Development of a 3D Hybrid Finite-Discrete Element Simulator Based on GPGPU-Parallelized Computation for Modelling Rock Fracturing Under Quasi-Static and Dynamic Loading Conditions
As a state-of-the-art computational method for simulating rock fracturing and fragmentation, the combined finite-discrete element method (FDEM) has become widely accepted since Munjiza ( 2004 ) published his comprehensive book of FDEM. This study developed a general-purpose graphic-processing-unit (...
Gespeichert in:
| Veröffentlicht in: | Rock mechanics and rock engineering Jg. 53; H. 3; S. 1079 - 1112 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Vienna
Springer Vienna
01.03.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0723-2632, 1434-453X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | As a state-of-the-art computational method for simulating rock fracturing and fragmentation, the combined finite-discrete element method (FDEM) has become widely accepted since Munjiza (
2004
) published his comprehensive book of FDEM. This study developed a general-purpose graphic-processing-unit (GPGPU)-parallelized FDEM using the compute unified device architecture C/C ++ based on the authors’ former sequential two-dimensional (2D) and three-dimensional (3D) Y-HFDEM IDE (integrated development environment) code. The theory and algorithm of the GPGPU-parallelized 3D Y-HFDEM IDE code are first introduced by focusing on the implementation of the contact detection algorithm, which is different from that in the sequential code, contact damping and contact friction. 3D modelling of the failure process of limestone under quasi-static loading conditions in uniaxial compressive strength (UCS) tests and Brazilian tensile strength (BTS) tests are then conducted using the GPGPU-parallelized 3D Y-HFDEM IDE code. The 3D FDEM modelling results show that mixed-mode I–II failures are the dominant failure mechanisms along the shear and splitting failure planes in the UCS and BTS models, respectively, with unstructured meshes. Pure mode I splitting failure planes and pure mode II shear failure planes are only possible in the UCS and BTS models, respectively, with structured meshes. Subsequently, 3D modelling of the dynamic fracturing of marble in dynamic Brazilian tests with a split Hopkinson pressure bar (SHPB) apparatus is conducted using the GPGPU-parallelized 3D HFDEM IDE code considering the entire SHPB testing system. The modelled failure process, final fracture pattern and time histories of the dynamic compressive wave, reflective tensile wave and transmitted compressive wave are compared quantitatively and qualitatively with those from experiments, and good agreements are achieved between them. The computing performance analysis shows the GPGPU-parallelized 3D HFDEM IDE code is 284 times faster than its sequential version and can achieve the computational complexity of O(
N
). The results demonstrate that the GPGPU-parallelized 3D Y-HFDEM IDE code is a valuable and powerful numerical tool for investigating rock fracturing under quasi-static and dynamic loading conditions in rock engineering applications although very fine elements with maximum element size no bigger than the length of the fracture process zone must be used in the area where fracturing process is modelled. |
|---|---|
| AbstractList | As a state-of-the-art computational method for simulating rock fracturing and fragmentation, the combined finite-discrete element method (FDEM) has become widely accepted since Munjiza (
2004
) published his comprehensive book of FDEM. This study developed a general-purpose graphic-processing-unit (GPGPU)-parallelized FDEM using the compute unified device architecture C/C ++ based on the authors’ former sequential two-dimensional (2D) and three-dimensional (3D) Y-HFDEM IDE (integrated development environment) code. The theory and algorithm of the GPGPU-parallelized 3D Y-HFDEM IDE code are first introduced by focusing on the implementation of the contact detection algorithm, which is different from that in the sequential code, contact damping and contact friction. 3D modelling of the failure process of limestone under quasi-static loading conditions in uniaxial compressive strength (UCS) tests and Brazilian tensile strength (BTS) tests are then conducted using the GPGPU-parallelized 3D Y-HFDEM IDE code. The 3D FDEM modelling results show that mixed-mode I–II failures are the dominant failure mechanisms along the shear and splitting failure planes in the UCS and BTS models, respectively, with unstructured meshes. Pure mode I splitting failure planes and pure mode II shear failure planes are only possible in the UCS and BTS models, respectively, with structured meshes. Subsequently, 3D modelling of the dynamic fracturing of marble in dynamic Brazilian tests with a split Hopkinson pressure bar (SHPB) apparatus is conducted using the GPGPU-parallelized 3D HFDEM IDE code considering the entire SHPB testing system. The modelled failure process, final fracture pattern and time histories of the dynamic compressive wave, reflective tensile wave and transmitted compressive wave are compared quantitatively and qualitatively with those from experiments, and good agreements are achieved between them. The computing performance analysis shows the GPGPU-parallelized 3D HFDEM IDE code is 284 times faster than its sequential version and can achieve the computational complexity of O(
N
