, Australian Government
  grantid: 17/20470
  funderid: http://dx.doi.org/10.13039/501100000996
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
78A
88I
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
L8X
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
MK~
MM-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z81
Z85
Z86
Z8S
Z8T
Z8U
Z8Z
ZMTXR
ZY4
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7TN
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H96
KR7
L.G
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-a452t-40db2e08758f1ce918bf762a8233e58a03fd1a4f39b98a516f96c63635b8c41d3
IEDL.DBID M2P
ISICitedReferencesCount 141
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522733700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0723-2632
IngestDate Tue Nov 04 22:07:58 EST 2025
Sat Nov 29 05:38:06 EST 2025
Tue Nov 18 22:44:12 EST 2025
Fri Feb 21 02:35:34 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords FDEM
3D fracture process analysis
Quasi-static loading
Rocks
Parallel computation
Dynamic loading
GPGPU
CUDA C/C++
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a452t-40db2e08758f1ce918bf762a8233e58a03fd1a4f39b98a516f96c63635b8c41d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5437-4695
OpenAccessLink http://hdl.handle.net/2115/80506
PQID 2284298881
PQPubID 60272
PageCount 34
ParticipantIDs proquest_journals_2284298881
crossref_primary_10_1007_s00603_019_01960_z
crossref_citationtrail_10_1007_s00603_019_01960_z
springer_journals_10_1007_s00603_019_01960_z
PublicationCentury 2000
PublicationDate 20200300
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 3
  year: 2020
  text: 20200300
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Rock mechanics and rock engineering
PublicationTitleAbbrev Rock Mech Rock Eng
PublicationYear 2020
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References Liu, Deng (CR25) 2019; 211
Guo (CR15) 2014
Hamdi, Stead, Elmo (CR16) 2014; 60
Munjiza, Andrews, White (CR39) 1999; 44
Osthus, Godinez, Rougier, Srinivasan (CR45) 2018; 106
Munjiza, Knight, Rougier (CR42) 2015
Ayachit (CR3) 2015
CR35
CR34
Rougier, Knight, Broome, Sussman, Munjiza (CR49) 2014; 70
Mahabadi, Kaifosh, Marschall, Vietor (CR33) 2014; 6
An, Liu, Han, Zheng, Wang (CR2) 2017; 81
Munjiza, Owen, Bicanic (CR38) 1995; 12
Ma, Zhang, Zhou, Ng, Wang, Chen (CR29) 2018; 113
Fairhurst (CR11) 1964; 1
Mahabadi (CR30) 2012
Zhang, Zhao (CR60) 2013; 60
Zhang, Zhao (CR61) 2014; 47
Zhang, Quigley, Chan (CR63) 2013; 60–61
Elmo, Stead (CR9) 2010; 43
CR6
CR5
CR7
CR48
CR46
Lisjak, Kaifosh, He, Tatone, Mahabadi, Grasselli (CR23) 2017; 81
CR44
Zhang (CR64) 2016
Godinez, Rougier, Osthus, Lei, Knight, Srinivasan (CR14) 2018
Munjiza, Knight, Rougier (CR41) 2011
Mahabadi, Lisjak, Munjiza, Grasselli (CR32) 2012; 12
Camacho, Ortiz (CR8) 1996; 33
Heinze, Jansen, Galvan, Miller (CR17) 2016; 684
Mohammadnejad, Liu, Chan, Dehkhoda, Fukuda (CR36) 2018
Li, Wong (CR21) 2013; 46
Munshi, Gaster, Mattson, Fung, Ginsburg (CR43) 2011
Yan, Zheng (CR58) 2017; 81
Yao, He, Xia (CR59) 2017; 9
Hondros (CR18) 1959; 10
Lisjak, Grasselli (CR22) 2014; 6
Yan, Jiao (CR57) 2018; 196
Munjiza, Xiang, Garcia, Latham, D’Albano, John (CR40) 2010; 8
Xiang, Munjiza, Latham, Guises (CR55) 2009; 26
Rogers, Elmo, Webb, Catalan (CR47) 2015; 48
An, Tannant (CR1) 2007; 33
Sato, Hashida (CR51) 2006; 163
CR12
CR56
CR52
CR50
Lukas, Schiava D’Albano, Munjiza (CR28) 2014; 6
Liu, Han, An, Shi (CR27) 2016; 3
Munjiza (CR37) 2004
Mahabadi, Cottrell, Grasselli (CR31) 2010; 43
Fukuda, Mohammadnejad, Liu, Dehkhoda, Chan, Cho, Min, Han, Kodama, Fuji (CR13) 2019
Zhang, Paulino, Celes (CR62) 2007; 72
Iqbal, Mohanty (CR19) 2006; 40
Erarslan, Liang, Williams (CR10) 2012; 45
Lei, Rougier, Knight, Munjiza (CR20) 2014; 1
