Quantifying the Impact of Parametric Uncertainty on Automatic Mechanism Generation for CO2 Hydrogenation on Ni(111)
Automatic mechanism generation is used to determine mechanisms for the CO2 hydrogenation on Ni(111) in a two-stage process while considering the correlated uncertainty in DFT-based energetic parameters systematically. In a coarse stage, all the possible chemistry is explored with gas-phase products...
Saved in:
| Published in: | JACS Au Vol. 1; no. 10; pp. 1656 - 1673 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
American Chemical Society
25.10.2021
ACS Publications |
| Subjects: | |
| ISSN: | 2691-3704, 2691-3704 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Automatic mechanism generation is used to determine mechanisms for the CO2 hydrogenation on Ni(111) in a two-stage process while considering the correlated uncertainty in DFT-based energetic parameters systematically. In a coarse stage, all the possible chemistry is explored with gas-phase products down to the ppb level, while a refined stage discovers the core methanation submechanism. Five thousand unique mechanisms were generated, which contain minor perturbations in all parameters. Global uncertainty assessment, global sensitivity analysis, and degree of rate control analysis are performed to study the effect of this parametric uncertainty on the microkinetic model predictions. Comparison of the model predictions with experimental data on a Ni/SiO2 catalyst find a feasible set of microkinetic mechanisms within the correlated uncertainty space that are in quantitative agreement with the measured data, without relying on explicit parameter optimization. Global uncertainty and sensitivity analyses provide tools to determine the pathways and key factors that control the methanation activity within the parameter space. Together, these methods reveal that the degree of rate control approach can be misleading if parametric uncertainty is not considered. The procedure of considering uncertainties in the automated mechanism generation is not unique to CO2 methanation and can be easily extended to other challenging heterogeneously catalyzed reactions. |
|---|---|
| AbstractList | Automatic mechanism
generation is used to determine mechanisms
for the CO2 hydrogenation on Ni(111) in a two-stage process
while considering the correlated uncertainty in DFT-based energetic
parameters systematically. In a coarse stage, all the possible chemistry
is explored with gas-phase products down to the ppb level, while a
refined stage discovers the core methanation submechanism. Five thousand
unique mechanisms were generated, which contain minor perturbations
in all parameters. Global uncertainty assessment, global sensitivity
analysis, and degree of rate control analysis are performed to study
the effect of this parametric uncertainty on the microkinetic model
predictions. Comparison of the model predictions with experimental
data on a Ni/SiO2 catalyst find a feasible set of microkinetic
mechanisms within the correlated uncertainty space that are in quantitative
agreement with the measured data, without relying on explicit parameter
optimization. Global uncertainty and sensitivity analyses provide
tools to determine the pathways and key factors that control the methanation
activity within the parameter space. Together, these methods reveal
that the degree of rate control approach can be misleading if parametric
uncertainty is not considered. The procedure of considering uncertainties
in the automated mechanism generation is not unique to CO2 methanation and can be easily extended to other challenging heterogeneously
