Quantifying the Impact of Parametric Uncertainty on Automatic Mechanism Generation for CO2 Hydrogenation on Ni(111)

Automatic mechanism generation is used to determine mechanisms for the CO2 hydrogenation on Ni(111) in a two-stage process while considering the correlated uncertainty in DFT-based energetic parameters systematically. In a coarse stage, all the possible chemistry is explored with gas-phase products...

Full description

Saved in:
Bibliographic Details
Published in:JACS Au Vol. 1; no. 10; pp. 1656 - 1673
Main Authors: Kreitz, Bjarne, Sargsyan, Khachik, Blöndal, Katrín, Mazeau, Emily J, West, Richard H, Wehinger, Gregor D, Turek, Thomas, Goldsmith, C. Franklin
Format: Journal Article
Language:English
Published: United States American Chemical Society 25.10.2021
ACS Publications
Subjects:
ISSN:2691-3704, 2691-3704
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Automatic mechanism generation is used to determine mechanisms for the CO2 hydrogenation on Ni(111) in a two-stage process while considering the correlated uncertainty in DFT-based energetic parameters systematically. In a coarse stage, all the possible chemistry is explored with gas-phase products down to the ppb level, while a refined stage discovers the core methanation submechanism. Five thousand unique mechanisms were generated, which contain minor perturbations in all parameters. Global uncertainty assessment, global sensitivity analysis, and degree of rate control analysis are performed to study the effect of this parametric uncertainty on the microkinetic model predictions. Comparison of the model predictions with experimental data on a Ni/SiO2 catalyst find a feasible set of microkinetic mechanisms within the correlated uncertainty space that are in quantitative agreement with the measured data, without relying on explicit parameter optimization. Global uncertainty and sensitivity analyses provide tools to determine the pathways and key factors that control the methanation activity within the parameter space. Together, these methods reveal that the degree of rate control approach can be misleading if parametric uncertainty is not considered. The procedure of considering uncertainties in the automated mechanism generation is not unique to CO2 methanation and can be easily extended to other challenging heterogeneously catalyzed reactions.
AbstractList Automatic mechanism generation is used to determine mechanisms for the CO2 hydrogenation on Ni(111) in a two-stage process while considering the correlated uncertainty in DFT-based energetic parameters systematically. In a coarse stage, all the possible chemistry is explored with gas-phase products down to the ppb level, while a refined stage discovers the core methanation submechanism. Five thousand unique mechanisms were generated, which contain minor perturbations in all parameters. Global uncertainty assessment, global sensitivity analysis, and degree of rate control analysis are performed to study the effect of this parametric uncertainty on the microkinetic model predictions. Comparison of the model predictions with experimental data on a Ni/SiO2 catalyst find a feasible set of microkinetic mechanisms within the correlated uncertainty space that are in quantitative agreement with the measured data, without relying on explicit parameter optimization. Global uncertainty and sensitivity analyses provide tools to determine the pathways and key factors that control the methanation activity within the parameter space. Together, these methods reveal that the degree of rate control approach can be misleading if parametric uncertainty is not considered. The procedure of considering uncertainties in the automated mechanism generation is not unique to CO2 methanation and can be easily extended to other challenging heterogeneously catalyzed reactions.
Automatic mechanism generation is used to determine mechanisms for the CO2 hydrogenation on Ni(111) in a two-stage process while considering the correlated uncertainty in DFT-based energetic parameters systematically. In a coarse stage, all the possible chemistry is explored with gas-phase products down to the ppb level, while a refined stage discovers the core methanation submechanism. Five thousand unique mechanisms were generated, which contain minor perturbations in all parameters. Global uncertainty assessment, global sensitivity analysis, and degree of rate control analysis are performed to study the effect of this parametric uncertainty on the microkinetic model predictions. Comparison of the model predictions with experimental data on a Ni/SiO2 catalyst find a feasible set of microkinetic mechanisms within the correlated uncertainty space that are in quantitative agreement with the measured data, without relying on explicit parameter optimization. Global uncertainty and sensitivity analyses provide tools to determine the pathways and key factors that control the methanation activity within the parameter space. Together, these methods reveal that the degree of rate control approach can be misleading if parametric uncertainty is not considered. The procedure of considering uncertainties in the automated mechanism generation is not unique to CO2 methanation and can be easily extended to other challenging heterogeneously catalyzed reactions.