Tijssens, Sluys, van der Giessen (CR54) 2000; 19
Batinić, Smoljanović, Munjiza, Mihanović (CR4) 2018; 69
Lisjak, Mahabadi, He, Tatone, Kaifosh, Haque, Grasselli (CR24) 2018; 100
Liu, Kang, Lin (CR26) 2015; 9
Tatone, Grasselli (CR53) 2015; 75
S Rogers (1960_CR47) 2015; 48
1960_CR12
D Fukuda (1960_CR13) 2019
1960_CR56
T Heinze (1960_CR17) 2016; 684
T Lukas (1960_CR28) 2014; 6
1960_CR52
U Ayachit (1960_CR3) 2015
MJ Iqbal (1960_CR19) 2006; 40
1960_CR50
Z Zhang (1960_CR62) 2007; 72
C Fairhurst (1960_CR11) 1964; 1
D Elmo (1960_CR9) 2010; 43
L Guo (1960_CR15) 2014
1960_CR7
1960_CR6
1960_CR5
J Xiang (1960_CR55) 2009; 26
A Munjiza (1960_CR40) 2010; 8
BSA Tatone (1960_CR53) 2015; 75
D Li (1960_CR21) 2013; 46
M Mohammadnejad (1960_CR36) 2018
B An (1960_CR1) 2007; 33
A Munjiza (1960_CR38) 1995; 12
M Batinić (1960_CR4) 2018; 69
C Yan (1960_CR58) 2017; 81
HY Liu (1960_CR26) 2015; 9
A Lisjak (1960_CR22) 2014; 6
Z Lei (1960_CR20) 2014; 1
1960_CR35
E Rougier (1960_CR49) 2014; 70
1960_CR34
N Erarslan (1960_CR10) 2012; 45
G Hondros (1960_CR18) 1959; 10
OK Mahabadi (1960_CR32) 2012; 12
K Sato (1960_CR51) 2006; 163
A Lisjak (1960_CR24) 2018; 100
A Munjiza (1960_CR39) 1999; 44
A Munjiza (1960_CR37) 2004
D Osthus (1960_CR45) 2018; 106
AA Munjiza (1960_CR41) 2011
P Hamdi (1960_CR16) 2014; 60
A Lisjak (1960_CR23) 2017; 81
HM An (1960_CR2) 2017; 81
G Ma (1960_CR29) 2018; 113
1960_CR46
C Yan (1960_CR57) 2018; 196
1960_CR44
HY Liu (1960_CR27) 2016; 3
HC Godinez (1960_CR14) 2018
A Munshi (1960_CR43) 2011
GT Camacho (1960_CR8) 1996; 33
A Munjiza (1960_CR42) 2015
Q Liu (1960_CR25) 2019; 211
MGA Tijssens (1960_CR54) 2000; 19
QB Zhang (1960_CR61) 2014; 47
OK Mahabadi (1960_CR30) 2012
L Zhang (1960_CR63) 2013; 60–61
QB Zhang (1960_CR60) 2013; 60
ZX Zhang (1960_CR64) 2016
W Yao (1960_CR59) 2017; 9
OK Mahabadi (1960_CR31) 2010; 43
O Mahabadi (1960_CR33) 2014; 6
1960_CR48
References_xml – year: 2011
  ident: CR41
  publication-title: Computational mechanics of discontinue
  doi: 10.1002/9781119971160
– volume: 72
  start-page: 893
  year: 2007
  end-page: 923
  ident: CR62
  article-title: Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2030
– volume: 113
  start-page: 132
  year: 2018
  end-page: 143
  ident: CR29
  article-title: The effect of different fracture mechanisms on impact fragmentation of brittle heterogeneous solid
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2017.11.016
– volume: 60
  start-page: 423
  year: 2013
  end-page: 439
  ident: CR60
  article-title: Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2013.01.005
– volume: 9
  start-page: 807
  year: 2017
  end-page: 817
  ident: CR59
  article-title: Dynamic mechanical behaviors of Fangshan marble
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2017.03.019
– ident: CR12
– year: 2011
  ident: CR43
  publication-title: OpenCL programming guide
– volume: 19
  start-page: 761
  issue: 5
  year: 2000
  end-page: 779
  ident: CR54
  article-title: Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces
  publication-title: Eur J Mech A Solids
  doi: 10.1016/S0997-7538(00)00190-X
– ident: CR35
– year: 2015
  ident: CR42
  publication-title: Large strain finite element method: a practical course
– volume: 8
  start-page: 100
  year: 2010
  end-page: 105
  ident: CR40
  article-title: The virtual geoscience workbench, VGW: open source tools for discontinuous systems
  publication-title: Particuology
  doi: 10.1016/j.partic.2009.04.008
– volume: 684
  start-page: 4
  year: 2016
  end-page: 11
  ident: CR17
  article-title: Systematic study of the effects of mass and time scaling techniques applied in numerical rock mechanics simulations
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2015.10.013
– year: 2012