). The results demonstrate that the GPGPU-parallelized 3D Y-HFDEM IDE code is a valuable and powerful numerical tool for investigating rock fracturing under quasi-static and dynamic loading conditions in rock engineering applications although very fine elements with maximum element size no bigger than the length of the fracture process zone must be used in the area where fracturing process is modelled. As a state-of-the-art computational method for simulating rock fracturing and fragmentation, the combined finite-discrete element method (FDEM) has become widely accepted since Munjiza (2004) published his comprehensive book of FDEM. This study developed a general-purpose graphic-processing-unit (GPGPU)-parallelized FDEM using the compute unified device architecture C/C ++ based on the authors’ former sequential two-dimensional (2D) and three-dimensional (3D) Y-HFDEM IDE (integrated development environment) code. The theory and algorithm of the GPGPU-parallelized 3D Y-HFDEM IDE code are first introduced by focusing on the implementation of the contact detection algorithm, which is different from that in the sequential code, contact damping and contact friction. 3D modelling of the failure process of limestone under quasi-static loading conditions in uniaxial compressive strength (UCS) tests and Brazilian tensile strength (BTS) tests are then conducted using the GPGPU-parallelized 3D Y-HFDEM IDE code. The 3D FDEM modelling results show that mixed-mode I–II failures are the dominant failure mechanisms along the shear and splitting failure planes in the UCS and BTS models, respectively, with unstructured meshes. Pure mode I splitting failure planes and pure mode II shear failure planes are only possible in the UCS and BTS models, respectively, with structured meshes. Subsequently, 3D modelling of the dynamic fracturing of marble in dynamic Brazilian tests with a split Hopkinson pressure bar (SHPB) apparatus is conducted using the GPGPU-parallelized 3D HFDEM IDE code considering the entire SHPB testing system. The modelled failure process, final fracture pattern and time histories of the dynamic compressive wave, reflective tensile wave and transmitted compressive wave are compared quantitatively and qualitatively with those from experiments, and good agreements are achieved between them. The computing performance analysis shows the GPGPU-parallelized 3D HFDEM IDE code is 284 times faster than its sequential version and can achieve the computational complexity of O(N). The results demonstrate that the GPGPU-parallelized 3D Y-HFDEM IDE code is a valuable and powerful numerical tool for investigating rock fracturing under quasi-static and dynamic loading conditions in rock engineering applications although very fine elements with maximum element size no bigger than the length of the fracture process zone must be used in the area where fracturing process is modelled. |
| Author | Fukuda, Daisuke Mohammadnejad, Mojtaba Liu, Hongyuan Zhao, Jian Dehkhoda, Sevda Chan, Andrew Fujii, Yoshiaki Zhang, Qianbing Kodama, Jun-ichi |
| Author_xml | – sequence: 1 givenname: Daisuke surname: Fukuda fullname: Fukuda, Daisuke organization: Faculty of Engineering, Hokkaido University, College of Sciences and Engineering, University of Tasmania – sequence: 2 givenname: Mojtaba surname: Mohammadnejad fullname: Mohammadnejad, Mojtaba organization: College of Sciences and Engineering, University of Tasmania, CSIRO Minerals Resources Business Unit, Queensland Centre for Advanced Technologies – sequence: 3 givenname: Hongyuan orcidid: 0000-0002-5437-4695 surname: Liu fullname: Liu, Hongyuan email: Hong.Liu@utas.edu.au organization: College of Sciences and Engineering, University of Tasmania – sequence: 4 givenname: Qianbing surname: Zhang fullname: Zhang, Qianbing organization: Department of Civil Engineering, Monash University – sequence: 5 givenname: Jian surname: Zhao fullname: Zhao, Jian organization: Department of Civil Engineering, Monash University – sequence: 6 givenname: Sevda surname: Dehkhoda fullname: Dehkhoda, Sevda organization: College of Sciences and Engineering, University of Tasmania, CSIRO Minerals Resources Business Unit, Queensland Centre for Advanced Technologies – sequence: 7 givenname: Andrew surname: Chan fullname: Chan, Andrew organization: College of Sciences and Engineering, University of Tasmania – sequence: 8 givenname: Jun-ichi surname: Kodama fullname: Kodama, Jun-ichi organization: Faculty of Engineering, Hokkaido University – sequence: 9 givenname: Yoshiaki surname: Fujii fullname: Fujii, Yoshiaki organization: Faculty of Engineering, Hokkaido University |
| BookMark | eNp9kU1v1DAQhi1UJLaFP8DJEmeDP_LhHGG3u0XaqgtlJW7RJHaQi2MH26m0-7v4gSQNEhKHHix7PO8zM5r3El047zRCbxl9zygtP0RKCyoIZdV8CkrOL9CKZSIjWS6-X6AVLbkgvBD8FbqM8YHSKVnKFfq90Y_a-qHXLmHfYcBig29OTTAKb40zSZONiW3QSeNrq59k96YfLSQf8CeIWmHv8O6wOxzJAQJYq605T79r3w9jgmSmdDdpb73S1hr3A3_17U-8DdCmMczx0Skd8JcRoiH3M9FicApvTg766b33oGbZ2jtl5nLxNXrZgY36zd_7Ch2319_WN2R_t_u8_rgnkOU8kYyqhmsqy1x2rNUVk01XFhwkF0LnEqjoFIOsE1VTSchZ0VVFW4hC5I1sM6bEFXq31B2C_zXqmOoHPwY3taw5lxmvpJRsUvFF1QYfY9BdPQTTQzjVjNazO_XiTj05Uz-5U58nSP4HtWZZVgpg7POoWNA4zOvT4d9Uz1B_AOe2qQ8 |
| CitedBy_id | crossref_primary_10_1007_s00603_025_04454_3 crossref_primary_10_1016_j_compgeo_2022_104969 crossref_primary_10_1016_j_compgeo_2022_104726 crossref_primary_10_1016_j_tafmec_2025_104979 crossref_primary_10_1016_j_asr_2021_11_037 crossref_primary_10_1016_j_engfracmech_2021_107793 crossref_primary_10_3390_app11062504 crossref_primary_10_1007_s11440_021_01354_y crossref_primary_10_1088_1755_1315_861_3_032027 crossref_primary_10_1016_j_jrmge_2025_05_023 crossref_primary_10_1016_j_compgeo_2024_107035 crossref_primary_10_1088_1755_1315_861_4_042100 crossref_primary_10_1016_j_engfracmech_2022_108929 crossref_primary_10_1016_j_ijrmms_2021_104645 crossref_primary_10_1007_s00603_023_03261_y crossref_primary_10_1007_s00603_024_04218_5 crossref_primary_10_1016_j_engfracmech_2022_108924 crossref_primary_10_1016_j_engfracmech_2022_108926 crossref_primary_10_1016_j_compgeo_2022_105016 crossref_primary_10_1016_j_engfracmech_2024_109857 crossref_primary_10_1016_j_enggeo_2025_107960 crossref_primary_10_1007_s40571_020_00329_2 crossref_primary_10_1007_s40571_023_00700_z crossref_primary_10_1016_j_tafmec_2024_104729 crossref_primary_10_3390_ma17020282 crossref_primary_10_1007_s00603_024_03874_x crossref_primary_10_1016_j_cma_2022_114981 crossref_primary_10_1016_j_enganabound_2025_106228 crossref_primary_10_1016_j_engfailanal_2022_106686 crossref_primary_10_1007_s00366_023_01932_6 