A metamodel for estimating time-dependent groundwater-induced subsidence at large scales

Construction of large underground infrastructure facilities routinely leads to leakage of groundwater and reduction of pore water pressures, causing time-dependent deformation of overburden soft soil. Coupled hydro-geomechanical numerical models can provide estimates of subsidence, caused by the com...

Full description

Saved in:
Bibliographic Details
Published in:Engineering geology Vol. 341; p. 107705
Main Authors: Haaf, Ezra, Wikby, Pierre, Abed, Ayman, Sundell, Jonas, McGivney, Eric, Rosén, Lars, Karstunen, Minna
Format: Journal Article
Language:English
Published: Elsevier B.V 01.11.2024
Subjects:
ISSN:0013-7952
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Construction of large underground infrastructure facilities routinely leads to leakage of groundwater and reduction of pore water pressures, causing time-dependent deformation of overburden soft soil. Coupled hydro-geomechanical numerical models can provide estimates of subsidence, caused by the complex time-dependent processes of creep and consolidation, thereby increasing our understanding of when and where deformations will arise and at what magnitude. However, such hydro-mechanical models are computationally expensive and generally not feasible at larger scales, where decisions are made on design and mitigation. Therefore, a computationally efficient Machine Learning-based metamodel is implemented, which emulates 2D finite element scenario-based simulations of ground deformations with the advanced Creep-SCLAY-1S-model. The metamodel employs decision tree-based ensemble learners random forest (RF) and extreme gradient boosting (XGB), with spatially explicit hydrostratigraphic data as features. In a case study in Central Gothenburg, Sweden, the metamodel shows high predictive skill (Pearson's r of 0.9–0.98) on 25 % of unseen data and good agreement with the numerical model on unseen cross-sections. Through interpretable Machine Learning, Shapley analysis provides insights into the workings of the metamodel, which alignes with process understanding. The approach provides a novel tool for efficient, scenario-based decision support on large scales based on an advanced soil model emulated by a physically plausible metamodel. •A ML-based metamodel emulates a hydro-geomechanical model accurately.•Subsidence due to pore-pressure reductions in soft soil is estimated at large scale.•Predictions possible at high resolution with high computational efficiency.•Interpretable ML confirms that the metamodel matches physics.•Metamodels are a reliable basis for large scale infrastructure decision support.
AbstractList Construction of large underground infrastructure facilities routinely leads to leakage of groundwater and reduction of pore water pressures, causing time-dependent deformation of overburden soft soil. Coupled hydro-geomechanical numerical models can provide estimates of subsidence, caused by the complex time-dependent processes of creep and consolidation, thereby increasing our understanding of when and where deformations will arise and at what magnitude. However, such hydro-mechanical models are computationally expensive and generally not feasible at larger scales, where decisions are made on design and mitigation. Therefore, a computationally efficient Machine Learning-based metamodel is implemented, which emulates 2D finite element scenario-based simulations of ground deformations with the advanced Creep-SCLAY-1S-model. The metamodel employs decision tree-based ensemble learners random forest (RF) and extreme gradient boosting (XGB), with spatially explicit hydrostratigraphic data as features. In a case study in Central Gothenburg, Sweden, the metamodel shows high predictive skill (Pearson's r of 0.9–0.98) on 25 % of unseen data and good agreement with the numerical model on unseen cross-sections. Through interpretable Machine Learning, Shapley analysis provides insights into the workings of the metamodel, which alignes with process understanding. The approach provides a novel tool for efficient, scenario-based decision support on large scales based on an advanced soil model emulated by a physically plausible metamodel.
Construction of large underground infrastructure facilities routinely leads to leakage of groundwater and reduction of pore water pressures, causing time-dependent deformation of overburden soft soil. Coupled hydro-geomechanical numerical models can provide estimates of subsidence, caused by the complex time-dependent processes of creep and consolidation, thereby increasing our understanding of when and where deformations will arise and at what magnitude. However, such hydro-mechanical models are computationally expensive and generally not feasible at larger scales, where decisions are made on design and mitigation. Therefore, a computationally efficient Machine Learning-based metamodel is implemented, which emulates 2D finite element scenario-based simulations of ground deformations with the advanced Creep-SCLAY-1S-model. The metamodel employs decision tree-based ensemble learners random forest (RF) and extreme gradient boosting (XGB), with spatially explicit hydrostratigraphic data as features. In a case study in Central Gothenburg, Sweden, the metamodel shows high predictive skill (Pearson's r of 0.9–0.98) on 25 % of unseen data and good agreement with the numerical model on unseen cross-sections. Through interpretable Machine Learning, Shapley analysis provides insights into the workings of the metamodel, which alignes with process understanding. The approach provides a novel tool for efficient, scenario-based decision support on large scales based on an advanced soil model emulated by a physically plausible metamodel. •A ML-based metamodel emulates a hydro-geomechanical model accurately.•Subsidence due to pore-pressure reductions in soft soil is estimated at large scale.•Predictions possible at high resolution with high computational efficiency.•Interpretable ML confirms that the metamodel matches physics.•Metamodels are a reliable basis for large scale infrastructure decision support.