  ident: CR30
  publication-title: Investigating the influence of micro-scale heterogeneity and microstructure on the failure and mechanical behaviour of geomaterials
– volume: 33
  start-page: 513
  year: 2007
  end-page: 521
  ident: CR1
  article-title: Discrete element method contact model for dynamic simulation of inelastic rock impact
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2006.07.006
– volume: 43
  start-page: 707
  year: 2010
  end-page: 716
  ident: CR31
  article-title: An example of realistic modelling of rock dynamics problems: FEM/DEM simulation of dynamic Brazilian test on barre granite
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-010-0092-7
– volume: 9
  start-page: 115
  year: 2015
  end-page: 131
  ident: CR26
  article-title: Hybrid finite–discrete element modeling of geomaterials fracture and fragment muck-piling
  publication-title: Int J Geotech Eng
  doi: 10.1179/1939787913y.0000000035
– volume: 33
  start-page: 2899
  year: 1996
  end-page: 2938
  ident: CR8
  article-title: Computational modelling of impact damage in brittle materials
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(95)00255-3
– ident: CR46
– volume: 26
  start-page: 673
  year: 2009
  end-page: 687
  ident: CR55
  article-title: On the validation of DEM and FEM/DEM models in 2D and 3D
  publication-title: Eng Comput
  doi: 10.1108/02644400910975469
– ident: CR50
– volume: 163
  start-page: 1073
  year: 2006
  end-page: 1089
  ident: CR51
  article-title: Fracture toughness evaluation based on tension-softening model and its application to hydraulic fracturing
  publication-title: Pure Appl Geophys
  doi: 10.1007/s00024-006-0066-6
– volume: 60
  start-page: 33
  year: 2014
  end-page: 46
  ident: CR16
  article-title: Damage characterization during laboratory strength testing: a 3D-finite-discrete element approach
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2014.03.011
– ident: CR5
– volume: 48
  start-page: 633
  year: 2015
  end-page: 649
  ident: CR47
  article-title: Volumetric fracture intensity measurement for improved rock mass characterisation and fragmentation assessment in block caving operations
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-014-0592-y
– volume: 43
  start-page: 3
  year: 2010
  end-page: 19
  ident: CR9
  article-title: An integrated numerical modelling-discrete fracture network approach applied to the characterisation of rock mass strength of naturally fractured pillars
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-009-0027-3
– year: 2016
  ident: CR64
  publication-title: Rock fracture and blasting: theory and applications
– volume: 81
  start-page: 1
  year: 2017
  end-page: 18
  ident: CR23
  article-title: A 2D, fully-coupled, hydro-mechanical, FDEM formulation for modelling fracturing processes in discontinuous, porous rock masses
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2016.07.009
– volume: 40
  start-page: 453
  year: 2006
  end-page: 475
  ident: CR19
  article-title: Experimental calibration of ISRM suggested fracture toughness measurement techniques in selected brittle rocks
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-006-0107-6
– year: 2018
  ident: CR14
  article-title: Fourier amplitude sensitivity test applied to dynamic combined finite-discrete element methods-based simulations
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.2852
– year: 2014
  ident: CR15
  publication-title: Development of a three-dimensional fracture model for the combined finite-discrete element method
– volume: 81
  start-page: 212
  year: 2017
  end-page: 228
  ident: CR58
  article-title: FDEM-flow3D: a 3D hydro-mechanical coupled model considering the pore seepage of rock matrix for simulating three-dimensional hydraulic fracturing