catalyzed reactions. Automatic mechanism generation is used to determine mechanisms for the CO2 hydrogenation on Ni(111) in a two-stage process while considering the correlated uncertainty in DFT-based energetic parameters systematically. In a coarse stage, all the possible chemistry is explored with gas-phase products down to the ppb level, while a refined stage discovers the core methanation submechanism. Five thousand unique mechanisms were generated, which contain minor perturbations in all parameters. Global uncertainty assessment, global sensitivity analysis, and degree of rate control analysis are performed to study the effect of this parametric uncertainty on the microkinetic model predictions. Comparison of the model predictions with experimental data on a Ni/SiO2 catalyst find a feasible set of microkinetic mechanisms within the correlated uncertainty space that are in quantitative agreement with the measured data, without relying on explicit parameter optimization. Global uncertainty and sensitivity analyses provide tools to determine the pathways and key factors that control the methanation activity within the parameter space. Together, these methods reveal that the degree of rate control approach can be misleading if parametric uncertainty is not considered. The procedure of considering uncertainties in the automated mechanism generation is not unique to CO2 methanation and can be easily extended to other challenging heterogeneously catalyzed reactions. Automatic mechanism generation is used to determine mechanisms for the CO2 hydrogenation on Ni(111) in a two-stage process while considering the correlated uncertainty in DFT-based energetic parameters systematically. In a coarse stage, all the possible chemistry is explored with gas-phase products down to the ppb level, while a refined stage discovers the core methanation submechanism. Five thousand unique mechanisms were generated, which contain minor perturbations in all parameters. Global uncertainty assessment, global sensitivity analysis, and degree of rate control analysis are performed to study the effect of this parametric uncertainty on the microkinetic model predictions. Comparison of the model predictions with experimental data on a Ni/SiO2 catalyst find a feasible set of microkinetic mechanisms within the correlated uncertainty space that are in quantitative agreement with the measured data, without relying on explicit parameter optimization. Global uncertainty and sensitivity analyses provide tools to determine the pathways and key factors that control the methanation activity within the parameter space. Together, these methods reveal that the degree of rate control approach can be misleading if parametric uncertainty is not considered. The procedure of considering uncertainties in the automated mechanism generation is not unique to CO2 methanation and can be easily extended to other challenging heterogeneously catalyzed reactions.Automatic mechanism generation is used to determine mechanisms for the CO2 hydrogenation on Ni(111) in a two-stage process while considering the correlated uncertainty in DFT-based energetic parameters systematically. In a coarse stage, all the possible chemistry is explored with gas-phase products down to the ppb level, while a refined stage discovers the core methanation submechanism. Five thousand unique mechanisms were generated, which contain minor perturbations in all parameters. Global uncertainty assessment, global sensitivity analysis, and degree of rate control analysis are performed to study the effect of this parametric uncertainty on the microkinetic model predictions. Comparison of the model predictions with experimental data on a Ni/SiO2 catalyst find a feasible set of microkinetic mechanisms within the