crossref_primary_10_1016_j_engfailanal_2025_109498 crossref_primary_10_3390_su14094896 crossref_primary_10_3389_fevo_2023_1288870 crossref_primary_10_1007_s00603_023_03531_9 crossref_primary_10_1002_nag_3368 crossref_primary_10_1080_19648189_2022_2134931 crossref_primary_10_1016_j_compgeo_2021_104554 crossref_primary_10_1007_s10706_025_03149_4 crossref_primary_10_1016_j_compgeo_2024_106517 crossref_primary_10_1007_s12665_024_11632_z crossref_primary_10_1016_j_enganabound_2025_106336 crossref_primary_10_1016_j_compstruct_2025_118880 crossref_primary_10_1016_j_pnucene_2023_104905 crossref_primary_10_1016_j_powtec_2021_117070 crossref_primary_10_1016_j_enganabound_2025_106291 crossref_primary_10_1007_s10346_024_02239_3 crossref_primary_10_1038_s41598_024_66397_z crossref_primary_10_1007_s00603_022_03111_3 crossref_primary_10_1007_s40571_019_00287_4 crossref_primary_10_1016_j_compgeo_2023_105470 crossref_primary_10_1016_j_soildyn_2024_108652 crossref_primary_10_1016_j_compgeo_2022_104982 crossref_primary_10_1007_s40571_020_00349_y crossref_primary_10_1061__ASCE_GM_1943_5622_0001686 crossref_primary_10_1007_s00603_023_03680_x crossref_primary_10_1016_j_tust_2024_105644 crossref_primary_10_1016_j_compgeo_2022_104918 crossref_primary_10_1007_s40571_024_00809_9 crossref_primary_10_1155_2022_8232332 crossref_primary_10_1016_j_compgeo_2024_107031 crossref_primary_10_3390_app12063073 crossref_primary_10_1007_s11831_022_09851_3 crossref_primary_10_1016_j_tust_2024_106210 crossref_primary_10_1016_j_enganabound_2023_09_009 crossref_primary_10_1016_j_compgeo_2022_105045 crossref_primary_10_1007_s00603_020_02202_3 crossref_primary_10_1007_s00603_023_03738_w crossref_primary_10_1016_j_ijrmms_2025_106236 crossref_primary_10_3390_geosciences15080314 crossref_primary_10_1016_j_ijrmms_2025_106233 crossref_primary_10_3390_su141610200 crossref_primary_10_3390_app13158911 crossref_primary_10_3390_math11194197 crossref_primary_10_1016_j_enganabound_2022_08_041 crossref_primary_10_1007_s40571_025_01066_0 crossref_primary_10_1016_j_ijrmms_2020_104448 crossref_primary_10_1016_j_ijrmms_2021_104964 crossref_primary_10_1016_j_compgeo_2025_107354 crossref_primary_10_1007_s00603_021_02671_0 crossref_primary_10_1016_j_simpat_2025_103138 crossref_primary_10_1007_s00603_024_04239_0 crossref_primary_10_1007_s00603_023_03746_w crossref_primary_10_1088_1755_1315_861_3_032077 crossref_primary_10_1016_j_tust_2024_105782 crossref_primary_10_1016_j_compgeo_2022_105065 crossref_primary_10_1016_j_enganabound_2022_09_006 crossref_primary_10_1016_j_enganabound_2022_02_006 crossref_primary_10_1007_s11666_022_01334_y crossref_primary_10_1007_s11440_023_01895_4 crossref_primary_10_1016_j_simpat_2025_103081 crossref_primary_10_1088_1755_1315_1124_1_012117 crossref_primary_10_1016_j_compgeo_2023_105837 crossref_primary_10_1016_j_ijimpeng_2022_104420 crossref_primary_10_1016_j_compgeo_2024_106250 crossref_primary_10_1016_j_engfracmech_2025_111237 crossref_primary_10_1007_s40571_023_00629_3 crossref_primary_10_1016_j_compgeo_2024_106643 crossref_primary_10_1016_j_engfracmech_2025_111195 crossref_primary_10_1080_19475705_2023_2266663 crossref_primary_10_1016_j_enganabound_2024_105768 crossref_primary_10_1016_j_compgeo_2023_105271 crossref_primary_10_1016_j_compgeo_2021_104261 crossref_primary_10_1016_j_compgeo_2024_106483 crossref_primary_10_1016_j_ijrmms_2023_105439 crossref_primary_10_1134_S0025654424604427 crossref_primary_10_1016_j_compgeo_2021_104425 crossref_primary_10_1155_2020_8866621 crossref_primary_10_1016_j_compgeo_2022_104788 crossref_primary_10_1016_j_compgeo_2023_105831 crossref_primary_10_1016_j_powtec_2023_118441 crossref_primary_10_1016_j_enganabound_2020_03_013 crossref_primary_10_1061__ASCE_EM_1943_7889_0001933 crossref_primary_10_1016_j_trgeo_2021_100655 crossref_primary_10_1016_j_engfracmech_2025_111365 crossref_primary_10_1007_s11043_023_09597_w crossref_primary_10_1016_j_ijrmms_2021_104782 crossref_primary_10_1007_s00603_025_04395_x crossref_primary_10_3390_app10228033 crossref_primary_10_1016_j_compgeo_2023_105825 crossref_primary_10_1080_19648189_2021_1924863 crossref_primary_10_1016_j_compgeo_2023_105942 |
| Cites_doi | 10.1002/9781119971160 10.1002/nme.2030 10.1016/j.ijimpeng.2017.11.016 10.1016/j.ijrmms.2013.01.005 10.1016/j.jrmge.2017.03.019 10.1016/S0997-7538(00)00190-X 10.1016/j.partic.2009.04.008 10.1016/j.tecto.2015.10.013 10.1016/j.cageo.2006.07.006 10.1007/s00603-010-0092-7 10.1179/1939787913y.0000000035 10.1016/0020-7683(95)00255-3 10.1108/02644400910975469 10.1007/s00024-006-0066-6 10.1016/j.compgeo.2014.03.011 10.1007/s00603-014-0592-y 10.1007/s00603-009-0027-3 10.1016/j.compgeo.2016.07.009 10.1007/s00603-006-0107-6 10.1002/nag.2852 10.1016/j.compgeo.2016.08.014 10.1007/s00603-012-0257-7 10.1016/j.jrmge.2013.12.007 10.1016/j.ijrmms.2015.01.011 10.1016/j.compgeo.2018.04.011 10.1007/s00603-011-0205-y 10.1002/(SICI)1097-0207(19990110)44:1<41::AID-NME487>3.0.CO;2-A 10.1016/j.jrmge.2014.10.005 10.1002/0470020180 10.1016/j.ijrmms.2014.03.011 10.1007/s00603-013-0463-y 10.1007/s40789-016-0142-1 10.1002/nag.2934 10.1007/s40571-014-0026-3 10.1108/02644409510799532 10.1016/j.compstruc.2017.10.005 10.1016/j.jrmge.2014.10.001 10.1016/j.compgeo.2016.09.007 10.1080/12269328.2018.1448006 10.1061/(asce)gm.1943-5622.0000216 10.1016/j.ijrmms.2018.03.016 10.1016/j.advengsoft.2012.10.006 10.1016/0148-9062(64)90060-9 10.1016/j.engfracmech.2019.02.007 10.1007/978-981-10-1926-5_16 10.1109/IPDPS.2009.5161005 10.1016/C2014-0-01408-6 10.1016/b978-0-12-384988-5.00006-1 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Austria, part of Springer Nature 2019 Rock Mechanics and Rock Engineering is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer-Verlag GmbH Austria, part of Springer Nature 2019 – notice: Rock Mechanics and Rock Engineering is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7TN 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KR7 L.G L6V M2P M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