ArticleNumber 107705
Author Abed, Ayman
Rosén, Lars
McGivney, Eric
Haaf, Ezra
Sundell, Jonas
Wikby, Pierre
Karstunen, Minna
Author_xml – sequence: 1
  givenname: Ezra
  surname: Haaf
  fullname: Haaf, Ezra
  email: ezra@chalmers.se
  organization: Department of Architecture and Civil Engineering, Chalmers University of Technology, Sweden
– sequence: 2
  givenname: Pierre
  surname: Wikby
  fullname: Wikby, Pierre
  organization: Department of Architecture and Civil Engineering, Chalmers University of Technology, Sweden
– sequence: 3
  givenname: Ayman
  surname: Abed
  fullname: Abed, Ayman
  organization: Department of Architecture and Civil Engineering, Chalmers University of Technology, Sweden
– sequence: 4
  givenname: Jonas
  surname: Sundell
  fullname: Sundell, Jonas
  organization: Department of Architecture and Civil Engineering, Chalmers University of Technology, Sweden
– sequence: 5
  givenname: Eric
  surname: McGivney
  fullname: McGivney, Eric
  organization: Qasa AB, Sweden
– sequence: 6
  givenname: Lars
  surname: Rosén
  fullname: Rosén, Lars
  organization: Department of Architecture and Civil Engineering, Chalmers University of Technology, Sweden
– sequence: 7
  givenname: Minna
  surname: Karstunen
  fullname: Karstunen, Minna
  organization: Department of Architecture and Civil Engineering, Chalmers University of Technology, Sweden
BackLink https://research.chalmers.se/publication/543116$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNqFkM9u1DAQh31oJdrCG3DwC2QZx3bccECqKihIlTgAEreR4xmnXmWTle2l4u3JKnDhAKf5p--n0XctLuZlZiFeK9gpUN2b_Y7nceRl10Jr1pVzYC_EFYDSjett-0Jcl7I_jwDuSny_kweu_rAQTzIuWXKp6eBrmke5NtwQH3kmnqsc83Ka6dlXzk2a6RSYZDkNJa3XwNJXOfk8sizBT1xeisvop8Kvftcb8e3D-6_3H5vHzw-f7u8eG2-sqg3pHqzTvjPKh4HI3YKObfSdjwRxoAikCbrBUuwM95GhDaG1jm4HT2SUvhFfttzyzMfTgMe8vp9_4uITZi7sc3jC8OSnA-eChVE7HdreAloDgMYZgz3HgBStBuVVqwOsqW-31JCXUjJHDKmuVpa5Zp8mVIBn27jHzTaebeNme4XNX_Cfp_6DvdswXnX9SJyxhHRWSylzqEhL-nfAL0a5oeY
CitedBy_id crossref_primary_10_1038_s41598_025_95694_4
crossref_primary_10_1016_j_enggeo_2025_108308
crossref_primary_10_1002_nag_4012
crossref_primary_10_1016_j_enggeo_2025_107991
Cites_doi 10.1016/j.enggeo.2015.11.006
10.1111/j.1745-6584.2007.00358.x
10.1016/j.tust.2024.105788
10.1061/(ASCE)GT.1943-5606.0002297
10.1002/2015WR016967
10.1007/s10040-011-0775-5
10.1029/2020WR027335
10.1007/s10040-016-1382-2
10.1029/2022WR033470
10.1007/s10040-002-0215-7
10.1007/s10706-021-01721-2
10.1016/j.enggeo.2015.12.004
10.1016/j.compgeo.2021.104027
10.1038/s42256-019-0138-9
10.3133/tm6A37
10.1029/2005WR004242
10.1016/j.undsp.2019.12.003
10.1007/s00477-018-01647-x
10.1016/j.compgeo.2017.05.025
10.1061/AJRUA6.0001092
10.3133/tm6A16
10.1016/j.compgeo.2015.04.015
10.1016/j.rse.2013.08.038
10.1016/j.enggeo.2018.08.014
10.1016/j.cageo.2023.105508
10.1111/risa.12890
10.1007/s11269-012-0141-y
10.1007/s10040-018-1906-z
10.1016/j.jrmge.2021.06.012
10.1007/s10040-017-1690-1
10.1029/2017WR022387
10.1007/s00603-021-02720-8
10.1139/t02-119
10.3390/w12072051
10.1016/j.enggeo.2011.12.001
10.1061/(ASCE)GM.1943-5622.0000817
10.1080/19648189.2017.1354784
10.1023/A:1010933404324
10.1061/(ASCE)1532-3641(2005)5:2(87)
10.1016/j.compgeo.2017.06.006
10.1016/j.advwatres.2010.09.017
10.1016/j.autcon.2022.104331
10.18637/jss.v077.i01
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
DOI 10.1016/j.enggeo.2024.107705
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_research_chalmers_se_373c2950_5400_4744_9efc_df5301a123c0
10_1016_j_enggeo_2024_107705
S0013795224003053
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ACDAQ
ACGFS
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SSZ
T5K
TN5
VH1
WUQ
XOL
XPP
ZCG
ZMT
ZY4
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
ID FETCH-LOGICAL-a451t-d390573a641acbdd7803f2fa6afd0fbdf0d3d06b5df64e9fe02cc257d8badd413
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001317259000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-7952
IngestDate Wed Nov 05 04:08:39 EST 2025
Sat Nov 29 05:53:14 EST 2025
Tue Nov 18 22:25:27 EST 2025
Sat Oct 12 15:53:10 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Metamodeling
Regional subsidence
Machine learning
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a451t-d390573a641acbdd7803f2fa6afd0fbdf0d3d06b5df64e9fe02cc257d8badd413
OpenAccessLink https://research.chalmers.se/publication/543116
ParticipantIDs swepub_primary_oai_research_chalmers_se_373c2950_5400_4744_9efc_df5301a123c0