correlated uncertainty space that are in quantitative agreement with the measured data, without relying on explicit parameter optimization. Global uncertainty and sensitivity analyses provide tools to determine the pathways and key factors that control the methanation activity within the parameter space. Together, these methods reveal that the degree of rate control approach can be misleading if parametric uncertainty is not considered. The procedure of considering uncertainties in the automated mechanism generation is not unique to CO2 methanation and can be easily extended to other challenging heterogeneously catalyzed reactions. |
| Author | West, Richard H Turek, Thomas Wehinger, Gregor D Blöndal, Katrín Mazeau, Emily J Goldsmith, C. Franklin Kreitz, Bjarne Sargsyan, Khachik |
| AuthorAffiliation | Department of Chemical Engineering Institute of Chemical and Electrochemical Process Engineering School of Engineering Sandia National Laboratories |
| AuthorAffiliation_xml | – name: Sandia National Laboratories – name: Department of Chemical Engineering – name: School of Engineering – name: Institute of Chemical and Electrochemical Process Engineering |
| Author_xml | – sequence: 1 givenname: Bjarne orcidid: 0000-0003-0158-9147 surname: Kreitz fullname: Kreitz, Bjarne email: kreitz@icvt.tu-clausthal.de organization: School of Engineering – sequence: 2 givenname: Khachik surname: Sargsyan fullname: Sargsyan, Khachik organization: Sandia National Laboratories – sequence: 3 givenname: Katrín orcidid: 0000-0002-0964-8589 surname: Blöndal fullname: Blöndal, Katrín organization: School of Engineering – sequence: 4 givenname: Emily J orcidid: 0000-0001-8844-9563 surname: Mazeau fullname: Mazeau, Emily J organization: Department of Chemical Engineering – sequence: 5 givenname: Richard H orcidid: 0000-0003-3861-6030 surname: West fullname: West, Richard H organization: Department of Chemical Engineering – sequence: 6 givenname: Gregor D orcidid: 0000-0002-1774-3391 surname: Wehinger fullname: Wehinger, Gregor D organization: Institute of Chemical and Electrochemical Process Engineering – sequence: 7 givenname: Thomas orcidid: 0000-0002-7415-1966 surname: Turek fullname: Turek, Thomas organization: Institute of Chemical and Electrochemical Process Engineering – sequence: 8 givenname: C. Franklin orcidid: 0000-0002-2212-0172 surname: Goldsmith fullname: Goldsmith, C. Franklin email: franklin_goldsmith@brown.edu organization: School of Engineering |
| BackLink | https://www.osti.gov/biblio/1813644$$D View this record in Osti.gov |
| BookMark | eNp1Us1rFDEUH6Ria-3V8-CpCrsmk2SSuQhl0XahWgV7Dm8yb3azzCRrkhH2vzftLGKFQiDh95WXvPe6OHHeYVG8pWRJSUU_7sBEmJbUEFLJ-kVxVtUNXTBJ-Mk_59PiIsYdyRpBGanJq-KUcVmxLDgr4o8JXLL9wbpNmbZYrsc9mFT6vvwOAUZMwZry3hkMCaxLh9K78mpKfoSUia9otuBsHMtrdBgyluneh3J1V5U3hy74DboZzeubvaSUvn9TvOxhiHhx3M-L-y-ff65uFrd31-vV1e0CuKBpIdsW2gZ6RpUAjqJF1RmqFCrVAwquUFbAuOhZbxgYJToAIqgUrOsa4BU7L9Zzbudhp_fBjhAO2oPVj4APGw0hv2JADcwwAx0IQpDTToKUslcVY7QGwaqHrE9z1n5qR-wMuhRgeBL6lHF2qzf-t1aCN6SmOeDdHOBjsjoam_LXGe8cmqSpoqzmPIsuj7cE_2vCmPRoo8FhAId-iroSDa2oJKzJ0uUsNcHHGLD_Wwsl-mE69Dwd-jgd2cD_M-QaHluT67XD87YPsy3Deuen4HLLnhP_AacmzxQ |
| CitedBy_id | crossref_primary_10_1002_ange_202219170 crossref_primary_10_1002_cctc_202400371 crossref_primary_10_1016_j_jcat_2023_05_026 crossref_primary_10_1515_revce_2024_0028 crossref_primary_10_1016_j_cej_2023_143847 crossref_primary_10_1016_j_dche_2022_100013 crossref_primary_10_1002_cctc_202200298 crossref_primary_10_1016_j_cej_2025_160863 crossref_primary_10_1021_acscatal_4c08084 crossref_primary_10_1016_j_jcat_2025_116407 crossref_primary_10_1021_acs_jpcc_5c00507 crossref_primary_10_1002_nadc_20224124649 crossref_primary_10_1002_ange_202306514 