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2016.08.014
– year: 2015
  ident: CR3
  publication-title: The ParaView Guide: a parallel visualization application
– volume: 69
  start-page: 1085
  year: 2018
  end-page: 1092
  ident: CR4
  article-title: GPU based parallel FDEM for analysis of cable structures
  publication-title: Građevinar
– volume: 46
  start-page: 269
  year: 2013
  end-page: 287
  ident: CR21
  article-title: The Brazilian disc test for rock mechanics applications: review and new insights
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-012-0257-7
– ident: CR6
– volume: 6
  start-page: 301
  year: 2014
  end-page: 314
  ident: CR22
  article-title: A review of discrete modeling techniques for fracturing processes in discontinuous rock masses
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2013.12.007
– volume: 75
  start-page: 56
  year: 2015
  end-page: 72
  ident: CR53
  article-title: A calibration procedure for two-dimensional laboratory-scale hybrid finite-discrete element simulations
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2015.01.011
– ident: CR56
– volume: 100
  start-page: 84
  year: 2018
  end-page: 96
  ident: CR24
  article-title: Acceleration of a 2D/3D finite-discrete element code for geomechanical simulations using General Purpose GPU computing
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2018.04.011
– volume: 10
  start-page: 243
  year: 1959
  end-page: 268
  ident: CR18
  article-title: The evaluation of Poisson’s ratio and the modulus of materials of low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete
  publication-title: Aust J Appl Sci
– volume: 45
  start-page: 739
  year: 2012
  end-page: 751
  ident: CR10
  article-title: Experimental and numerical studies on determination of indirect tensile strength of rocks
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-011-0205-y
– volume: 44
  start-page: 41
  year: 1999
  end-page: 57
  ident: CR39
  article-title: Combined single and smeared crack model in combined finite-discrete element analysis
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/(SICI)1097-0207(19990110)44:1<41::AID-NME487>3.0.CO;2-A
– ident: CR44
– volume: 6
  start-page: 591
  year: 2014
  end-page: 606
  ident: CR33
  article-title: Three-dimensional FDEM numerical simulation of failure processes observed in Opalinus Clay laboratory samples
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2014.10.005
– year: 2004
  ident: CR37
  publication-title: The combined finite-discrete element method
  doi: 10.1002/0470020180
– ident: CR48
– volume: 70
  start-page: 101
  year: 2014
  end-page: 108
  ident: CR49
  article-title: Validation of a three-dimensional finite-discrete element method using experimental results of the split Hopkinson pressure bar test
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2014.03.011
– volume: 47
  start-page: 1411
  issue: 4
  year: 2014
  end-page: 1478
  ident: CR61
  article-title: A review of dynamic experimental techniques and mechanical behaviour of rock materials
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-013-0463-y
– volume: 3
  start-page: 295
  year: 2016
  end-page: 310
  ident: CR27
  article-title: Hybrid finite-discrete element modelling of asperity degradation and gouge grinding during direct shearing of rough rock joints
  publication-title: Int J Coal Sci Technol
  doi: 10.1007/s40789-016-0142-1
– year: 2019
  ident: CR13
  article-title: Development of a GPGPU-parallelized hybrid finite-discrete element method for modelling rock fracture
  publication-title: Int J Numer Anal Meth Geomech
  doi: 10.1002/nag.2934
– volume: 1
  start-page: 307
  year: 2014