crossref_citationtrail_10_1016_j_enggeo_2024_107705
crossref_primary_10_1016_j_enggeo_2024_107705
elsevier_sciencedirect_doi_10_1016_j_enggeo_2024_107705
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering geology
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hoffmann, Leake, Galloway, Wilson (bb0105) 2003
Sundell, Haaf, Tornborg, Rosén (bb0210) 2019; 33
Fienen, Nolan, Kauffman, Feinstein (bb0060) 2018; 54
Guzy, Malinowska (bb0090) 2020; 12
Teatini, Ferronato, Gambolati, Gonella (bb0220) 2006; 42
Trefry, Muffels (bb0230) 2007; 45
Hou, Lu (bb0110) 2018; 26
Starn, Kauffman, Carlson, Reddy, Fienen (bb0195) 2021; 57
Asher, Croke, Jakeman, Peeters (bb0025) 2015; 51
Wikby, Abed, Karlsson, Sundell, Karstunen (bb0245) 2023
Zhou, Shi, Du, Qiu, Li, Mitri (bb0275) 2017; 17
Larsson, Bengtsson, Eriksson (bb0145) 1997
Gras, Sivasithamparam, Karstunen, Dijkstra (bb0080) 2017; 13
Harbaugh (bb0100) 2005
Friedman (bb0065) 2001; 29
Obel, Ahrens, Mark (bb0180) 2020; 6
Merisalu, Sundell, Rosén (bb0170) 2021; 11
Kuhn, Wickham (bb0140) 2020
Mayer, Watson (bb0160) 2023
Sivasithamparam, Karstunen, Bonnier (bb0190) 2015; 69
Zoccarato, Ferronato, Teatini (bb0290) 2021
Sundell, Norberg, Haaf, Rosén (bb0215) 2019; 27
Bjerre, Fienen, Schneider, Koch, Højberg (bb0035) 2022; 612
Wikby, Haaf, Abed, Rosén, Sundell, Karstunen (bb0250) 2024; 149
Wright, Ziegler (bb0255) 2017; 77
Ye, Luo, Wu, Yan, Wang, Jiao, Teatini (bb0260) 2016; 24
Calderhead, Therrien, Rivera, Martel, Garfias (bb0050) 2011; 34
Kang, Li, Wang, Li (bb0120) 2016; 21
Breiman (bb0040) 2001; 45
Karstunen, Krenn, Wheeler, Koskinen, Zentar (bb0125) 2005; 5
Zhu, Zhang, Li, Pan, Sun (bb0280) 2012; 127
Kim, Kwon, Pham, Oh, Choi (bb0130) 2022; 140
Niswonger, Panday, Ibaraki (bb0175) 2011
Galloway, Burbey (bb0075) 2011; 19
Sundell, Haaf, Norberg, Alén, Karlsson, Rosén (bb0205) 2017; 39
Wheeler, Näätänen, Karstunen, Lojander (bb0240) 2003; 40
Amavasai, Sivasithamparam, Dijkstra, Karstunen (bb0015) 2018; 93
Lundberg, Erion, Chen, Degrave, Prutkin, Nair, Katz, Himmelfarb, Bansal, Lee (bb0150) 2020; 2
Amavasai, Gras, Sivasithamparam, Karstunen, Dijkstra (bb0010) 2017; 26
Sundell, Rosén, Norberg, Haaf (bb0200) 2016; 203
Zhu, Chu, Wang, Wu, Yan, Chiam (bb0285) 2021; 13
Agrell (bb0005) 1979
Tornborg, Karlsson, Kullingsjö, Karstunen (bb0225) 2021; 134
Gras, Sivasithamparam, Karstunen, Dijkstra (bb0085) 2017; 90
Huang, Shu, Yang (bb0115) 2012; 26
Bharti, Mishra, Moorthy, Sathishkumar, Cho, Samui (bb0030) 2021; 39
Andersson, Andersson, Hallingberg, Lind, Löfroth (bb0020) 2015
Burbey (bb0045) 2002; 10
Kuhn, Frick (bb0135) 2022
Mahmoudpour, Khamehchiyan, Nikudel, Ghassemi (bb0155) 2016; 201
Wang, Huang, Wang, Li (bb0235) 2020; 146
Zhang, Li, Wu, Li, Liu, Liu (bb0270) 2021; 6
Zhang (bb0265) 2020
Haaf, Giese, Reimann, Barthel (bb0095) 2023; 59
Ochoa-González, Carreón-Freyre, Franceschini, Cerca, Teatini (bb0185) 2018; 245
Furtney, Thielsen, Fu, Le Goc (bb0070) 2022; 55
Chaussard, Wdowinski, Cabral-Cano, Amelung (bb0055) 2014; 140
Meray, Wang, Kurihana, Mastilovic, Praveen, Xu, Memarzadeh, Lavin, Wainwright (bb0165) 2024; 183
Mayer (10.1016/j.enggeo.2024.107705_bb0160) 2023
Sivasithamparam (10.1016/j.enggeo.2024.107705_bb0190) 2015; 69
Asher (10.1016/j.enggeo.2024.107705_bb0025) 2015; 51
Furtney (10.1016/j.enggeo.2024.107705_bb0070) 2022; 55
Fienen (10.1016/j.enggeo.2024.107705_bb0060) 2018; 54
Sundell (10.1016/j.enggeo.2024.107705_bb0205) 2017; 39
Bharti (10.1016/j.enggeo.2024.107705_bb0030) 2021; 39
Starn (10.1016/j.enggeo.2024.107705_bb0195) 2021; 57
Zhu (10.1016/j.enggeo.2024.107705_bb0285) 2021; 13
Gras (10.1016/j.enggeo.2024.107705_bb0080) 2017; 13
Bjerre (10.1016/j.enggeo.2024.107705_bb0035) 2022; 612
Haaf (10.1016/j.enggeo.2024.107705_bb0095) 2023; 59
Hoffmann (10.1016/j.enggeo.2024.107705_bb0105) 2003
Sundell (10.1016/j.enggeo.2024.107705_bb0215) 2019; 27
Tornborg (10.1016/j.enggeo.2024.107705_bb0225) 2021; 134
Wikby (10.1016/j.enggeo.2024.107705_bb0250) 2024; 149
Ochoa-González (10.1016/j.enggeo.2024.107705_bb0185) 2018; 245
Calderhead (10.1016/j.enggeo.2024.107705_bb0050) 2011; 34
Andersson (10.1016/j.enggeo.2024.107705_bb0020) 2015
Obel (10.1016/j.enggeo.2024.107705_bb0180) 2020; 6
Burbey (10.1016/j.enggeo.2024.107705_bb0045) 2002; 10
Teatini (10.1016/j.enggeo.2024.107705_bb0220) 2006; 42
Kuhn (10.1016/j.enggeo.2024.107705_bb0135) 2022
Harbaugh (10.1016/j.enggeo.2024.107705_bb0100) 2005
Kang (10.1016/j.enggeo.2024.107705_bb0120) 2016; 21