| DOI | 10.1007/s00603-019-01960-z |
| DatabaseName | CrossRef ProQuest Central (Corporate) Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database (ProQuest) Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection (ProQuest) ProQuest Central Basic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Engineering |
| EISSN | 1434-453X |
| EndPage | 1112 |
| ExternalDocumentID | 10_1007_s00603_019_01960_z |
| GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 18K14165 funderid: http://dx.doi.org/10.13039/501100001691 – fundername: Department of Foreign Affairs and Trade, Australian Government grantid: 17/20470 funderid: http://dx.doi.org/10.13039/501100000996 |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V L8X LAS LK5 LLZTM M2P M4Y M7R M7S MA- MK~ MM- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 Y6R YLTOR Z45 Z5O Z7Y Z7Z Z81 Z85 Z86 Z8S Z8T Z8U Z8Z ZMTXR ZY4 ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7TN 7UA 7XB 8FD 8FK C1K F1W FR3 H96 KR7 L.G PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-a452t-40db2e08758f1ce918bf762a8233e58a03fd1a4f39b98a516f96c63635b8c41d3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 141 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522733700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0723-2632 |
| IngestDate | Tue Nov 04 22:07:58 EST 2025 Sat Nov 29 05:38:06 EST 2025 Tue Nov 18 22:44:12 EST 2025 Fri Feb 21 02:35:34 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | FDEM 3D fracture process analysis Quasi-static loading Rocks Parallel computation Dynamic loading GPGPU CUDA C/C++ |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a452t-40db2e08758f1ce918bf762a8233e58a03fd1a4f39b98a516f96c63635b8c41d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5437-4695 |
| OpenAccessLink | http://hdl.handle.net/2115/80506 |
| PQID | 2284298881 |
| PQPubID | 60272 |
| PageCount | 34 |
| ParticipantIDs | proquest_journals_2284298881 crossref_primary_10_1007_s00603_019_01960_z crossref_citationtrail_10_1007_s00603_019_01960_z springer_journals_10_1007_s00603_019_01960_z |
| PublicationCentury | 2000 |
| PublicationDate | 20200300 2020-03-00 20200301 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 3 year: 2020 text: 20200300 |
| PublicationDecade | 2020 |
| PublicationPlace | Vienna |
| PublicationPlace_xml | – name: Vienna – name: Wien |
| PublicationTitle | Rock mechanics and rock engineering |
| PublicationTitleAbbrev | Rock Mech Rock Eng |
| PublicationYear | 2020 |
| Publisher | Springer Vienna Springer Nature B.V |
| Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
| References | Liu, Deng (CR25) 2019; 211 Guo (CR15) 2014 Hamdi, Stead, Elmo (CR16) 2014; 60 Munjiza, Andrews, White (CR39) 1999; 44 Osthus, Godinez, Rougier, Srinivasan (CR45) 2018; 106 Munjiza, Knight, Rougier (CR42) 2015 Ayachit (CR3) 2015 CR35 CR34 Rougier, Knight, Broome, Sussman, Munjiza (CR49) 2014; 70 Mahabadi, Kaifosh, Marschall, Vietor (CR33) 2014; 6 An, Liu, Han, Zheng, Wang (CR2) 2017; 81 Munjiza, Owen, Bicanic (CR38) 1995; 12 Ma, Zhang, Zhou, Ng, Wang, Chen (CR29) 2018; 113 Fairhurst (CR11) 1964; 1 Mahabadi (CR30) 2012 Zhang, Zhao (CR60) 2013; 60 Zhang, Zhao (CR61) 2014; 47 Zhang, Quigley, Chan (CR63) 2013; 60–61 Elmo, Stead (CR9) 2010; 43 CR6 CR5 CR7 CR48 CR46 Lisjak, Kaifosh, He, Tatone, Mahabadi, Grasselli (CR23) 2017; 81 CR44 Zhang (CR64) 2016 Godinez, Rougier, Osthus, Lei, Knight, Srinivasan (CR14) 2018 Munjiza, Knight, Rougier (CR41) 2011 Mahabadi, Lisjak, Munjiza, Grasselli (CR32) 2012; 12 Camacho, Ortiz (CR8) 1996; 33 Heinze, Jansen, Galvan, Miller (CR17) 2016; 684 Mohammadnejad, Liu, Chan, Dehkhoda, Fukuda (CR36) 2018 Li, Wong (CR21) 2013; 46 Munshi, Gaster, Mattson, Fung, Ginsburg (CR43) 2011 Yan, Zheng (CR58) 2017; 81 Yao, He, Xia (CR59) 2017; 9 Hondros (CR18) 1959; 10 Lisjak, Grasselli (CR22) 2014; 6 Yan, Jiao (CR57) 2018; 196 Munjiza, Xiang, Garcia, Latham, D’Albano, John (CR40) 2010; 8 Xiang, Munjiza, Latham, Guises (CR55) 2009; 26 Rogers, Elmo, Webb, Catalan (CR47) 2015; 48 An, Tannant (CR1) 2007; 33 Sato, Hashida (CR51) 2006; 163 CR12 CR56 CR52 CR50 Lukas, Schiava D’Albano, Munjiza (CR28) 2014; 6 Liu, Han, An, Shi (CR27) 2016; 3 Munjiza (CR37) 2004 Mahabadi, Cottrell, Grasselli (CR31) 2010; 43 Fukuda, Mohammadnejad, Liu, Dehkhoda, Chan, Cho, Min, Han, Kodama, Fuji (CR13) 2019 Zhang, Paulino, Celes (CR62) 2007; 72 Iqbal, Mohanty (CR19) 2006; 40 Erarslan, Liang, Williams (CR10) 2012; 45 Lei, Rougier, Knight, Munjiza (CR20) 2014; 1 Tijssens, Sluys, van der Giessen (CR54) 2000; 19 Batinić, Smoljanović, Munjiza, Mihanović (CR4) 2018; 69 Lisjak, Mahabadi, He, Tatone, Kaifosh, Haque, Grasselli (CR24) 2018; 100 Liu, Kang, Lin (CR26) 2015; 9 Tatone, Grasselli (CR53) 2015; 75 S Rogers (1960_CR47) 2015; 48 1960_CR12 D Fukuda (1960_CR13) 2019 1960_CR56 T Heinze (1960_CR17) 2016; 684 T Lukas (1960_CR28) 2014; 6 1960_CR52 U Ayachit (1960_CR3) 2015 MJ Iqbal (1960_CR19) 2006; 40 1960_CR50 Z Zhang (1960_CR62) 2007; 72 C Fairhurst (1960_CR11) 1964; 1 D Elmo (1960_CR9) 2010; 43 L Guo (1960_CR15) 2014 1960_CR7 1960_CR6 1960_CR5 J Xiang (1960_CR55) 2009; 26 A Munjiza (1960_CR40) 2010; 8 BSA Tatone (1960_CR53) 2015; 75 D Li (1960_CR21) 2013; 46 M Mohammadnejad (1960_CR36) 2018 B An (1960_CR1) 2007; 33 A Munjiza (1960_CR38) 1995; 12 M Batinić (1960_CR4) 2018; 69 C Yan (1960_CR58) 2017; 81 HY Liu (1960_CR26) 2015; 9 A Lisjak (1960_CR22) 2014; 6 Z Lei (1960_CR20) 2014; 1 1960_CR35 E Rougier (1960_CR49) 2014; 70 1960_CR34 N Erarslan (1960_CR10) 2012; 45 G Hondros (1960_CR18) 1959; 10 OK Mahabadi (1960_CR32) 2012; 12 K Sato (1960_CR51) 2006; 163 A Lisjak (1960_CR24) 2018; 100 A Munjiza (1960_CR39) 1999; 44 A Munjiza (1960_CR37) 2004 D Osthus (1960_CR45) 2018; 106 AA Munjiza (1960_CR41) 2011 P Hamdi (1960_CR16) 2014; 60 A Lisjak (1960_CR23) 2017; 81 HM An (1960_CR2) 2017; 81 G Ma (1960_CR29) 2018; 113 1960_CR46 C Yan (1960_CR57) 2018; 196 1960_CR44 HY Liu (1960_CR27) 2016; 3 HC Godinez (1960_CR14) 2018 A Munshi (1960_CR43) 2011 GT Camacho (1960_CR8) 1996; 33 A Munjiza (1960_CR42) 2015 Q Liu (1960_CR25) 2019; 211 MGA Tijssens (1960_CR54) 2000; 19 QB Zhang (1960_CR61) 2014; 47 OK Mahabadi (1960_CR30) 2012 L Zhang (1960_CR63) 2013; 60–61 QB Zhang (1960_CR60) 2013; 60 ZX Zhang (1960_CR64) 2016 W Yao (1960_CR59) 2017; 9 OK Mahabadi (1960_CR31) 2010; 43 O Mahabadi (1960_CR33) 2014; 6 1960_CR48 |