Automatic mechanism generation is used to determine mechanisms for the CO2 hydrogenation on Ni(111) in a two-stage process while considering the correlated uncertainty in DFT-based energetic parameters systematically. In a coarse stage, all the possible chemistry is explored with gas-phase products down to the ppb level, while a refined stage discovers the core methanation submechanism. Five thousand unique mechanisms were generated, which contain minor perturbations in all parameters. Global uncertainty assessment, global sensitivity analysis, and degree of rate control analysis are performed to study the effect of this parametric uncertainty on the microkinetic model predictions. Comparison of the model predictions with experimental data on a Ni/SiO2 catalyst find a feasible set of microkinetic mechanisms within the correlated uncertainty space that are in quantitative agreement with the measured data, without relying on explicit parameter optimization. Global uncertainty and sensitivity analyses provide tools to determine the pathways and key factors that control the methanation activity within the parameter space. Together, these methods reveal that the degree of rate control approach can be misleading if parametric uncertainty is not considered. The procedure of considering uncertainties in the automated mechanism generation is not unique to CO2 methanation and can be easily extended to other challenging heterogeneously catalyzed reactions.Automatic mechanism generation is used to determine mechanisms for the CO2 hydrogenation on Ni(111) in a two-stage process while considering the correlated uncertainty in DFT-based energetic parameters systematically. In a coarse stage, all the possible chemistry is explored with gas-phase products down to the ppb level, while a refined stage discovers the core methanation submechanism. Five thousand unique mechanisms were generated, which contain minor perturbations in all parameters. Global uncertainty assessment, global sensitivity analysis, and degree of rate control analysis are performed to study the effect of this parametric uncertainty on the microkinetic model predictions. Comparison of the model predictions with experimental data on a Ni/SiO2 catalyst find a feasible set of microkinetic mechanisms within the correlated uncertainty space that are in quantitative agreement with the measured data, without relying on explicit parameter optimization. Global uncertainty and sensitivity analyses provide tools to determine the pathways and key factors that control the methanation activity within the parameter space. Together, these methods reveal that the degree of rate control approach can be misleading if parametric uncertainty is not considered. The procedure of considering uncertainties in the automated mechanism generation is not unique to CO2 methanation and can be easily extended to other challenging heterogeneously catalyzed reactions.
Author West, Richard H
Turek, Thomas
Wehinger, Gregor D
Blöndal, Katrín
Mazeau, Emily J
Goldsmith, C. Franklin
Kreitz, Bjarne
Sargsyan, Khachik
AuthorAffiliation Department of Chemical Engineering
Institute of Chemical and Electrochemical Process Engineering
School of Engineering
Sandia National Laboratories
AuthorAffiliation_xml – name: Sandia National Laboratories
– name: Department of Chemical Engineering
– name: School of Engineering
– name: Institute of Chemical and Electrochemical Process Engineering
Author_xml – sequence: 1
  givenname: Bjarne
  orcidid: 0000-0003-0158-9147
  surname: Kreitz
  fullname: Kreitz, Bjarne
  email: kreitz@icvt.tu-clausthal.de
  organization: School of Engineering
– sequence: 2
  givenname: Khachik
  surname: Sargsyan
  fullname: Sargsyan, Khachik
  organization: Sandia National Laboratories
– sequence: 3
  givenname: Katrín
  orcidid: 0000-0002-0964-8589
  surname: Blöndal
  fullname: Blöndal, Katrín