Agrell (10.1016/j.enggeo.2024.107705_bb0005) 1979
Hou (10.1016/j.enggeo.2024.107705_bb0110) 2018; 26
Sundell (10.1016/j.enggeo.2024.107705_bb0200) 2016; 203
Kuhn (10.1016/j.enggeo.2024.107705_bb0140) 2020
Zhang (10.1016/j.enggeo.2024.107705_bb0270) 2021; 6
Kim (10.1016/j.enggeo.2024.107705_bb0130) 2022; 140
Zhang (10.1016/j.enggeo.2024.107705_bb0265) 2020
Meray (10.1016/j.enggeo.2024.107705_bb0165) 2024; 183
Zoccarato (10.1016/j.enggeo.2024.107705_bb0290) 2021
Amavasai (10.1016/j.enggeo.2024.107705_bb0010) 2017; 26
Wright (10.1016/j.enggeo.2024.107705_bb0255) 2017; 77
Trefry (10.1016/j.enggeo.2024.107705_bb0230) 2007; 45
Zhou (10.1016/j.enggeo.2024.107705_bb0275) 2017; 17
Huang (10.1016/j.enggeo.2024.107705_bb0115) 2012; 26
Chaussard (10.1016/j.enggeo.2024.107705_bb0055) 2014; 140
Gras (10.1016/j.enggeo.2024.107705_bb0085) 2017; 90
Lundberg (10.1016/j.enggeo.2024.107705_bb0150) 2020; 2
Wang (10.1016/j.enggeo.2024.107705_bb0235) 2020; 146
Wheeler (10.1016/j.enggeo.2024.107705_bb0240) 2003; 40
Amavasai (10.1016/j.enggeo.2024.107705_bb0015) 2018; 93
Larsson (10.1016/j.enggeo.2024.107705_bb0145) 1997
Merisalu (10.1016/j.enggeo.2024.107705_bb0170) 2021; 11
Friedman (10.1016/j.enggeo.2024.107705_bb0065) 2001; 29
Breiman (10.1016/j.enggeo.2024.107705_bb0040) 2001; 45
Ye (10.1016/j.enggeo.2024.107705_bb0260) 2016; 24
Wikby (10.1016/j.enggeo.2024.107705_bb0245) 2023
Karstunen (10.1016/j.enggeo.2024.107705_bb0125) 2005; 5
Niswonger (10.1016/j.enggeo.2024.107705_bb0175) 2011
Sundell (10.1016/j.enggeo.2024.107705_bb0210) 2019; 33
Mahmoudpour (10.1016/j.enggeo.2024.107705_bb0155) 2016; 201
Guzy (10.1016/j.enggeo.2024.107705_bb0090) 2020; 12
Zhu (10.1016/j.enggeo.2024.107705_bb0280) 2012; 127
Galloway (10.1016/j.enggeo.2024.107705_bb0075) 2011; 19
References_xml – volume: 77
  start-page: 1
  year: 2017
  end-page: 17
  ident: bb0255
  article-title: Ranger: a fast implementation of random forests for high dimensional data in C++ and R
  publication-title: J. Stat. Softw.
– year: 2023
  ident: bb0245
  article-title: The Influence of Parameter Variability on Subsidence
– volume: 39
  start-page: 3741
  year: 2021
  end-page: 3752
  ident: bb0030
  article-title: Slope Stability Analysis using Rf, Gbm, Cart, Bt and Xgboost
  publication-title: Geotech. Geol. Eng.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0040
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 5
  start-page: 87
  year: 2005
  end-page: 97
  ident: bb0125
  article-title: Effect of anisotropy and destructuration on the behavior of Murro Test Embankment
  publication-title: Int. J. Geomech.
– volume: 39
  start-page: 105
  year: 2017
  end-page: 124
  ident: bb0205
  article-title: Risk mapping of groundwater-drawdown-induced land subsidence in heterogeneous soils on large areas
  publication-title: Risk Anal.
– volume: 140
  start-page: 94
  year: 2014
  end-page: 106
  ident: bb0055
  article-title: Land subsidence in Central Mexico detected by ALOS InSAR time-series
  publication-title: Remote Sens. Environ.
– volume: 40
  start-page: 403
  year: 2003
  end-page: 418
  ident: bb0240
  article-title: An anisotropic elastoplastic model for soft clays
  publication-title: Can. Geotech. J.
– volume: 6
  start-page: 353
  year: 2021
  end-page: 363
  ident: bb0270
  article-title: Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling
  publication-title: Undergr. Space
– volume: 140
  year: 2022
  ident: bb0130
  article-title: Surface settlement prediction for urban tunneling using machine learning algorithms with Bayesian optimization
  publication-title: Autom. Constr.
– volume: 245
  start-page: 192
  year: 2018
  end-page: 206
  ident: bb0185
  article-title: Overexploitation of groundwater resources in the faulted basin of Querétaro, Mexico: a 3D deformation and stress analysis
  publication-title: Eng. Geol.
– volume: 69
  start-page: 46
  year: 2015
  end-page: 57
  ident: bb0190
  article-title: Modelling creep behaviour of anisotropic soft soils
  publication-title: Comput. Geotech.
– year: 2022
  ident: bb0135
  article-title: Dials: Tools for Creating Tuning Parameter Values
– volume: 29
  start-page: 1144
  year: 2001
  ident: bb0065
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 19
  start-page: 1459
  year: 2011
  end-page: 1486
  ident: bb0075
  article-title: Review: Regional land subsidence accompanying groundwater extraction
  publication-title: Hydrogeol. J.