| References_xml | – year: 2011 ident: CR41 publication-title: Computational mechanics of discontinue doi: 10.1002/9781119971160 – volume: 72 start-page: 893 year: 2007 end-page: 923 ident: CR62 article-title: Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials publication-title: Int J Numer Methods Eng doi: 10.1002/nme.2030 – volume: 113 start-page: 132 year: 2018 end-page: 143 ident: CR29 article-title: The effect of different fracture mechanisms on impact fragmentation of brittle heterogeneous solid publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2017.11.016 – volume: 60 start-page: 423 year: 2013 end-page: 439 ident: CR60 article-title: Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2013.01.005 – volume: 9 start-page: 807 year: 2017 end-page: 817 ident: CR59 article-title: Dynamic mechanical behaviors of Fangshan marble publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2017.03.019 – ident: CR12 – year: 2011 ident: CR43 publication-title: OpenCL programming guide – volume: 19 start-page: 761 issue: 5 year: 2000 end-page: 779 ident: CR54 article-title: Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces publication-title: Eur J Mech A Solids doi: 10.1016/S0997-7538(00)00190-X – ident: CR35 – year: 2015 ident: CR42 publication-title: Large strain finite element method: a practical course – volume: 8 start-page: 100 year: 2010 end-page: 105 ident: CR40 article-title: The virtual geoscience workbench, VGW: open source tools for discontinuous systems publication-title: Particuology doi: 10.1016/j.partic.2009.04.008 – volume: 684 start-page: 4 year: 2016 end-page: 11 ident: CR17 article-title: Systematic study of the effects of mass and time scaling techniques applied in numerical rock mechanics simulations publication-title: Tectonophysics doi: 10.1016/j.tecto.2015.10.013 – year: 2012 ident: CR30 publication-title: Investigating the influence of micro-scale heterogeneity and microstructure on the failure and mechanical behaviour of geomaterials – volume: 33 start-page: 513 year: 2007 end-page: 521 ident: CR1 article-title: Discrete element method contact model for dynamic simulation of inelastic rock impact publication-title: Comput Geosci doi: 10.1016/j.cageo.2006.07.006 – volume: 43 start-page: 707 year: 2010 end-page: 716 ident: CR31 article-title: An example of realistic modelling of rock dynamics problems: FEM/DEM simulation of dynamic Brazilian test on barre granite publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-010-0092-7 – volume: 9 start-page: 115 year: 2015 end-page: 131 ident: CR26 article-title: Hybrid finite–discrete element modeling of geomaterials fracture and fragment muck-piling publication-title: Int J Geotech Eng doi: 10.1179/1939787913y.0000000035 – volume: 33 start-page: 2899 year: 1996 end-page: 2938 ident: CR8 article-title: Computational modelling of impact damage in brittle materials publication-title: Int J Solids Struct doi: 10.1016/0020-7683(95)00255-3 – ident: CR46 – volume: 26 start-page: 673 year: 2009 end-page: 687 ident: CR55 article-title: On the validation of DEM and FEM/DEM models in 2D and 3D publication-title: Eng Comput doi: 10.1108/02644400910975469 – ident: CR50 – volume: 163 start-page: 1073 year: 2006 end-page: 1089 ident: CR51 article-title: Fracture toughness evaluation based on tension-softening model and its application to hydraulic fracturing publication-title: Pure Appl Geophys doi: 10.1007/s00024-006-0066-6 – volume: 60 start-page: 33 year: 2014 end-page: 46 ident: CR16 article-title: Damage characterization during laboratory strength testing: a 3D-finite-discrete element approach publication-title: Comput Geotech doi: 10.1016/j.compgeo.2014.03.011 – ident: CR5 – volume: 48 start-page: 633 year: 2015 end-page: 649 ident: CR47 article-title: Volumetric fracture intensity measurement for improved rock mass characterisation and fragmentation assessment in block caving operations publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-014-0592-y – volume: 43 start-page: 3 year: 2010 end-page: 19 ident: CR9 article-title: An integrated numerical modelling-discrete fracture network approach applied to the characterisation of rock mass strength of naturally fractured pillars publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-009-0027-3 – year: 2016 ident: CR64 publication-title: Rock fracture and blasting: theory and applications – volume: 81 start-page: 1 year: 2017 end-page: 18 ident: CR23 article-title: A 2D, fully-coupled, hydro-mechanical, FDEM formulation for modelling fracturing processes in discontinuous, porous rock masses publication-title: Comput Geotech doi: 10.1016/j.compgeo.2016.07.009 – volume: 40 start-page: 453 year: 2006 end-page: 475 ident: CR19 article-title: Experimental calibration of ISRM suggested fracture toughness measurement techniques in selected brittle rocks publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-006-0107-6 – year: 2018 ident: CR14 article-title: Fourier amplitude sensitivity test applied to dynamic combined finite-discrete element methods-based simulations publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.2852 – year: 2014 ident: CR15 publication-title: Development of a three-dimensional fracture model for the combined finite-discrete element method – volume: 81 start-page: 212 year: 2017 end-page: 228 ident: CR58 article-title: FDEM-flow3D: a 3D hydro-mechanical coupled model considering the pore seepage of rock matrix for simulating three-dimensional hydraulic fracturing publication-title: Comput Geotech doi: 10.1016/j.compgeo.2016.08.014 – year: 2015 ident: CR3 publication-title: The ParaView Guide: a parallel