  organization: School of Engineering
– sequence: 4
  givenname: Emily J
  orcidid: 0000-0001-8844-9563
  surname: Mazeau
  fullname: Mazeau, Emily J
  organization: Department of Chemical Engineering
– sequence: 5
  givenname: Richard H
  orcidid: 0000-0003-3861-6030
  surname: West
  fullname: West, Richard H
  organization: Department of Chemical Engineering
– sequence: 6
  givenname: Gregor D
  orcidid: 0000-0002-1774-3391
  surname: Wehinger
  fullname: Wehinger, Gregor D
  organization: Institute of Chemical and Electrochemical Process Engineering
– sequence: 7
  givenname: Thomas
  orcidid: 0000-0002-7415-1966
  surname: Turek
  fullname: Turek, Thomas
  organization: Institute of Chemical and Electrochemical Process Engineering
– sequence: 8
  givenname: C. Franklin
  orcidid: 0000-0002-2212-0172
  surname: Goldsmith
  fullname: Goldsmith, C. Franklin
  email: franklin_goldsmith@brown.edu
  organization: School of Engineering
BackLink https://www.osti.gov/biblio/1813644$$D View this record in Osti.gov
BookMark eNp1Us1rFDEUH6Ria-3V8-CpCrsmk2SSuQhl0XahWgV7Dm8yb3azzCRrkhH2vzftLGKFQiDh95WXvPe6OHHeYVG8pWRJSUU_7sBEmJbUEFLJ-kVxVtUNXTBJ-Mk_59PiIsYdyRpBGanJq-KUcVmxLDgr4o8JXLL9wbpNmbZYrsc9mFT6vvwOAUZMwZry3hkMCaxLh9K78mpKfoSUia9otuBsHMtrdBgyluneh3J1V5U3hy74DboZzeubvaSUvn9TvOxhiHhx3M-L-y-ff65uFrd31-vV1e0CuKBpIdsW2gZ6RpUAjqJF1RmqFCrVAwquUFbAuOhZbxgYJToAIqgUrOsa4BU7L9Zzbudhp_fBjhAO2oPVj4APGw0hv2JADcwwAx0IQpDTToKUslcVY7QGwaqHrE9z1n5qR-wMuhRgeBL6lHF2qzf-t1aCN6SmOeDdHOBjsjoam_LXGe8cmqSpoqzmPIsuj7cE_2vCmPRoo8FhAId-iroSDa2oJKzJ0uUsNcHHGLD_Wwsl-mE69Dwd-jgd2cD_M-QaHluT67XD87YPsy3Deuen4HLLnhP_AacmzxQ
CitedBy_id crossref_primary_10_1002_ange_202219170
crossref_primary_10_1002_cctc_202400371
crossref_primary_10_1016_j_jcat_2023_05_026
crossref_primary_10_1515_revce_2024_0028
crossref_primary_10_1016_j_cej_2023_143847
crossref_primary_10_1016_j_dche_2022_100013
crossref_primary_10_1002_cctc_202200298
crossref_primary_10_1016_j_cej_2025_160863
crossref_primary_10_1021_acscatal_4c08084
crossref_primary_10_1016_j_jcat_2025_116407
crossref_primary_10_1021_acs_jpcc_5c00507
crossref_primary_10_1002_nadc_20224124649
crossref_primary_10_1002_ange_202306514
crossref_primary_10_1002_cctc_202300420
crossref_primary_10_1002_cctc_202301355
crossref_primary_10_1002_cctc_202200570
crossref_primary_10_1007_s11244_022_01708_0
crossref_primary_10_1016_j_cej_2022_136262
crossref_primary_10_1016_j_cej_2023_143217
crossref_primary_10_1038_s41467_023_39541_y
crossref_primary_10_1002_anie_202219170
crossref_primary_10_1016_j_cherd_2022_05_030
crossref_primary_10_1016_j_proci_2022_06_001
crossref_primary_10_1002_aic_17653
crossref_primary_10_1016_j_compchemeng_2024_108922
crossref_primary_10_3390_catal12030349
crossref_primary_10_1002_anie_202306514
crossref_primary_10_1016_j_cej_2025_161460
crossref_primary_10_1016_j_cep_2022_109148
crossref_primary_10_1039_D3EE01650A
Cites_doi 10.1038/s41467-020-14613-5
10.1016/j.jcat.2007.12.016
10.1016/j.jcat.2011.05.019
10.1002/cctc.202000278
10.1063/1.1329672
10.1021/jp047912y
10.1016/j.combustflame.2013.01.008
10.1016/0927-0256(96)00008-0
10.1021/acs.iecr.8b01957
10.1021/jacs.6b06939
10.1073/pnas.1006652108
10.1016/j.jcat.2016.03.013
10.1002/aic.16663
10.1021/acscatal.6b00822
10.1038/ncomms14621
10.1016/j.jcat.2021.03.013
10.1002/cctc.201500547
10.1021/acscatal.9b01234
10.1016/j.ress.2008.10.008
10.3389/fctls.2021.658965
10.1021/acs.accounts.0c00340
10.1007/978-3-319-12385-1_56
10.1039/C9CP02970B
10.1021/cr9700890
10.1016/j.apcata.2019.04.005
10.1038/s41929-017-0016-y
10.1039/C3GC41386A
10.1021/acs.iecr.9b01464
10.1002/cctc.201600996
10.1016/j.jcat.2014.12.033
10.1103/PhysRevB.85.235149
10.1021/jacs.0c12689
10.1021/acs.accounts.9b00506
10.1016/j.ces.2011.05.050
10.1016/0041-5553(67)90144-9
10.1016/j.jcat.2015.07.015
10.1021/jp210408x
10.1021/ef5010539
10.1016/j.pecs.2014.10.002
10.1021/ja8099322
10.1016/j.ces.2018.09.053
10.1016/j.jcat.2012.06.004