crossref_primary_10_1002_cctc_202300420 crossref_primary_10_1002_cctc_202301355 crossref_primary_10_1002_cctc_202200570 crossref_primary_10_1007_s11244_022_01708_0 crossref_primary_10_1016_j_cej_2022_136262 crossref_primary_10_1016_j_cej_2023_143217 crossref_primary_10_1038_s41467_023_39541_y crossref_primary_10_1002_anie_202219170 crossref_primary_10_1016_j_cherd_2022_05_030 crossref_primary_10_1016_j_proci_2022_06_001 crossref_primary_10_1002_aic_17653 crossref_primary_10_1016_j_compchemeng_2024_108922 crossref_primary_10_3390_catal12030349 crossref_primary_10_1002_anie_202306514 crossref_primary_10_1016_j_cej_2025_161460 crossref_primary_10_1016_j_cep_2022_109148 crossref_primary_10_1039_D3EE01650A |
| Cites_doi | 10.1038/s41467-020-14613-5 10.1016/j.jcat.2007.12.016 10.1016/j.jcat.2011.05.019 10.1002/cctc.202000278 10.1063/1.1329672 10.1021/jp047912y 10.1016/j.combustflame.2013.01.008 10.1016/0927-0256(96)00008-0 10.1021/acs.iecr.8b01957 10.1021/jacs.6b06939 10.1073/pnas.1006652108 10.1016/j.jcat.2016.03.013 10.1002/aic.16663 10.1021/acscatal.6b00822 10.1038/ncomms14621 10.1016/j.jcat.2021.03.013 10.1002/cctc.201500547 10.1021/acscatal.9b01234 10.1016/j.ress.2008.10.008 10.3389/fctls.2021.658965 10.1021/acs.accounts.0c00340 10.1007/978-3-319-12385-1_56 10.1039/C9CP02970B 10.1021/cr9700890 10.1016/j.apcata.2019.04.005 10.1038/s41929-017-0016-y 10.1039/C3GC41386A 10.1021/acs.iecr.9b01464 10.1002/cctc.201600996 10.1016/j.jcat.2014.12.033 10.1103/PhysRevB.85.235149 10.1021/jacs.0c12689 10.1021/acs.accounts.9b00506 10.1016/j.ces.2011.05.050 10.1016/0041-5553(67)90144-9 10.1016/j.jcat.2015.07.015 10.1021/jp210408x 10.1021/ef5010539 10.1016/j.pecs.2014.10.002 10.1021/ja8099322 10.1016/j.ces.2018.09.053 10.1016/j.jcat.2012.06.004 10.1038/nchem.121 10.1016/j.apcatb.2013.09.015 10.1021/acs.jpcc.9b08755 10.1021/acscatal.0c04100 10.1021/acs.jcim.0c01480 10.1021/acs.jpclett.6b00555 10.1021/acs.jpcc.0c09985 10.1038/s41929-019-0298-3 10.1021/acscatal.0c00630 10.1002/kin.21348 10.1021/acs.jpcc.7b02133 10.1016/j.jcat.2019.09.044 10.1016/j.apcatb.2018.12.064 10.1016/j.fuel.2013.06.012 10.1137/S1064827503427741 10.1016/j.jcat.2013.08.002 10.1103/PhysRevB.59.7413 10.1016/j.apsusc.2015.05.173 10.1103/PhysRevB.54.11169 10.1016/j.ces.2014.09.011 10.1007/s11244-013-0169-0 10.1039/C4RA16114A 10.1021/jp9637690 10.1038/nchem.1873 10.1021/ie5043374 10.1021/acs.iecr.9b02863 10.1021/acscatal.7b00115 10.1063/1.5004770 10.1006/jcat.2001.3396 10.1021/acscatal.9b05424 10.1103/PhysRevLett.99.016105 10.1021/acscatal.0c01599 10.1038/s41467-019-12858-3 10.1016/j.cpc.2016.02.013 10.1007/s10562-010-0477-y 10.1002/cite.202000019 10.1021/cs200055d 10.1021/acs.iecr.1c00389 10.3390/catal5020871 10.1016/j.catcom.2013.10.034 10.1007/s11244-012-9805-3 10.1021/jp034954y 10.1038/nchem.2454 10.1021/acscatal.6b00634 10.1002/cjce.23655 10.1016/j.jcat.2006.02.016 10.1021/ja9000097 10.1016/j.apcatb.2015.07.026 10.5281/zenodo.4662851 10.1016/j.jcat.2004.02.034 10.1021/jp312593u 10.1021/acsomega.8b03200 10.1016/j.apcatb.2013.01.030 10.1038/s41929-019-0244-4 10.1021/jp302488f 10.1126/science.1253486 10.1021/jz900221c 10.1021/jacs.7b08984 10.1002/jcc.20495 10.1007/978-3-662-44562-4 10.1021/jp053270i 10.1039/C9CY00532C 10.1016/j.renene.2015.07.066 10.3390/catal10121410 10.1016/j.susc.2015.03.023 10.1007/s11244-010-9455-2 10.1088/0953-8984/20/6/064239 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. Published by American Chemical Society 2021 The Authors. Published by American Chemical Society. 2021 The Authors. Published by American Chemical Society 2021 The Authors |
| Copyright_xml | – notice: 2021 The Authors. Published by American Chemical Society – notice: 2021 The Authors. Published by American Chemical Society. – notice: 2021 The Authors. Published by American Chemical Society 2021 The Authors |