visualization application – volume: 69 start-page: 1085 year: 2018 end-page: 1092 ident: CR4 article-title: GPU based parallel FDEM for analysis of cable structures publication-title: Građevinar – volume: 46 start-page: 269 year: 2013 end-page: 287 ident: CR21 article-title: The Brazilian disc test for rock mechanics applications: review and new insights publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-012-0257-7 – ident: CR6 – volume: 6 start-page: 301 year: 2014 end-page: 314 ident: CR22 article-title: A review of discrete modeling techniques for fracturing processes in discontinuous rock masses publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2013.12.007 – volume: 75 start-page: 56 year: 2015 end-page: 72 ident: CR53 article-title: A calibration procedure for two-dimensional laboratory-scale hybrid finite-discrete element simulations publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2015.01.011 – ident: CR56 – volume: 100 start-page: 84 year: 2018 end-page: 96 ident: CR24 article-title: Acceleration of a 2D/3D finite-discrete element code for geomechanical simulations using General Purpose GPU computing publication-title: Comput Geotech doi: 10.1016/j.compgeo.2018.04.011 – volume: 10 start-page: 243 year: 1959 end-page: 268 ident: CR18 article-title: The evaluation of Poisson’s ratio and the modulus of materials of low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete publication-title: Aust J Appl Sci – volume: 45 start-page: 739 year: 2012 end-page: 751 ident: CR10 article-title: Experimental and numerical studies on determination of indirect tensile strength of rocks publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-011-0205-y – volume: 44 start-page: 41 year: 1999 end-page: 57 ident: CR39 article-title: Combined single and smeared crack model in combined finite-discrete element analysis publication-title: Int J Numer Meth Eng doi: 10.1002/(SICI)1097-0207(19990110)44:1<41::AID-NME487>3.0.CO;2-A – ident: CR44 – volume: 6 start-page: 591 year: 2014 end-page: 606 ident: CR33 article-title: Three-dimensional FDEM numerical simulation of failure processes observed in Opalinus Clay laboratory samples publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2014.10.005 – year: 2004 ident: CR37 publication-title: The combined finite-discrete element method doi: 10.1002/0470020180 – ident: CR48 – volume: 70 start-page: 101 year: 2014 end-page: 108 ident: CR49 article-title: Validation of a three-dimensional finite-discrete element method using experimental results of the split Hopkinson pressure bar test publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2014.03.011 – volume: 47 start-page: 1411 issue: 4 year: 2014 end-page: 1478 ident: CR61 article-title: A review of dynamic experimental techniques and mechanical behaviour of rock materials publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-013-0463-y – volume: 3 start-page: 295 year: 2016 end-page: 310 ident: CR27 article-title: Hybrid finite-discrete element modelling of asperity degradation and gouge grinding during direct shearing of rough rock joints publication-title: Int J Coal Sci Technol doi: 10.1007/s40789-016-0142-1 – year: 2019 ident: CR13 article-title: Development of a GPGPU-parallelized hybrid finite-discrete element method for modelling rock fracture publication-title: Int J Numer Anal Meth Geomech doi: 10.1002/nag.2934 – volume: 1 start-page: 307 year: 2014 end-page: 319 ident: CR20 article-title: A framework for grand scale parallelization of the combined finite discrete element method in 2d publication-title: Comput Part Mech doi: 10.1007/s40571-014-0026-3 – ident: CR52 – volume: 12 start-page: 145 issue: 2 year: 1995 end-page: 174 ident: CR38 article-title: A combined finite-discrete element method in transient dynamics of fracturing solids publication-title: Eng Comput doi: 10.1108/02644409510799532 – volume: 196 start-page: 311 year: 2018 end-page: 326 ident: CR57 article-title: A 2D fully coupled hydro-mechanical finite-discrete element model with real pore seepage for simulating the deformation and fracture of porous medium driven by fluid publication-title: Comput Struct doi: 10.1016/j.compstruc.2017.10.005 – volume: 6 start-page: 607 year: 2014 end-page: 615 ident: CR28 article-title: Space decomposition based parallelization solutions for the combined finite-discrete element method in 2D publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2014.10.001 – volume: 81 start-page: 322 year: 2017 end-page: 345 ident: CR2 article-title: Hybrid finite-discrete element modelling of dynamic fracture and resultant fragment casting and muck-piling by rock blast publication-title: Comput Geotech doi: 10.1016/j.compgeo.2016.09.007 – year: 2018 ident: CR36 article-title: An overview on advances in computational fracture mechanics of rock publication-title: Geosyst Eng doi: 10.1080/12269328.2018.1448006 – ident: CR34 – volume: 12 start-page: 676 year: 2012 end-page: 688 ident: CR32 article-title: Y-Geo: new combined finite-discrete element numerical code for geomechanical applications publication-title: Int J Geomech doi: 10.1061/(asce)gm.1943-5622.0000216 – volume: 106 start-page: 278 year: 2018 end-page: 288 ident: CR45 article-title: Calibrating the stress-time curve of a combined finite-discrete element method to a split Hopkinson pressure bar experiment publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2018.03.016 – ident: CR7 – volume: 60–61 start-page: 70 year: 2013 end-page: 80 ident: CR63 article-title: A fast scalable implementation of the two-dimensional triangular discrete element method on a GPU platform publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2012.10.006 – volume: 1 start-page: 535 year: 1964 end-page: 546 ident: CR11 article-title: On the validity of the ‘Brazilian’ test for brittle materials publication-title: Int J Rock Mech Min Sci Geomech Abstr doi: 10.1016/0148-9062(64)90060-9 – volume: 211 start-page: 442 year: 2019 end-page: 462 ident: CR25 