– volume: 55
  start-page: 1
  year: 2022
  end-page: 15
  ident: bb0070
  article-title: Surrogate models in rock and soil mechanics: integrating numerical modeling and machine learning
  publication-title: Rock Mech. Rock. Eng.
– volume: 90
  start-page: 164
  year: 2017
  end-page: 175
  ident: bb0085
  article-title: Strategy for consistent model parameter calibration for soft soils using multi-objective optimisation
  publication-title: Comput. Geotech.
– volume: 134
  year: 2021
  ident: bb0225
  article-title: Modelling the construction and long-term response of Göta Tunnel
  publication-title: Comput. Geotech.
– volume: 26
  start-page: 923
  year: 2018
  end-page: 932
  ident: bb0110
  article-title: Comparative study of surrogate models for groundwater contamination source identification at DNAPL-contaminated sites
  publication-title: Hydrogeol. J.
– volume: 11
  start-page: 82
  year: 2021
  ident: bb0170
  article-title: A framework for risk-based cost-benefit analysis for decision support on hydrogeological risks in underground construction
  publication-title: Geosciences (Switzerland)
– volume: 146
  year: 2020
  ident: bb0235
  article-title: SS-XGBoost: a machine learning framework for predicting newmark sliding displacements of slopes
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 34
  start-page: 83
  year: 2011
  end-page: 97
  ident: bb0050
  article-title: Simulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico
  publication-title: Adv. Water Resour.
– volume: 17
  year: 2017
  ident: bb0275
  article-title: Feasibility of random-forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel
  publication-title: Int. J. Geomech.
– volume: 33
  start-page: 427
  year: 2019
  end-page: 449
  ident: bb0210
  article-title: Comprehensive risk assessment of groundwater drawdown induced subsidence
  publication-title: Stoch. Env. Res. Risk A.
– year: 2005
  ident: bb0100
  article-title: MODFLOW-2005 : the U.S. Geological Survey modular ground-water model–the ground-water flow process
  publication-title: Techniques and Methods
– volume: 26
  start-page: 4225
  year: 2012
  end-page: 4239
  ident: bb0115
  article-title: Groundwater overexploitation causing land subsidence: hazard risk assessment using field observation and spatial modelling
  publication-title: Water Resour. Manag.
– volume: 42
  year: 2006
  ident: bb0220
  article-title: Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: Modeling the past occurrence and the future trend
  publication-title: Water Resour. Res.
– volume: 21
  start-page: 1
  year: 2016
  end-page: 22
  ident: bb0120
  article-title: Extreme learning machine-based surrogate model for analyzing system reliability of soil slopes
  publication-title: Eur. J. Environ. Civ. Eng.
– year: 2023
  ident: bb0160
  article-title: kernelshap: Kernel SHAP
– volume: 54
  start-page: 4750
  year: 2018
  end-page: 4766
  ident: bb0060
  article-title: Metamodeling for Groundwater Age forecasting in the Lake Michigan Basin
  publication-title: Water Resour. Res.
– volume: 57
  year: 2021
  ident: bb0195
  article-title: Three-dimensional distribution of groundwater residence time metrics in the glaciated United States using metamodels trained on general numerical simulation models
  publication-title: Water Resour. Res.
– year: 2020
  ident: bb0140
  article-title: Tidymodels: A Collection of Packages for Modeling and Machine Learning Using Tidyverse Principles
– volume: 203
  start-page: 126
  year: 2016
  end-page: 139
  ident: bb0200
  article-title: A probabilistic approach to soil layer and bedrock-level modeling for risk assessment of groundwater drawdown induced land subsidence
  publication-title: Eng. Geol.
– volume: 13
  start-page: 1231
  year: 2021
  end-page: 1245
  ident: bb0285
  article-title: Prediction of rockhead using a hybrid N-XGBoost machine learning framework
  publication-title: J. Rock Mech. Geotech. Eng.
– volume: 13
  start-page: 387
  year: 2017
  end-page: 398
  ident: bb0080
  article-title: Permissible range of model parameters for natural fine-grained materials
  publication-title: Acta Geotech.
– year: 2003
  ident: bb0105
  article-title: MODFLOW-2000 Ground-Water Model-User Guide to the Subsidence and Aquifer-System Compaction (SUB) Package
– volume: 93
  start-page: 75
  year: 2018
  end-page: 86
  ident: bb0015
  article-title: Consistent Class A & C predictions of the Ballina test embankment
  publication-title: Comput. Geotech.
– volume: 59
  year: 2023
  ident: bb0095
  article-title: Data-driven estimation of groundwater level time-series at unmonitored sites using comparative regional analysis
  publication-title: Water Resour. Res.
– volume: 6
  year: 2020
  ident: bb0180
  article-title: Metamodel-based prediction of structural damages due to tunneling-induced settlements
  publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng.
– volume: 127
  start-page: 1
  year: 2012
  end-page: 13
  ident: bb0280
  article-title: Building 3D solid models of sedimentary stratigraphic systems from borehole data: an automatic method and case studies
  publication-title: Eng. Geol.
– volume: 26
  start-page: 2616
  year: 2017
  end-page: 2634
  ident: bb0010
  article-title: Towards consistent numerical analyses of embankments on soft soils
  publication-title: Eur. J. Environ. Civ. Eng.
– volume: 2
  start-page: 56
  year: 2020
  end-page: 67
  ident: bb0150
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat. Mach. Intell.
– volume: 24
  start-page: 695
  year: 2016
  end-page: 709
  ident: bb0260
  article-title: Three-dimensional numerical modeling of land subsidence in Shanghai, China
  publication-title: Hydrogeol. J.
– year: 2011
  ident: bb0175
  article-title: MODFLOW-NWT, A Newton formulation for MODFLOW-2005
  publication-title: Techniques and Methods
– volume: 45
  start-page: 525
  year: 2007
  end-page: 528
  ident: bb0230
  article-title: FEFLOW: a finite-element ground water flow and transport modeling tool
  publication-title: Groundwater
– volume: 149
  year: 2024
  ident: bb0250
  article-title: A grid-based methodology for the assessment of time-dependent building damage at large scale
  publication-title: Tunn. Undergr. Space Technol.