| CorporateAuthor | Brown Univ., Providence, RI (United States) Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) |
| CorporateAuthor_xml | – sequence: 0 name: Brown Univ., Providence, RI (United States) – sequence: 0 name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) |
| DBID | AAYXX CITATION 7X8 OTOTI 5PM DOA |
| DOI | 10.1021/jacsau.1c00276 |
| DatabaseName | CrossRef MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2691-3704 |
| EndPage | 1673 |
| ExternalDocumentID | oai_doaj_org_article_a3c3cada500e41d7a777f823316a5322 PMC8549061 1813644 10_1021_jacsau_1c00276 b688600930 |
| GrantInformation_xml | – fundername: ; grantid: NA – fundername: ; grantid: 290019031 – fundername: ; grantid: DE-NA0003525 – fundername: ; grantid: 0000232253 |
| GroupedDBID | ACS ALMA_UNASSIGNED_HOLDINGS N~. OK1 RPM VF5 AAFWJ AAYXX ABBLG ADUCK AFPKN CITATION EBS GROUPED_DOAJ M~E PGMZT 7X8 OTOTI 5PM |
| ID | FETCH-LOGICAL-a451t-7bbab9af3185a4e5be8dc188e88fae548e72a345f3fc3ac85daa051753dd9a423 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000711198900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2691-3704 |
| IngestDate | Fri Oct 03 12:44:49 EDT 2025 Tue Sep 30 16:53:38 EDT 2025 Thu Dec 05 06:32:16 EST 2024 Thu Oct 02 11:51:37 EDT 2025 Sat Nov 29 06:47:50 EST 2025 Tue Nov 18 22:29:07 EST 2025 Thu Jan 27 04:11:28 EST 2022 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | carbon dioxide methanation global uncertainty analysis RMG rate-based algorithm |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a451t-7bbab9af3185a4e5be8dc188e88fae548e72a345f3fc3ac85daa051753dd9a423 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 German Research Foundation (DFG) NA0003525; 290019031; 0000232253 USDOE Office of Science (SC), Basic Energy Sciences (BES) USDOE National Nuclear Security Administration (NNSA) SAND2022-8642J |
| ORCID | 0000-0002-0964-8589 0000-0001-8844-9563 0000-0003-0158-9147 0000-0003-3861-6030 0000-0002-7415-1966 0000-0002-1774-3391 0000-0002-2212-0172 0000000301589147 0000000217743391 0000000274151966 0000000222120172 0000000338616030 0000000209648589 0000000188449563 |
| OpenAccessLink | https://doaj.org/article/a3c3cada500e41d7a777f823316a5322 |
| PMID | 34723269 |
| PQID | 2591217039 |
| PQPubID | 23479 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a3c3cada500e41d7a777f823316a5322 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8549061 osti_scitechconnect_1813644 proquest_miscellaneous_2591217039 crossref_primary_10_1021_jacsau_1c00276 crossref_citationtrail_10_1021_jacsau_1c00276 acs_journals_10_1021_jacsau_1c00276 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-25 |
| PublicationDateYYYYMMDD | 2021-10-25 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | JACS Au |
| PublicationTitleAlternate | JACS Au |
| PublicationYear | 2021 |
| Publisher | American Chemical Society ACS Publications |
| Publisher_xml | – sequence: 0 name: ACS Publications – name: American Chemical Society |
| References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref109/cit109 ref13/cit13 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 Turányi T. (ref94/cit94) 2014 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 ref106/cit106 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 Saltelli A. (ref90/cit90) 2004; 1 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