article-title: A numerical investigation of element size and loading/unloading rate for intact rock in laboratory-scale and field-scale based on the combined finite-discrete element method publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2019.02.007 – volume: 33 start-page: 513 year: 2007 ident: 1960_CR1 publication-title: Comput Geosci doi: 10.1016/j.cageo.2006.07.006 – volume: 43 start-page: 3 year: 2010 ident: 1960_CR9 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-009-0027-3 – volume: 6 start-page: 591 year: 2014 ident: 1960_CR33 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2014.10.005 – ident: 1960_CR12 – volume: 60 start-page: 33 year: 2014 ident: 1960_CR16 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2014.03.011 – volume-title: Investigating the influence of micro-scale heterogeneity and microstructure on the failure and mechanical behaviour of geomaterials year: 2012 ident: 1960_CR30 – ident: 1960_CR56 doi: 10.1007/978-981-10-1926-5_16 – volume: 1 start-page: 307 year: 2014 ident: 1960_CR20 publication-title: Comput Part Mech doi: 10.1007/s40571-014-0026-3 – volume: 46 start-page: 269 year: 2013 ident: 1960_CR21 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-012-0257-7 – volume: 12 start-page: 145 issue: 2 year: 1995 ident: 1960_CR38 publication-title: Eng Comput doi: 10.1108/02644409510799532 – ident: 1960_CR50 doi: 10.1109/IPDPS.2009.5161005 – volume: 40 start-page: 453 year: 2006 ident: 1960_CR19 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-006-0107-6 – ident: 1960_CR35 – volume: 45 start-page: 739 year: 2012 ident: 1960_CR10 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-011-0205-y – volume: 33 start-page: 2899 year: 1996 ident: 1960_CR8 publication-title: Int J Solids Struct doi: 10.1016/0020-7683(95)00255-3 – volume: 196 start-page: 311 year: 2018 ident: 1960_CR57 publication-title: Comput Struct doi: 10.1016/j.compstruc.2017.10.005 – volume: 9 start-page: 115 year: 2015 ident: 1960_CR26 publication-title: Int J Geotech Eng doi: 10.1179/1939787913y.0000000035 – volume: 12 start-page: 676 year: 2012 ident: 1960_CR32 publication-title: Int J Geomech doi: 10.1061/(asce)gm.1943-5622.0000216 – volume: 69 start-page: 1085 year: 2018 ident: 1960_CR4 publication-title: Građevinar – year: 2019 ident: 1960_CR13 publication-title: Int J Numer Anal Meth Geomech doi: 10.1002/nag.2934 – year: 2018 ident: 1960_CR14 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.2852 – volume: 100 start-page: 84 year: 2018 ident: 1960_CR24 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2018.04.011 – volume: 3 start-page: 295 year: 2016 ident: 1960_CR27 publication-title: Int J Coal Sci Technol doi: 10.1007/s40789-016-0142-1 – volume: 8 start-page: 100 year: 2010 ident: 1960_CR40 publication-title: Particuology doi: 10.1016/j.partic.2009.04.008 – year: 2018 ident: 1960_CR36 publication-title: Geosyst Eng doi: 10.1080/12269328.2018.1448006 – volume: 47 start-page: 1411 issue: 4 year: 2014 ident: 1960_CR61 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-013-0463-y – volume: 6 start-page: 301 year: 2014 ident: 1960_CR22 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2013.12.007 – volume: 60 start-page: 423 year: 2013 ident: 1960_CR60 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2013.01.005 – volume-title: Development of a three-dimensional fracture model for the combined finite-discrete element method year: 2014 ident: 1960_CR15 – volume: 684 start-page: 4 year: 2016 ident: 1960_CR17 publication-title: Tectonophysics doi: 10.1016/j.tecto.2015.10.013 – ident: 1960_CR5 – volume: 9 start-page: 807 year: 2017 ident: 1960_CR59 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2017.03.019 – volume: 19 start-page: 761 issue: 5 year: 2000 ident: 1960_CR54 publication-title: Eur J Mech A Solids doi: 10.1016/S0997-7538(00)00190-X – volume-title: OpenCL programming guide year: 2011 ident: 1960_CR43 – volume: 75 start-page: 56 year: 2015 ident: 1960_CR53 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2015.01.011 – ident: 1960_CR46 – volume-title: Rock fracture and blasting: theory and applications year: 2016 ident: 1960_CR64 doi: 10.1016/C2014-0-01408-6 – volume: 113 start-page: 132 year: 2018 ident: 1960_CR29 publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2017.11.016 – ident: 1960_CR52 – ident: 1960_CR6 – volume: 10 start-page: 243 year: 1959 ident: 1960_CR18 publication-title: Aust J Appl Sci – volume: 163 start-page: 1073 year: 2006 ident: 1960_CR51 publication-title: Pure Appl Geophys doi: 10.1007/s00024-006-0066-6 – volume: 6 start-page: 607 year: 2014 ident: 1960_CR28 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2014.10.001 – volume: 43 start-page: 707 year: 2010 ident: 1960_CR31 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-010-0092-7 – volume: 81 start-page: 1 year: 2017 ident: 1960_CR23 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2016.07.009 – volume: 211 start-page: 442 year: 2019 ident: 1960_CR25 publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2019.02.007 – volume: 106 start-page: 278 year: 2018 ident: 1960_CR45 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2018.03.016 – volume-title: The ParaView Guide: a parallel visualization application year: 2015 ident: 1960_CR3 – ident: 1960_CR34 – volume-title: Large strain finite element method: a practical course year: 2015 ident: 1960_CR42 – ident: 1960_CR7 doi: 10.1016/b978-0-12-384988-5.00006-1 – volume: 60–61 start-page: 70 year: 2013 ident: 1960_CR63 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2012.10.006 – volume: 1 start-page: 535 year: 1964 ident: 1960_CR11 publication-title: Int J Rock Mech Min Sci Geomech Abstr doi: 10.1016/0148-9062(64)90060-9 – volume: 48 start-page: 633 year: 2015 ident: 1960_CR47 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-014-0592-y – volume: 26 start-page: 673 year: 2009 ident: 1960_CR55 publication-title: Eng Comput doi: 10.1108/02644400910975469 – volume: 81 start-page: 322 year: 2017 ident: 1960_CR2 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2016.09.007 – volume: 81 start-page: 212 year: 2017 ident: 1960_CR58 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2016.08.014 – volume-title: The combined finite-discrete element method year: 2004 ident: 1960_CR37 doi: 10.1002/0470020180 – volume-title: Computational mechanics of discontinue year: 2011 ident: 1960_CR41 doi: 10.1002/9781119971160 – volume: 44 start-page: 41 year: 1999 ident: 1960_CR39 publication-title: Int J Numer Meth Eng doi: 10.1002/(SICI)1097-0207(19990110)44:1<41::AID-NME487>3.0.CO;2-A – volume: 72 start-page: 893 year: 2007 ident: 1960_CR62 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.2030 – ident: 1960_CR48 – ident: 1960_CR44 – volume: 70 start-page: 101 year: 2014 ident: 1960_CR49 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2014.03.011 |