  end-page: 319
  ident: CR20
  article-title: A framework for grand scale parallelization of the combined finite discrete element method in 2d
  publication-title: Comput Part Mech
  doi: 10.1007/s40571-014-0026-3
– ident: CR52
– volume: 12
  start-page: 145
  issue: 2
  year: 1995
  end-page: 174
  ident: CR38
  article-title: A combined finite-discrete element method in transient dynamics of fracturing solids
  publication-title: Eng Comput
  doi: 10.1108/02644409510799532
– volume: 196
  start-page: 311
  year: 2018
  end-page: 326
  ident: CR57
  article-title: A 2D fully coupled hydro-mechanical finite-discrete element model with real pore seepage for simulating the deformation and fracture of porous medium driven by fluid
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2017.10.005
– volume: 6
  start-page: 607
  year: 2014
  end-page: 615
  ident: CR28
  article-title: Space decomposition based parallelization solutions for the combined finite-discrete element method in 2D
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2014.10.001
– volume: 81
  start-page: 322
  year: 2017
  end-page: 345
  ident: CR2
  article-title: Hybrid finite-discrete element modelling of dynamic fracture and resultant fragment casting and muck-piling by rock blast
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2016.09.007
– year: 2018
  ident: CR36
  article-title: An overview on advances in computational fracture mechanics of rock
  publication-title: Geosyst Eng
  doi: 10.1080/12269328.2018.1448006
– ident: CR34
– volume: 12
  start-page: 676
  year: 2012
  end-page: 688
  ident: CR32
  article-title: Y-Geo: new combined finite-discrete element numerical code for geomechanical applications
  publication-title: Int J Geomech
  doi: 10.1061/(asce)gm.1943-5622.0000216
– volume: 106
  start-page: 278
  year: 2018
  end-page: 288
  ident: CR45
  article-title: Calibrating the stress-time curve of a combined finite-discrete element method to a split Hopkinson pressure bar experiment
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2018.03.016
– ident: CR7
– volume: 60–61
  start-page: 70
  year: 2013
  end-page: 80
  ident: CR63
  article-title: A fast scalable implementation of the two-dimensional triangular discrete element method on a GPU platform
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2012.10.006
– volume: 1
  start-page: 535
  year: 1964
  end-page: 546
  ident: CR11
  article-title: On the validity of the ‘Brazilian’ test for brittle materials
  publication-title: Int J Rock Mech Min Sci Geomech Abstr
  doi: 10.1016/0148-9062(64)90060-9
– volume: 211
  start-page: 442
  year: 2019
  end-page: 462
  ident: CR25
  article-title: A numerical investigation of element size and loading/unloading rate for intact rock in laboratory-scale and field-scale based on the combined finite-discrete element method
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2019.02.007
– volume: 33
  start-page: 513
  year: 2007
  ident: 1960_CR1
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2006.07.006
– volume: 43
  start-page: 3
  year: 2010
  ident: 1960_CR9
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-009-0027-3
– volume: 6
  start-page: 591
  year: 2014
  ident: 1960_CR33
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2014.10.005
– ident: 1960_CR12
– volume: 60
  start-page: 33
  year: 2014
  ident: 1960_CR16
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2014.03.011
– volume-title: Investigating the influence of micro-scale heterogeneity and microstructure on the failure and mechanical behaviour of geomaterials
  year: 2012
  ident: 1960_CR30
– ident: 1960_CR56
  doi: 10.1007/978-981-10-1926-5_16
– volume: 1
  start-page: 307
  year: 2014