| References_xml | – ident: ref25/cit25 doi: 10.1038/s41467-020-14613-5 – ident: ref18/cit18 doi: 10.1016/j.jcat.2007.12.016 – volume: 1 volume-title: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models year: 2004 ident: ref90/cit90 – ident: ref82/cit82 doi: 10.1016/j.jcat.2011.05.019 – ident: ref76/cit76 doi: 10.1002/cctc.202000278 – ident: ref73/cit73 doi: 10.1063/1.1329672 – ident: ref80/cit80 doi: 10.1021/jp047912y – ident: ref86/cit86 doi: 10.1016/j.combustflame.2013.01.008 – ident: ref67/cit67 doi: 10.1016/0927-0256(96)00008-0 – ident: ref20/cit20 doi: 10.1021/acs.iecr.8b01957 – ident: ref13/cit13 doi: 10.1021/jacs.6b06939 – ident: ref38/cit38 doi: 10.1073/pnas.1006652108 – ident: ref58/cit58 doi: 10.1016/j.jcat.2016.03.013 – ident: ref39/cit39 doi: 10.1002/aic.16663 – ident: ref17/cit17 doi: 10.1021/acscatal.6b00822 – ident: ref51/cit51 doi: 10.1038/ncomms14621 – ident: ref30/cit30 doi: 10.1016/j.jcat.2021.03.013 – ident: ref15/cit15 doi: 10.1002/cctc.201500547 – ident: ref53/cit53 doi: 10.1021/acscatal.9b01234 – ident: ref93/cit93 doi: 10.1016/j.ress.2008.10.008 – ident: ref54/cit54 doi: 10.3389/fctls.2021.658965 – ident: ref32/cit32 doi: 10.1021/acs.accounts.0c00340 – ident: ref92/cit92 doi: 10.1007/978-3-319-12385-1_56 – ident: ref22/cit22 doi: 10.1039/C9CP02970B – ident: ref111/cit111 doi: 10.1021/cr9700890 – ident: ref112/cit112 doi: 10.1016/j.apcata.2019.04.005 – ident: ref9/cit9 doi: 10.1038/s41929-017-0016-y – ident: ref41/cit41 doi: 10.1039/C3GC41386A – ident: ref46/cit46 doi: 10.1021/acs.iecr.9b01464 – ident: ref3/cit3 doi: 10.1002/cctc.201600996 – ident: ref84/cit84 doi: 10.1016/j.jcat.2014.12.033 – ident: ref85/cit85 doi: 10.1103/PhysRevB.85.235149 – ident: ref104/cit104 doi: 10.1021/jacs.0c12689 – ident: ref48/cit48 – ident: ref110/cit110 doi: 10.1021/acs.accounts.9b00506 – ident: ref102/cit102 doi: 10.1016/j.ces.2011.05.050 – ident: ref88/cit88 doi: 10.1016/0041-5553(67)90144-9 – ident: ref108/cit108 doi: 10.1016/j.jcat.2015.07.015 – ident: ref23/cit23 doi: 10.1021/jp210408x – ident: ref42/cit42 doi: 10.1021/ef5010539 – ident: ref49/cit49 doi: 10.1016/j.pecs.2014.10.002 – ident: ref105/cit105 doi: 10.1021/ja8099322 – ident: ref4/cit4 doi: 10.1016/j.ces.2018.09.053 – ident: ref28/cit28 doi: 10.1016/j.jcat.2012.06.004 – ident: ref37/cit37 doi: 10.1038/nchem.121 – ident: ref99/cit99 doi: 10.1016/j.apcatb.2013.09.015 – ident: ref59/cit59 doi: 10.1021/acs.jpcc.9b08755 – ident: ref45/cit45 doi: 10.1021/acscatal.0c04100 – ident: ref47/cit47 doi: 10.1021/acs.jcim.0c01480 – ident: ref24/cit24 doi: 10.1021/acs.jpclett.6b00555 – ident: ref8/cit8 doi: 10.1021/acs.jpcc.0c09985 – ident: ref34/cit34 doi: 10.1038/s41929-019-0298-3 – ident: ref60/cit60 doi: 10.1021/acscatal.0c00630 – ident: ref79/cit79 doi: 10.1002/kin.21348 – ident: ref44/cit44 doi: 10.1021/acs.jpcc.7b02133 – ident: ref109/cit109 doi: 10.1016/j.jcat.2019.09.044 – ident: ref11/cit11 doi: 10.1016/j.apcatb.2018.12.064 – ident: ref97/cit97 doi: 10.1016/j.fuel.2013.06.012 – ident: ref91/cit91 doi: 10.1137/S1064827503427741 – ident: ref106/cit106 doi: 10.1016/j.jcat.2013.08.002 – ident: ref65/cit65 doi: 10.1103/PhysRevB.59.7413 – ident: ref14/cit14 doi: 10.1016/j.apsusc.2015.05.173 – ident: ref77/cit77 – ident: ref66/cit66 doi: 10.1103/PhysRevB.54.11169 – ident: ref36/cit36 doi: 10.1016/j.ces.2014.09.011 – ident: ref83/cit83 doi: 10.1007/s11244-013-0169-0 – ident: ref7/cit7 doi: 10.1039/C4RA16114A – ident: ref63/cit63 doi: 10.1021/jp9637690 – ident: ref29/cit29 doi: 10.1038/nchem.1873 – ident: ref87/cit87 doi: 10.1021/ie5043374 – ident: ref5/cit5 doi: 10.1021/acs.iecr.9b02863 – ident: ref95/cit95 doi: 10.1021/acscatal.7b00115 – ident: ref50/cit50 doi: 10.1063/1.5004770 – ident: ref61/cit61 doi: 10.1006/jcat.2001.3396 – ident: ref31/cit31 doi: 10.1021/acscatal.9b05424 – ident: ref35/cit35 doi: 10.1103/PhysRevLett.99.016105 – ident: ref81/cit81 – ident: ref12/cit12 doi: 10.1021/acscatal.0c01599 – ident: ref10/cit10 