| SSID | ssj0014378 |
| Score | 2.5711844 |
| Snippet | As a state-of-the-art computational method for simulating rock fracturing and fragmentation, the combined finite-discrete element method (FDEM) has become... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1079 |
| SubjectTerms | Agreements Algorithms Civil Engineering Compressive strength Computation Computer applications Computer architecture Computer simulation Damping Detection Discrete element method Dynamic loads Earth and Environmental Science Earth Sciences Failure Failure mechanisms Fracturing Geophysics/Geodesy Graphics processing units Limestone Marble Mechanical loading Modelling Original Paper Parallel processing Planes Rocks Shear Simulators Split Hopkinson pressure bars Splitting Tests Three dimensional models |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VFiQ4UChFbGmrOXADS-s4H84Rut3toaqWlqLeIjuJpUhtgna3SLu_ix_IjJNsCwIkeosSx4o09sxzZuY9gHdxnhj-1ygsRXcRSpcIE0otQhcaE2iXDgvPrn-anJ3pq6t02jWFzftq9z4l6T31utmNqUO49ofrewh3i9Uj2KJwp1mw4fzi6zp3EKrW_yaBEsxG3rXK_HmOX8PRHcb8LS3qo814-2Hf-QKed-gSP7bL4SVslPUOPLvHObgDTyZey3f5Cn7cKxjCxqFBNcKTJbdw4bhiLCpGFXkVgtV43FaZ40V1w3pfzQw_UfgrsKlxMp1ML8XUzFiV5bpa0d1WKsLbHAkUIwuuee5vPCf3i2PuzPLtkehll_DzrZlXgnFvlaOpCxwta3ND16eNL_GnCTmzzjtkFy7Hx1-OTkQn4kA2j4IFnU8LG5TMm6-dzMtUauvIARsdKFVG2gyVK6QJnUptqk0kY5fGeawIB1mdh7JQr2GzburyDWBiLcHNmMKusaEtnE3M0KWJcdZGhY7yAcjellneMZyz0MZ1tuZm9rbJyC6Zt022GsD79TvfWn6Pf47e75dI1u31eRZQhA9SrbUcwId-Sdw9_vtse_83_C08Dfiw7xfXPmwuZrflATzOvy-q-ezQ74GfqsMCoQ priority: 102 providerName: Springer Nature |
| Title | Development of a 3D Hybrid Finite-Discrete Element Simulator Based on GPGPU-Parallelized Computation for Modelling Rock Fracturing Under Quasi-Static and Dynamic Loading Conditions |
| URI | https://link.springer.com/article/10.1007/s00603-019-01960-z https://www.proquest.com/docview/2284298881 |
| Volume | 53 |
| WOSCitedRecordID | wos000522733700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1434-453X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014378 issn: 0723-2632 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBQkOPAqIhVLNgRtYrOM8nBOi7KOHsgq7FPUW2XEsRWqTsrtF2v1d_EBmnOxuQaIXLlaUhxXJ45nP9sz3MfY2LhJNe43cYHTnoXAJ16FQPHSh1oFyad96dv3TZDJR5-dp1m24Lbq0yo1P9I7aNgXtkX8I0I8GKa7XxMerH5xUo-h0tZPQuMv2EdkISun6EmTbU4RQtp44CSQnXvKuaMaXzhERCWUSUbYQoni-_jMw7dDmXwekPu6MHv_vHz9hjzrECZ9aE3nK7pT1AXt4g4fwgN0fe33f1TP260YSETQONMgBnKyorAtGFeFTPqjQ0yDUhmGbeQ6z6pI0wJo5HGNItNDUMM7G2RnP9JyUWi6qNd5t5SO8HQACZSARNs8HDlN0yTCiai1fMgleigm-XutFxQkLVwXo2sJgVetLvD5tfNo_dkin7TRrnrOz0fDb5xPeCTugHUTBEtes1gQlcekrJ4oyFco4dMpaBVKWkdJ96azQoZOpSZWOROzSuIglYiOjilBY-YLt1U1dvmSQGIMQNMZQrE1orDOJ7rs00c6YyKqo6DGxGdW86FjPSXzjIt_yNXtLyNEKcm8J-brH3m2_uWo5P259-3Az_Hk3_xf5bux77P3GgHaP_93bq9t7e80eBLTg96Z7yPaW8-vyDbtX_FxWi_kR2z8eTrLpkZ8F1CYzbKez778BmdQPqg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAgIOPAqIQIE5wAlWxOv3ASEgTVI1RAZaqTd31_ZKllq7JCko-VGc-IHMrOOkINFbD9wsP1aW_e08dme-D-BFkIWK1xqFJu8uPMeEQnlOJDzjKSUjE3dzy64_Csfj6PAwTjbgZ9sLw2WVrU20hjqvM14jfyPJjsqY8jXn3ek3wapRvLvaSmg0sNgr5j8oZZu-3e3R_30pZX9n_-NQLFUF6CV8OaOEKdeyYCL3yDhZETuRNmQRVCRdt_Aj1XVN7ijPuLGOI-U7gYmDLHDJMeso85zcpXGvwFWPmcW4VFAmq10Lz20sfyhdwTzoyyYd26rHxCdcucTVSZQ1iMWfjnAd3f61IWv9XP_O__aF7sLtZUSN75spcA82imoLbp3jWdyC6wOrXzy_D7_OFUlhbVCh28PhnNvWsF9y_C16JVlSSiVwp6msx6_lCWuc1RP8QC4_x7rCQTJIDkSiJqxEc1wu6Gwjj2FxjpQIIIvMWb5z_EIuB_vcjWZbQtFKTeHnMzUtBcf6ZYaqyrE3r9QJHY9q29ZAA3I1AVuFB3BwKR_wIWxWdVU8Agy1phA7oFBDaU_nRoeqa-JQGa39PPKzDjgtitJsyerO4iLH6YqP2iIvJdSlFnnpogOvVs-cNpwmF9693cItXdq3abrGWgdet4BdX_73aI8vHu053Bjufxqlo93x3hO4KXlxw06bbdicTc6Kp3At-z4rp5NnduYhHF02kH8DXLdnlw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFio48ChUBArMAU6wavxeHxBq6zqtGkWmUKk3d9f2SpZauyQpKPldnPh1zKztpCDRWw_cIidZWfY3r92Z72PsrZ8FkvYaucLozl1LB1y6luCudqW0hQ77uWHXHwajkTg9DZMV9qubhaG2ys4nGked1xntkW_b6EftEOs1a1u3bRFJFH-6_MZJQYpOWjs5jQYiR8XsB5Zvk4-HEb7rd7Yd73_dO-CtwgDekGdPsXjKlV0QqbvQVlaEllAavYMUtuMUnpB9R-eWdLUTqlBIz_J16Ge-g0Faicy1cgfXvcPWhO-HaFFryd7uzvHiDMN1mjgQ2A4nVvR2ZMcM7hENCvUxUa8S1hB8_mdYXOa6fx3PmqgXP_qfn9dj9rDNtWGnMY4nbKWoNtiDawyMG-zewCgbz56yn9fap6DWIMGJ4GBGA20Ql5SZ86hEH4tFBuw3Pffwpbwg9bN6DLuYDORQVzBIBskJT-SYNGrOyzlebYQzjAUAlghA8nOGCR2OMRhBTHNqZlgUjAgVfL6Sk5JTFVBmIKscolklL_DzsDYDD7gg9RmQv3jGTm7lAW6y1aquiucMAqUw-fYxCZHKVblWgezrMJBaKS8XXtZjVoeoNGv53kl25DxdMFUbFKaIwNSgMJ332PvFfy4btpMbf73VQS9tPd8kXeKuxz504F1-_e_VXty82hu2jvhNh4ejo5fsvk27HsaCttjqdHxVvGJ3s-_TcjJ-3ZohsLPbRvJv5-hxoA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+3D+Hybrid+Finite-Discrete+Element+Simulator+Based+on+GPGPU-Parallelized+Computation+for+Modelling+Rock+Fracturing+Under+Quasi-Static+and+Dynamic+Loading+Conditions&rft.jtitle=Rock+mechanics+and+rock+engineering&rft.au=Fukuda+Daisuke&rft.au=Mohammadnejad+Mojtaba&rft.au=Liu%2C+Hongyuan&rft.au=Zhang+Qianbing&rft.date=2020-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0723-2632&rft.eissn=1434-453X&rft.volume=53&rft.issue=3&rft.spage=1079&rft.epage=1112&rft_id=info:doi/10.1007%2Fs00603-019-01960-z&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-2632&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-2632&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-2632&client=summon |