– volume: 201
  start-page: 6
  year: 2016
  end-page: 28
  ident: bb0155
  article-title: Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran
  publication-title: Eng. Geol.
– volume: 27
  start-page: 1111
  year: 2019
  end-page: 1130
  ident: bb0215
  article-title: Economic valuation of hydrogeological information when managing groundwater drawdown
  publication-title: Hydrogeol. J.
– volume: 10
  start-page: 525
  year: 2002
  end-page: 538
  ident: bb0045
  article-title: The influence of faults in basin-fill deposits on land subsidence, Las Vegas Valley, Nevada, USA
  publication-title: Hydrogeol. J.
– volume: 183
  year: 2024
  ident: bb0165
  article-title: Physics-informed surrogate modeling for supporting climate resilience at groundwater contamination sites
  publication-title: Comput. Geosci.
– start-page: 7
  year: 2020
  end-page: 17
  ident: bb0265
  article-title: A Review of Surrogate Models, MARS Applications in Geotechnical Engineering Systems: Multi-Dimension with Big Data
– volume: 612
  year: 2022
  ident: bb0035
  article-title: Assessing spatial transferability of a Random Forest metamodel for predicting drainage fraction
  publication-title: J. Hydrol.
– volume: 12
  year: 2020
  ident: bb0090
  article-title: State of the art and recent advancements in the modelling of land subsidence induced by groundwater withdrawal
  publication-title: Water
– year: 1997
  ident: bb0145
  article-title: Prediction of Settlements of Embankments on Soft, Fine-Grained Soils : Calculation of Settlements and their Course with Time
– year: 1979
  ident: bb0005
  article-title: The Quaternary of Sweden
– start-page: 943
  year: 2021
  end-page: 950
  ident: bb0290
  article-title: A Surrogate Model for Fast Land Subsidence Prediction and Uncertainty Quantification
– start-page: 48
  year: 2015
  ident: bb0020
  article-title: Förbättrade kontrollsystem för uppföljning av sättningar, Trafikverkets forskningsportföljer
– volume: 51
  start-page: 5957
  year: 2015
  end-page: 5973
  ident: bb0025
  article-title: A review of surrogate models and their application to groundwater modeling
  publication-title: Water Resour. Res.
– start-page: 7
  year: 2020
  ident: 10.1016/j.enggeo.2024.107705_bb0265
– volume: 203
  start-page: 126
  year: 2016
  ident: 10.1016/j.enggeo.2024.107705_bb0200
  article-title: A probabilistic approach to soil layer and bedrock-level modeling for risk assessment of groundwater drawdown induced land subsidence
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.11.006
– volume: 45
  start-page: 525
  year: 2007
  ident: 10.1016/j.enggeo.2024.107705_bb0230
  article-title: FEFLOW: a finite-element ground water flow and transport modeling tool
  publication-title: Groundwater
  doi: 10.1111/j.1745-6584.2007.00358.x
– volume: 149
  year: 2024
  ident: 10.1016/j.enggeo.2024.107705_bb0250
  article-title: A grid-based methodology for the assessment of time-dependent building damage at large scale
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2024.105788
– volume: 146
  year: 2020
  ident: 10.1016/j.enggeo.2024.107705_bb0235
  article-title: SS-XGBoost: a machine learning framework for predicting newmark sliding displacements of slopes
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0002297
– volume: 51
  start-page: 5957
  year: 2015
  ident: 10.1016/j.enggeo.2024.107705_bb0025
  article-title: A review of surrogate models and their application to groundwater modeling
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR016967
– volume: 19
  start-page: 1459
  year: 2011
  ident: 10.1016/j.enggeo.2024.107705_bb0075
  article-title: Review: Regional land subsidence accompanying groundwater extraction
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-011-0775-5
– volume: 57
  year: 2021
  ident: 10.1016/j.enggeo.2024.107705_bb0195
  article-title: Three-dimensional distribution of groundwater residence time metrics in the glaciated United States using metamodels trained on general numerical simulation models
  publication-title: Water Resour. Res.
  doi: 10.1029/2020WR027335
– volume: 24
  start-page: 695
  year: 2016
  ident: 10.1016/j.enggeo.2024.107705_bb0260
  article-title: Three-dimensional numerical modeling of land subsidence in Shanghai, China
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-016-1382-2
– volume: 59
  year: 2023
  ident: 10.1016/j.enggeo.2024.107705_bb0095
  article-title: Data-driven estimation of groundwater level time-series at unmonitored sites using comparative regional analysis
  publication-title: Water Resour. Res.
  doi: 10.1029/2022WR033470
– volume: 10
  start-page: 525
  year: 2002
  ident: 10.1016/j.enggeo.2024.107705_bb0045
  article-title: The influence of faults in basin-fill deposits on land subsidence, Las Vegas Valley, Nevada, USA
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-002-0215-7
– start-page: 943
  year: 2021
  ident: 10.1016/j.enggeo.2024.107705_bb0290
– volume: 21
  start-page: 1
  year: 2016
  ident: 10.1016/j.enggeo.2024.107705_bb0120
  article-title: Extreme learning machine-based surrogate model for analyzing system reliability of soil slopes
  publication-title: Eur. J. Environ. Civ. Eng.