doi: 10.1038/s41467-019-12858-3 – ident: ref43/cit43 doi: 10.1016/j.cpc.2016.02.013 – ident: ref71/cit71 doi: 10.1007/s10562-010-0477-y – ident: ref6/cit6 doi: 10.1002/cite.202000019 – ident: ref26/cit26 doi: 10.1021/cs200055d – ident: ref70/cit70 doi: 10.1021/acs.iecr.1c00389 – ident: ref69/cit69 doi: 10.3390/catal5020871 – ident: ref75/cit75 doi: 10.1016/j.catcom.2013.10.034 – ident: ref64/cit64 doi: 10.1007/s11244-012-9805-3 – ident: ref101/cit101 doi: 10.1021/jp034954y – ident: ref52/cit52 doi: 10.1038/nchem.2454 – ident: ref27/cit27 doi: 10.1021/acscatal.6b00634 – ident: ref21/cit21 doi: 10.1002/cjce.23655 – ident: ref114/cit114 doi: 10.1016/j.jcat.2006.02.016 – ident: ref62/cit62 doi: 10.1021/ja9000097 – ident: ref89/cit89 – ident: ref98/cit98 doi: 10.1016/j.apcatb.2015.07.026 – ident: ref78/cit78 doi: 10.5281/zenodo.4662851 – ident: ref56/cit56 doi: 10.1016/j.jcat.2004.02.034 – ident: ref72/cit72 doi: 10.1021/jp312593u – ident: ref33/cit33 doi: 10.1021/acsomega.8b03200 – ident: ref40/cit40 doi: 10.1016/j.apcatb.2013.01.030 – ident: ref2/cit2 doi: 10.1038/s41929-019-0244-4 – ident: ref19/cit19 doi: 10.1021/jp302488f – ident: ref57/cit57 doi: 10.1126/science.1253486 – ident: ref103/cit103 doi: 10.1021/jz900221c – ident: ref16/cit16 doi: 10.1021/jacs.7b08984 – ident: ref68/cit68 doi: 10.1002/jcc.20495 – volume-title: Analysis of Kinetic Reaction Mechanisms year: 2014 ident: ref94/cit94 doi: 10.1007/978-3-662-44562-4 – ident: ref96/cit96 doi: 10.1021/jp053270i – ident: ref100/cit100 doi: 10.1039/C9CY00532C – ident: ref1/cit1 doi: 10.1016/j.renene.2015.07.066 – ident: ref74/cit74 doi: 10.3390/catal10121410 – ident: ref55/cit55 doi: 10.1016/j.susc.2015.03.023 – ident: ref107/cit107 doi: 10.1007/s11244-010-9455-2 – ident: ref113/cit113 doi: 10.1088/0953-8984/20/6/064239 |
| SSID | ssj0002513060 |
| Score | 2.374621 |
| Snippet | Automatic mechanism generation is used to determine mechanisms for the CO2 hydrogenation on Ni(111) in a two-stage process while considering the correlated... Automatic mechanism generation is used to determine mechanisms for the CO2 hydrogenation on Ni(111) in a two-stage process while considering the correlated... |
| SourceID | doaj pubmedcentral osti proquest crossref acs |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1656 |
| SubjectTerms | carbon dioxide global uncertainty analysis INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY methanation rate-based algorithm RMG |
| SummonAdditionalLinks | – databaseName: American Chemical Society (ACS) Open Access dbid: N~. link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96Cvrit1hPJaKgPvTYJO02eTwXj_PB9QQP7i1M88EtaCvbVrgX_3Znst3VKgcHhUIaSsjMZH6TTH7D2GuPXngGUecRvWNezEHmtVQmV2UEb4z3XvhUbKJaLvXZmTn5s9_x7wm-JH4g18FwIBxFUPPr7IZEjEv6u_x1sNtNQS-N2Jc2VOTcCLSaWbFlaPzvF-SHXDfxQ4muH18tmtUEak4TJf_yPEd3rz7me-zOiC754UYd7rNroXnAbi22Rd0esu7LAJQeRJebOGI__jHdkuRt5CdAeVpE2M9PURNSpkB_wduGHw59m5hd-adAF4VX3Xe-oasmqXKEvXzxWfLjC79uUR83rfgsV29xjXv3iJ0effi6OM7Hugs5FKXo86quoTYQ6WI1FKGsg_ZOaB20jhAwxAmVBFWUUUWnwOnSAxDVV6m8N4D47DHba9omPGHcVHXpECKBmbuCSEij9zNRIwjEBogiY69wquxoN51NR-ISQ5I0gXacwIzlW1lZN1KXUwWNb5f2f7Pr_2ND2nFpz_ck-l0vIttODShNO9quBeWUA0-1I0IhfAVVVUUtlRJzKHFBzNg-KY5FzELEu44ylFxvETspRJsZe7nVJ4vCpvMYaEI7dBYjT4ER4UyZjFUTRZuMZ_qlWZ0nEnCNgT1isadXmsB9dltSLg76XFk-Y3v9egjP2U33s1916xfJlH4DdIUblQ priority: 102 providerName: American Chemical Society |
| Title | Quantifying the Impact of Parametric Uncertainty on Automatic Mechanism Generation for CO2 Hydrogenation on Ni(111) |
| URI | http://dx.doi.org/10.1021/jacsau.1c00276 https://www.proquest.com/docview/2591217039 https://www.osti.gov/biblio/1813644 https://pubmed.ncbi.nlm.nih.gov/PMC8549061 https://doaj.org/article/a3c3cada500e41d7a777f823316a5322 |