  ident: 1960_CR20
  publication-title: Comput Part Mech
  doi: 10.1007/s40571-014-0026-3
– volume: 46
  start-page: 269
  year: 2013
  ident: 1960_CR21
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-012-0257-7
– volume: 12
  start-page: 145
  issue: 2
  year: 1995
  ident: 1960_CR38
  publication-title: Eng Comput
  doi: 10.1108/02644409510799532
– ident: 1960_CR50
  doi: 10.1109/IPDPS.2009.5161005
– volume: 40
  start-page: 453
  year: 2006
  ident: 1960_CR19
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-006-0107-6
– ident: 1960_CR35
– volume: 45
  start-page: 739
  year: 2012
  ident: 1960_CR10
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-011-0205-y
– volume: 33
  start-page: 2899
  year: 1996
  ident: 1960_CR8
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(95)00255-3
– volume: 196
  start-page: 311
  year: 2018
  ident: 1960_CR57
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2017.10.005
– volume: 9
  start-page: 115
  year: 2015
  ident: 1960_CR26
  publication-title: Int J Geotech Eng
  doi: 10.1179/1939787913y.0000000035
– volume: 12
  start-page: 676
  year: 2012
  ident: 1960_CR32
  publication-title: Int J Geomech
  doi: 10.1061/(asce)gm.1943-5622.0000216
– volume: 69
  start-page: 1085
  year: 2018
  ident: 1960_CR4
  publication-title: Građevinar
– year: 2019
  ident: 1960_CR13
  publication-title: Int J Numer Anal Meth Geomech
  doi: 10.1002/nag.2934
– year: 2018
  ident: 1960_CR14
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.2852
– volume: 100
  start-page: 84
  year: 2018
  ident: 1960_CR24
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2018.04.011
– volume: 3
  start-page: 295
  year: 2016
  ident: 1960_CR27
  publication-title: Int J Coal Sci Technol
  doi: 10.1007/s40789-016-0142-1
– volume: 8
  start-page: 100
  year: 2010
  ident: 1960_CR40
  publication-title: Particuology
  doi: 10.1016/j.partic.2009.04.008
– year: 2018
  ident: 1960_CR36
  publication-title: Geosyst Eng
  doi: 10.1080/12269328.2018.1448006
– volume: 47
  start-page: 1411
  issue: 4
  year: 2014
  ident: 1960_CR61
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-013-0463-y
– volume: 6
  start-page: 301
  year: 2014
  ident: 1960_CR22
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2013.12.007
– volume: 60
  start-page: 423
  year: 2013
  ident: 1960_CR60
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2013.01.005
– volume-title: Development of a three-dimensional fracture model for the combined finite-discrete element method
  year: 2014
  ident: 1960_CR15
– volume: 684
  start-page: 4
  year: 2016
  ident: 1960_CR17
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2015.10.013
– ident: 1960_CR5
– volume: 9
  start-page: 807
  year: 2017
  ident: 1960_CR59
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2017.03.019
– volume: 19
  start-page: 761
  issue: 5
  year: 2000
  ident: 1960_CR54
  publication-title: Eur J Mech A Solids
  doi: 10.1016/S0997-7538(00)00190-X
– volume-title: OpenCL programming guide
  year: 2011
  ident: 1960_CR43
– volume: 75
  start-page: 56
  year: 2015
  ident: 1960_CR53
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2015.01.011
– ident: 1960_CR46
– volume-title: Rock fracture and blasting: theory and applications
  year: 2016
  ident: 1960_CR64
  doi: 10.1016/C2014-0-01408-6
– volume: 113
  start-page: 132
  year: 2018
  ident: 1960_CR29
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2017.11.016
– ident: 1960_CR52
– ident: 1960_CR6
– volume: 10
  start-page: 243
  year: 1959
  ident: 1960_CR18
  publication-title: Aust J Appl Sci
– volume: 163
  start-page: 1073
  year: 2006
  ident: 1960_CR51
  publication-title: Pure Appl Geophys
  doi: 10.1007/s00024-006-0066-6
– volume: 6