– volume: 39
  start-page: 3741
  year: 2021
  ident: 10.1016/j.enggeo.2024.107705_bb0030
  article-title: Slope Stability Analysis using Rf, Gbm, Cart, Bt and Xgboost
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-021-01721-2
– volume: 201
  start-page: 6
  year: 2016
  ident: 10.1016/j.enggeo.2024.107705_bb0155
  article-title: Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.12.004
– volume: 134
  year: 2021
  ident: 10.1016/j.enggeo.2024.107705_bb0225
  article-title: Modelling the construction and long-term response of Göta Tunnel
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2021.104027
– volume: 2
  start-page: 56
  year: 2020
  ident: 10.1016/j.enggeo.2024.107705_bb0150
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0138-9
– year: 2011
  ident: 10.1016/j.enggeo.2024.107705_bb0175
  article-title: MODFLOW-NWT, A Newton formulation for MODFLOW-2005
  doi: 10.3133/tm6A37
– volume: 42
  year: 2006
  ident: 10.1016/j.enggeo.2024.107705_bb0220
  article-title: Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: Modeling the past occurrence and the future trend
  publication-title: Water Resour. Res.
  doi: 10.1029/2005WR004242
– volume: 6
  start-page: 353
  year: 2021
  ident: 10.1016/j.enggeo.2024.107705_bb0270
  article-title: Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling
  publication-title: Undergr. Space
  doi: 10.1016/j.undsp.2019.12.003
– volume: 33
  start-page: 427
  year: 2019
  ident: 10.1016/j.enggeo.2024.107705_bb0210
  article-title: Comprehensive risk assessment of groundwater drawdown induced subsidence
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-018-01647-x
– volume: 93
  start-page: 75
  year: 2018
  ident: 10.1016/j.enggeo.2024.107705_bb0015
  article-title: Consistent Class A & C predictions of the Ballina test embankment
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2017.05.025
– volume: 6
  year: 2020
  ident: 10.1016/j.enggeo.2024.107705_bb0180
  article-title: Metamodel-based prediction of structural damages due to tunneling-induced settlements
  publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng.
  doi: 10.1061/AJRUA6.0001092
– year: 1997
  ident: 10.1016/j.enggeo.2024.107705_bb0145
– volume: 13
  start-page: 387
  year: 2017
  ident: 10.1016/j.enggeo.2024.107705_bb0080
  article-title: Permissible range of model parameters for natural fine-grained materials
  publication-title: Acta Geotech.
– year: 2005
  ident: 10.1016/j.enggeo.2024.107705_bb0100
  article-title: MODFLOW-2005 : the U.S. Geological Survey modular ground-water model–the ground-water flow process
  doi: 10.3133/tm6A16
– volume: 69
  start-page: 46
  year: 2015
  ident: 10.1016/j.enggeo.2024.107705_bb0190
  article-title: Modelling creep behaviour of anisotropic soft soils
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2015.04.015
– volume: 140
  start-page: 94
  year: 2014
  ident: 10.1016/j.enggeo.2024.107705_bb0055
  article-title: Land subsidence in Central Mexico detected by ALOS InSAR time-series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.038
– volume: 245
  start-page: 192
  year: 2018
  ident: 10.1016/j.enggeo.2024.107705_bb0185
  article-title: Overexploitation of groundwater resources in the faulted basin of Querétaro, Mexico: a 3D deformation and stress analysis
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2018.08.014
– volume: 183
  year: 2024
  ident: 10.1016/j.enggeo.2024.107705_bb0165
  article-title: Physics-informed surrogate modeling for supporting climate resilience at groundwater contamination sites
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2023.105508
– year: 2023
  ident: 10.1016/j.enggeo.2024.107705_bb0245
– volume: 29
  start-page: 1144
  issue: 1189–1232
  year: 2001
  ident: 10.1016/j.enggeo.2024.107705_bb0065
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 39
  start-page: 105
  year: 2017
  ident: 10.1016/j.enggeo.2024.107705_bb0205
  article-title: Risk mapping of groundwater-drawdown-induced land subsidence in heterogeneous soils on large areas
  publication-title: Risk Anal.
  doi: 10.1111/risa.12890
– volume: 26
  start-page: 4225
  year: 2012
  ident: 10.1016/j.enggeo.2024.107705_bb0115
  article-title: Groundwater overexploitation causing land subsidence: hazard risk assessment using field observation and spatial modelling
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-012-0141-y
– start-page: 48
  year: 2015
  ident: 10.1016/j.enggeo.2024.107705_bb0020
– volume: 27
  start-page: 1111
  year: 2019
  ident: 10.1016/j.enggeo.2024.107705_bb0215
  article-title: Economic valuation of hydrogeological information when managing groundwater drawdown
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-018-1906-z
– volume: 13
  start-page: 1231
  year: 2021
  ident: 10.1016/j.enggeo.2024.107705_bb0285
  article-title: Prediction of rockhead using a hybrid N-XGBoost machine learning framework
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2021.06.012
– volume: 26
  start-page: 923
  year: 2018
  ident: 10.1016/j.enggeo.2024.107705_bb0110
  article-title: Comparative study of surrogate models for groundwater contamination source identification at DNAPL-contaminated sites
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-017-1690-1
– year: 2020
  ident: 10.1016/j.enggeo.2024.107705_bb0140
– volume: 54
  start-page: 4750
  year: 2018
  ident: 10.1016/j.enggeo.2024.107705_bb0060
  article-title: Metamodeling for Groundwater Age forecasting in the Lake Michigan Basin
  publication-title: Water Resour. Res.
  doi: 10.1029/2017WR022387
– volume: 55
  start-page: 1
  year: 2022
  ident: 10.1016/j.enggeo.2024.107705_bb0070
  article-title: Surrogate models in rock and soil mechanics: integrating numerical modeling and machine learning
  publication-title: Rock Mech. Rock. Eng.
  doi: 10.1007/s00603-021-02720-8
– year: 2003
  ident: 10.1016/j.enggeo.2024.107705_bb0105
– year: 1979
  ident: 10.1016/j.enggeo.2024.107705_bb0005
– volume: 40
  start-page: 403
  year: 2003
  ident: 10.1016/j.enggeo.2024.107705_bb0240
  article-title: An anisotropic elastoplastic model for soft clays
  publication-title: Can. Geotech. J.