| Volume | 1 |
| WOSCitedRecordID | wos000711198900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society (ACS) Open Access customDbUrl: eissn: 2691-3704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513060 issn: 2691-3704 databaseCode: N~. dateStart: 20210125 isFulltext: true titleUrlDefault: https://pubs.acs.org providerName: American Chemical Society – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2691-3704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513060 issn: 2691-3704 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2691-3704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513060 issn: 2691-3704 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtKLSX0id10waVFtoenK4teyUd0yUhPWSbQgN7E2M96EJrl7UdyCW_PTOyN6wPoZeCkbGsg-wZab5BM98w9sGhFZ5BUGlA65gWc8jTKhc6FWUAp7VzLnOx2IRcLtVqpc93Sn1RTNhADzz8uC8grLDgiLjfF5mTIKUMKhcim0OJ2ki770zqHWeK9mC02oiFZ1uWxpxohmwL_WFmyREjghF8ntiiSNmPtwaX1gRuToMld6zPyRP2eISN_GiY7lN2z9fP2MPFtlrbc9b-6IHifihriSOo499i-iNvAj8HCsAiJn5-gSKOIQDdFW9qftR3TaRs5WeeMoDX7R8-8FCTuDjiWb74nvPTK7dpUNGGXryW60-4eX1-wS5Ojn8uTtOxoEIKRZl1qawqqDQEypiGwpeVV85mSnmlAnj0XbzMQRRlEMEKsKp0AMThVQrnNCDwesn26qb2rxjXsiotYh_Qc1sQu2hwbpZViO6wA0KWsPf4g824IFoTz7pz9DWiGMwohoSlWwEYO3KSU2mM33eO_3g7_u_AxnHnyK8kz9tRxKIdO1C3zKhb5l-6lbB90gaDYIQYdS2FHtnOICgSCCMT9m6rJAaFTQctUPumbw26lBm6ejOhEyYn2jOZz_RNvf4V2b0VeuwIsl7_jw_YZ49yisFBW5uXb9het-n9W_bAXnbrdnPA7suVOogLB9uz62Nsl9eHNyy0IK4 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEF5qFdoX79JYLysK6kPqSTaby2M9WE6xjRVa6Nsy2Qse0EROEqEv_nZn9iRHgxQUAoHNEpbdmZ1vdme-YeyVQSs8A5eHDq1jmKQQh1UsilBIB6YojDGR8cUmsrLMLy-Lsy32bsyFwUG0-KfWX-L_ZhcgmiDdQn8QaXKk0hvspkwTfy9b_jzYHKqgsUYITOcqcVpEqDyzZCRq_OsXZI50OzFHnrUfXw1q1wRxTuMl_zBAR3f-e-h32e0Ba_LDtXDcY1u2vs925mOJtwes_dwDBQtRqhNHJMiPfc4kbxw_A4raIvp-foFy4eMGuive1Pyw7xrP88pPLaUNL9tvfE1eTWvMEQTz-aeYL67MqkHpXLfiUy7f4I739iG7OPpwPl-EQxWGEBIZdWFWVVAV4CjNGhIrK5sbHeW5zXMHFh0em8UgEumE0wJ0Lg0AEX9JYUwBiNYese26qe0e40VWSY2ACYpUJ0RJ6oyZRRVCQmwAFwXsJU6VGrSoVf6CPEYHxU-gGiYwYOG4ZEoPROZUT-Prtf1fb_p_X1N4XNvzPUnAphdRb_sGXFE1aLICoYUGQ5UkbBKZDLIsc3ksRJSCxO0xYPskPwoRDNHwaopX0p1CJCUQewbsxShWChebbmegtk3fKvRDI_QPZ6IIWDaRt8l4pl_q5RdPCZ6jm4_I7PE_TeBztrM4Pz1RJ8flx322G1OUDlrjWD5h292qt0_ZLf2jW7arZ167fgFZaiP0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96ivrit1jPj4iC-tBj0zT9eDxXlzvUuoIH9xam-cAFbY9tK9yLf7sz2e5ikQMRCoU0lJDMZH6TzPyGsZcWrfAMfBF7tI5xmkES14ksY6k82LK01gobik3kVVWcnpbLMY-bcmFwEB3-qQuX-KTVZ9aPDANEFWQ6GA6EIWcqu8yuqCzNSKyrXwe7gxU02AiD6WwlyUqBCjRLt2SNf_2CTJLpJiYpMPfjq0UNm6DOaczkH0Zoceu_hn-b3RwxJz_cCMkddsk1d9n1-bbU2z3WfRmAgoYo5YkjIuTHIXeSt54vgaK3iMafn6B8hPiB_py3DT8c-jbwvfJPjtKHV90PviGxprXmCIb5_HPCj87tukUp3bTiU61e48735j47Wbz_Oj-Kx2oMMaRK9HFe11CX4CndGlKnaldYI4rCFYUHh46PyxOQqfLSGwmmUBaACMCUtLYERG0P2F7TNu4h42VeK4PACcrMpERN6q2diRqhITaAFxF7gVOlR23qdLgoT9BRCROoxwmMWLxdNm1GQnOqq_H9wv6vdv3PNlQeF_Z8S1Kw60UU3KEBV1WPGq1BGmnAUkUJlwqbQ57nvkikFBko3CYjtk8ypBHJEB2vobgl02tEVBIxaMSeb0VL42LTLQ00rh06jf6oQD9xJsuI5ROZm4xn-qVZfQvU4AW6-4jQHv3TBD5j15bvFvrjcfVhn91IKFgHjXKiHrO9fj24J-yq-dmvuvXToGC_Aat9Jnc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+the+Impact+of+parametric+uncertainty+on+automatic+mechanism+generation+for+co2+hydrogenation+on+Ni%28111%29&rft.jtitle=JACS+Au&rft.au=Kreitz%2C+Bjarne&rft.au=Sargsyan%2C+Khachik&rft.au=Bl%C3%B6ndal%2C+Katr%C3%ADn&rft.au=Mazeau%2C+Emily+J.&rft.date=2021-10-25&rft.issn=2691-3704&rft.eissn=2691-3704&rft.volume=1&rft.issue=10&rft.spage=1656&rft.epage=1673&rft_id=info:doi/10.1021%2Fjacsau.1c00276&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacsau_1c00276 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3704&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3704&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3704&client=summon |