  start-page: 607
  year: 2014
  ident: 1960_CR28
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2014.10.001
– volume: 43
  start-page: 707
  year: 2010
  ident: 1960_CR31
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-010-0092-7
– volume: 81
  start-page: 1
  year: 2017
  ident: 1960_CR23
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2016.07.009
– volume: 211
  start-page: 442
  year: 2019
  ident: 1960_CR25
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2019.02.007
– volume: 106
  start-page: 278
  year: 2018
  ident: 1960_CR45
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2018.03.016
– volume-title: The ParaView Guide: a parallel visualization application
  year: 2015
  ident: 1960_CR3
– ident: 1960_CR34
– volume-title: Large strain finite element method: a practical course
  year: 2015
  ident: 1960_CR42
– ident: 1960_CR7
  doi: 10.1016/b978-0-12-384988-5.00006-1
– volume: 60–61
  start-page: 70
  year: 2013
  ident: 1960_CR63
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2012.10.006
– volume: 1
  start-page: 535
  year: 1964
  ident: 1960_CR11
  publication-title: Int J Rock Mech Min Sci Geomech Abstr
  doi: 10.1016/0148-9062(64)90060-9
– volume: 48
  start-page: 633
  year: 2015
  ident: 1960_CR47
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-014-0592-y
– volume: 26
  start-page: 673
  year: 2009
  ident: 1960_CR55
  publication-title: Eng Comput
  doi: 10.1108/02644400910975469
– volume: 81
  start-page: 322
  year: 2017
  ident: 1960_CR2
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2016.09.007
– volume: 81
  start-page: 212
  year: 2017
  ident: 1960_CR58
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2016.08.014
– volume-title: The combined finite-discrete element method
  year: 2004
  ident: 1960_CR37
  doi: 10.1002/0470020180
– volume-title: Computational mechanics of discontinue
  year: 2011
  ident: 1960_CR41
  doi: 10.1002/9781119971160
– volume: 44
  start-page: 41
  year: 1999
  ident: 1960_CR39
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/(SICI)1097-0207(19990110)44:1<41::AID-NME487>3.0.CO;2-A
– volume: 72
  start-page: 893
  year: 2007
  ident: 1960_CR62
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2030
– ident: 1960_CR48
– ident: 1960_CR44
– volume: 70
  start-page: 101
  year: 2014
  ident: 1960_CR49
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2014.03.011
SSID ssj0014378
Score 2.5711844
Snippet As a state-of-the-art computational method for simulating rock fracturing and fragmentation, the combined finite-discrete element method (FDEM) has become...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1079
SubjectTerms Agreements
Algorithms
Civil Engineering
Compressive strength
Computation
Computer applications
Computer architecture
Computer simulation
Damping
Detection
Discrete element method
Dynamic loads
Earth and Environmental Science
Earth Sciences
Failure
Failure mechanisms
Fracturing
Geophysics/Geodesy
Graphics processing units
Limestone
Marble
Mechanical loading
Modelling
Original Paper
Parallel processing
Planes
Rocks
Shear
Simulators
Split Hopkinson pressure bars
Splitting
Tests
Three dimensional models
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VFiQ4UChFbGmrOXADS-s4H84Rut3toaqWlqLeIjuJpUhtgna3SLu_ix_IjJNsCwIkeosSx4o09sxzZuY9gHdxnhj-1ygsRXcRSpcIE0otQhcaE2iXDgvPrn-anJ3pq6t02jWFzftq9z4l6T31utmNqUO49ofrewh3i9Uj2KJwp1mw4fzi6zp3EKrW_yaBEsxG3rXK_HmOX8PRHcb8LS3qo814-2Hf-QKed-gSP7bL4SVslPUOPLvHObgDTyZey3f5Cn7cKxjCxqFBNcKTJbdw4bhiLCpGFXkVgtV43FaZ40V1w3pfzQw_UfgrsKlxMp1ML8XUzFiV5bpa0d1WKsLbHAkUIwuuee5vPCf3i2PuzPLtkehll_DzrZlXgnFvlaOpCxwta3ND16eNL_GnCTmzzjtkFy7Hx1-OTkQn4kA2j4IFnU8LG5TMm6-dzMtUauvIARsdKFVG2gyVK6QJnUptqk0kY5fGeawIB1mdh7JQr2GzburyDWBiLcHNmMKusaEtnE3M0KWJcdZGhY7yAcjellneMZyz0MZ1tuZm9rbJyC6Zt022GsD79TvfWn6Pf47e75dI1u31eRZQhA9SrbUcwId-Sdw9_vtse_83_C08Dfiw7xfXPmwuZrflATzOvy-q-ezQ74GfqsMCoQ