  doi: 10.1139/t02-119
– volume: 12
  year: 2020
  ident: 10.1016/j.enggeo.2024.107705_bb0090
  article-title: State of the art and recent advancements in the modelling of land subsidence induced by groundwater withdrawal
  publication-title: Water
  doi: 10.3390/w12072051
– volume: 127
  start-page: 1
  year: 2012
  ident: 10.1016/j.enggeo.2024.107705_bb0280
  article-title: Building 3D solid models of sedimentary stratigraphic systems from borehole data: an automatic method and case studies
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2011.12.001
– year: 2023
  ident: 10.1016/j.enggeo.2024.107705_bb0160
– volume: 17
  year: 2017
  ident: 10.1016/j.enggeo.2024.107705_bb0275
  article-title: Feasibility of random-forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)GM.1943-5622.0000817
– volume: 612
  issue: Part B
  year: 2022
  ident: 10.1016/j.enggeo.2024.107705_bb0035
  article-title: Assessing spatial transferability of a Random Forest metamodel for predicting drainage fraction
  publication-title: J. Hydrol.
– volume: 26
  start-page: 2616
  year: 2017
  ident: 10.1016/j.enggeo.2024.107705_bb0010
  article-title: Towards consistent numerical analyses of embankments on soft soils
  publication-title: Eur. J. Environ. Civ. Eng.
  doi: 10.1080/19648189.2017.1354784
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.enggeo.2024.107705_bb0040
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 5
  start-page: 87
  year: 2005
  ident: 10.1016/j.enggeo.2024.107705_bb0125
  article-title: Effect of anisotropy and destructuration on the behavior of Murro Test Embankment
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)1532-3641(2005)5:2(87)
– year: 2022
  ident: 10.1016/j.enggeo.2024.107705_bb0135
– volume: 11
  start-page: 82
  year: 2021
  ident: 10.1016/j.enggeo.2024.107705_bb0170
  article-title: A framework for risk-based cost-benefit analysis for decision support on hydrogeological risks in underground construction
  publication-title: Geosciences (Switzerland)
– volume: 90
  start-page: 164
  year: 2017
  ident: 10.1016/j.enggeo.2024.107705_bb0085
  article-title: Strategy for consistent model parameter calibration for soft soils using multi-objective optimisation
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2017.06.006
– volume: 34
  start-page: 83
  year: 2011
  ident: 10.1016/j.enggeo.2024.107705_bb0050
  article-title: Simulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2010.09.017
– volume: 140
  year: 2022
  ident: 10.1016/j.enggeo.2024.107705_bb0130
  article-title: Surface settlement prediction for urban tunneling using machine learning algorithms with Bayesian optimization
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104331
– volume: 77
  start-page: 1
  year: 2017
  ident: 10.1016/j.enggeo.2024.107705_bb0255
  article-title: Ranger: a fast implementation of random forests for high dimensional data in C++ and R
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v077.i01
SSID ssj0013007
Score 2.4544282
Snippet Construction of large underground infrastructure facilities routinely leads to leakage of groundwater and reduction of pore water pressures, causing...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 107705
SubjectTerms Groundwater
Machine Learning
Metamodeling
Regional subsidence
Title A metamodel for estimating time-dependent groundwater-induced subsidence at large scales
URI https://dx.doi.org/10.1016/j.enggeo.2024.107705
https://research.chalmers.se/publication/543116
Volume 341
WOSCitedRecordID wos001317259000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0013-7952
  databaseCode: AIEXJ
  dateStart: 19950501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0013007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5UAPiKcoFOQDt5WRN3Hi-BihrQpCVSWKtDfL8WO7pQ3VJi2FX8_YzqOrBRWQuEQra_PyNx7PTGa-QegNF0IZKjSpmOCEGaOJMJYSZ63jgmpYY7HZBD88LOZzcdQRKjShnQCv6-L6Wlz8V6hhDMD2pbN_AfdwURiA3wA6HAF2OP4R8KXvCq1Ch5vI5w2L2JulvixqeW5J3_a2nfiKjtp8A2tzRcA1v_SpAA0okthn1Jc5nvk88UkDOHaphn0Mf2QxnCzsWmT-QKnA8zj7sRo1_vJLJPA8gk14zLYtqxhpLb-fjzLqS1P6zBvwEtbCEgnr6vOGWNlGvUzUv9OUcJGt6d80Ml9t6PIYVjh9a-vFItRpJgwGOafZuHcNGYWfAkEqXNnnxIIOS--i7YRnAhTddvl-Nv8wflqisYa-f5S-njIk_W3e67f2yk1i2WCMHD9EDzovApcR_Ufojq0fo50bqDxB8xIPcoBBDvAoB3hdDvAv5ACPcoBVi4Mc4CgHT9Hn_dnxuwPStdEgimXTlphUeNZLlbOp0pUxvKCpS5zKlTPUVcZRkxqaV5lxObPCWZpoDZrcFBVsfmDkPENb9dfaPke4UFwzq5X_OAyWPBOFNrnnkAQnQDEtdlHaT5bUHce8b3VyJvtkwlMZp1j6KZZxincRGc66iBwrt_yf9zjIzk6M9p8E0bnlzI8RtuE-nl29o9U6kfok9CxqZGNlylMNr0kluDRUMs6YFNZpaVwGe6ICg0_TF__8IC_R_XHR7KGtdnVpX6F7-qpdNqvXncj-BMniq9A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+metamodel+for+estimating+time-dependent+groundwater-induced+subsidence+at+large+scales&rft.jtitle=Engineering+geology&rft.au=Haaf%2C+Ezra&rft.au=Wikby%2C+Pierre&rft.au=Abed%2C+Ayman&rft.au=Sundell%2C+Jonas&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=0013-7952&rft.volume=341&rft_id=info:doi/10.1016%2Fj.enggeo.2024.107705&rft.externalDocID=S0013795224003053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7952&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7952&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7952&client=summon