  priority: 102
  providerName: Springer Nature
Title Development of a 3D Hybrid Finite-Discrete Element Simulator Based on GPGPU-Parallelized Computation for Modelling Rock Fracturing Under Quasi-Static and Dynamic Loading Conditions
URI https://link.springer.com/article/10.1007/s00603-019-01960-z
https://www.proquest.com/docview/2284298881
Volume 53
WOSCitedRecordID wos000522733700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1434-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014378
  issn: 0723-2632
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBQkOPAqIhVLNgRtYrOM8nBOi7KOHsgq7FPUW2XEsRWqTsrtF2v1d_EBmnOxuQaIXLlaUhxXJ45nP9sz3MfY2LhJNe43cYHTnoXAJ16FQPHSh1oFyad96dv3TZDJR5-dp1m24Lbq0yo1P9I7aNgXtkX8I0I8GKa7XxMerH5xUo-h0tZPQuMv2EdkISun6EmTbU4RQtp44CSQnXvKuaMaXzhERCWUSUbYQoni-_jMw7dDmXwekPu6MHv_vHz9hjzrECZ9aE3nK7pT1AXt4g4fwgN0fe33f1TP260YSETQONMgBnKyorAtGFeFTPqjQ0yDUhmGbeQ6z6pI0wJo5HGNItNDUMM7G2RnP9JyUWi6qNd5t5SO8HQACZSARNs8HDlN0yTCiai1fMgleigm-XutFxQkLVwXo2sJgVetLvD5tfNo_dkin7TRrnrOz0fDb5xPeCTugHUTBEtes1gQlcekrJ4oyFco4dMpaBVKWkdJ96azQoZOpSZWOROzSuIglYiOjilBY-YLt1U1dvmSQGIMQNMZQrE1orDOJ7rs00c6YyKqo6DGxGdW86FjPSXzjIt_yNXtLyNEKcm8J-brH3m2_uWo5P259-3Az_Hk3_xf5bux77P3GgHaP_93bq9t7e80eBLTg96Z7yPaW8-vyDbtX_FxWi_kR2z8eTrLpkZ8F1CYzbKez778BmdQPqg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAgIOPAqIQIE5wAlWxOv3ASEgTVI1RAZaqTd31_ZKllq7JCko-VGc-IHMrOOkINFbD9wsP1aW_e08dme-D-BFkIWK1xqFJu8uPMeEQnlOJDzjKSUjE3dzy64_Csfj6PAwTjbgZ9sLw2WVrU20hjqvM14jfyPJjsqY8jXn3ek3wapRvLvaSmg0sNgr5j8oZZu-3e3R_30pZX9n_-NQLFUF6CV8OaOEKdeyYCL3yDhZETuRNmQRVCRdt_Aj1XVN7ijPuLGOI-U7gYmDLHDJMeso85zcpXGvwFWPmcW4VFAmq10Lz20sfyhdwTzoyyYd26rHxCdcucTVSZQ1iMWfjnAd3f61IWv9XP_O__aF7sLtZUSN75spcA82imoLbp3jWdyC6wOrXzy_D7_OFUlhbVCh28PhnNvWsF9y_C16JVlSSiVwp6msx6_lCWuc1RP8QC4_x7rCQTJIDkSiJqxEc1wu6Gwjj2FxjpQIIIvMWb5z_EIuB_vcjWZbQtFKTeHnMzUtBcf6ZYaqyrE3r9QJHY9q29ZAA3I1AVuFB3BwKR_wIWxWdVU8Agy1phA7oFBDaU_nRoeqa-JQGa39PPKzDjgtitJsyerO4iLH6YqP2iIvJdSlFnnpogOvVs-cNpwmF9693cItXdq3abrGWgdet4BdX_73aI8vHu053Bjufxqlo93x3hO4KXlxw06bbdicTc6Kp3At-z4rp5NnduYhHF02kH8DXLdnlw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFio48ChUBArMAU6wavxeHxBq6zqtGkWmUKk3d9f2SpZauyQpKPldnPh1zKztpCDRWw_cIidZWfY3r92Z72PsrZ8FkvYaucLozl1LB1y6luCudqW0hQ77uWHXHwajkTg9DZMV9qubhaG2ys4nGked1xntkW_b6EftEOs1a1u3bRFJFH-6_MZJQYpOWjs5jQYiR8XsB5Zvk4-HEb7rd7Yd73_dO-CtwgDekGdPsXjKlV0QqbvQVlaEllAavYMUtuMUnpB9R-eWdLUTqlBIz_J16Ge-g0Faicy1cgfXvcPWhO-HaFFryd7uzvHiDMN1mjgQ2A4nVvR2ZMcM7hENCvUxUa8S1hB8_mdYXOa6fx3PmqgXP_qfn9dj9rDNtWGnMY4nbKWoNtiDawyMG-zewCgbz56yn9fap6DWIMGJ4GBGA20Ql5SZ86hEH4tFBuw3Pffwpbwg9bN6DLuYDORQVzBIBskJT-SYNGrOyzlebYQzjAUAlghA8nOGCR2OMRhBTHNqZlgUjAgVfL6Sk5JTFVBmIKscolklL_DzsDYDD7gg9RmQv3jGTm7lAW6y1aquiucMAqUw-fYxCZHKVblWgezrMJBaKS8XXtZjVoeoNGv53kl25DxdMFUbFKaIwNSgMJ332PvFfy4btpMbf73VQS9tPd8kXeKuxz504F1-_e_VXty82hu2jvhNh4ejo5fsvk27HsaCttjqdHxVvGJ3s-_TcjJ-3ZohsLPbRvJv5-hxoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+3D+Hybrid+Finite-Discrete+Element+Simulator+Based+on+GPGPU-Parallelized+Computation+for+Modelling+Rock+Fracturing+Under+Quasi-Static+and+Dynamic+Loading+Conditions&rft.jtitle=Rock+mechanics+and+rock+engineering&rft.au=Fukuda+Daisuke&rft.au=Mohammadnejad+Mojtaba&rft.au=Liu%2C+Hongyuan&rft.au=Zhang+Qianbing&rft.date=2020-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0723-2632&rft.eissn=1434-453X&rft.volume=53&rft.issue=3&rft.spage=1079&rft.epage=1112&rft_id=info:doi/10.1007%2Fs00603-019-01960-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-2632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-2632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-2632&client=summon