10.1038/nchem.121
10.1016/j.apcatb.2013.09.015
10.1021/acs.jpcc.9b08755
10.1021/acscatal.0c04100
10.1021/acs.jcim.0c01480
10.1021/acs.jpclett.6b00555
10.1021/acs.jpcc.0c09985
10.1038/s41929-019-0298-3
10.1021/acscatal.0c00630
10.1002/kin.21348
10.1021/acs.jpcc.7b02133
10.1016/j.jcat.2019.09.044
10.1016/j.apcatb.2018.12.064
10.1016/j.fuel.2013.06.012
10.1137/S1064827503427741
10.1016/j.jcat.2013.08.002
10.1103/PhysRevB.59.7413
10.1016/j.apsusc.2015.05.173
10.1103/PhysRevB.54.11169
10.1016/j.ces.2014.09.011
10.1007/s11244-013-0169-0
10.1039/C4RA16114A
10.1021/jp9637690
10.1038/nchem.1873
10.1021/ie5043374
10.1021/acs.iecr.9b02863
10.1021/acscatal.7b00115
10.1063/1.5004770
10.1006/jcat.2001.3396
10.1021/acscatal.9b05424
10.1103/PhysRevLett.99.016105
10.1021/acscatal.0c01599
10.1038/s41467-019-12858-3
10.1016/j.cpc.2016.02.013
10.1007/s10562-010-0477-y
10.1002/cite.202000019
10.1021/cs200055d
10.1021/acs.iecr.1c00389
10.3390/catal5020871
10.1016/j.catcom.2013.10.034
10.1007/s11244-012-9805-3
10.1021/jp034954y
10.1038/nchem.2454
10.1021/acscatal.6b00634
10.1002/cjce.23655
10.1016/j.jcat.2006.02.016
10.1021/ja9000097
10.1016/j.apcatb.2015.07.026
10.5281/zenodo.4662851
10.1016/j.jcat.2004.02.034
10.1021/jp312593u
10.1021/acsomega.8b03200
10.1016/j.apcatb.2013.01.030
10.1038/s41929-019-0244-4
10.1021/jp302488f
10.1126/science.1253486
10.1021/jz900221c
10.1021/jacs.7b08984
10.1002/jcc.20495
10.1007/978-3-662-44562-4
10.1021/jp053270i
10.1039/C9CY00532C
10.1016/j.renene.2015.07.066
10.3390/catal10121410
10.1016/j.susc.2015.03.023
10.1007/s11244-010-9455-2
10.1088/0953-8984/20/6/064239
ContentType Journal Article
Copyright 2021 The Authors. Published by American Chemical Society
2021 The Authors. Published by American Chemical Society.
2021 The Authors. Published by American Chemical Society 2021 The Authors
Copyright_xml – notice: 2021 The Authors. Published by American Chemical Society
– notice: 2021 The Authors. Published by American Chemical Society.
– notice: 2021 The Authors. Published by American Chemical Society 2021 The Authors
CorporateAuthor Brown Univ., Providence, RI (United States)
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
CorporateAuthor_xml – sequence: 0
  name: Brown Univ., Providence, RI (United States)
– sequence: 0
  name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
DBID AAYXX
CITATION
7X8
OTOTI
5PM
DOA
DOI 10.1021/jacsau.1c00276
DatabaseName CrossRef
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2691-3704
EndPage 1673
ExternalDocumentID oai_doaj_org_article_a3c3cada500e41d7a777f823316a5322
PMC8549061
1813644
10_1021_jacsau_1c00276
b688600930
GrantInformation_xml – fundername: ;
  grantid: NA
– fundername: ;
  grantid: 290019031
– fundername: ;
  grantid: DE-NA0003525
– fundername: ;
  grantid: 0000232253
GroupedDBID ACS
ALMA_UNASSIGNED_HOLDINGS
N~.
OK1
RPM
VF5
AAFWJ
AAYXX
ABBLG
ADUCK
AFPKN
CITATION
EBS
GROUPED_DOAJ
M~E
PGMZT
7X8
OTOTI
5PM
ID FETCH-LOGICAL-a451t-7bbab9af3185a4e5be8dc188e88fae548e72a345f3fc3ac85daa051753dd9a423
IEDL.DBID DOA
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000711198900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2691-3704
IngestDate Fri Oct 03 12:44:49 EDT 2025
Tue Sep 30 16:53:38 EDT 2025
Thu Dec 05 06:32:16 EST 2024
Thu Oct 02 11:51:37 EDT 2025
Sat Nov 29 06:47:50 EST 2025
Tue Nov 18 22:29:07 EST 2025
Thu Jan 27 04:11:28 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords carbon dioxide
methanation
global uncertainty analysis
RMG
rate-based algorithm
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a451t-7bbab9af3185a4e5be8dc188e88fae548e72a345f3fc3ac85daa051753dd9a423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
German Research Foundation (DFG)
NA0003525; 290019031; 0000232253
USDOE Office of Science (SC), Basic Energy Sciences (BES)
USDOE National Nuclear Security Administration (NNSA)
SAND2022-8642J
ORCID 0000-0002-0964-8589
0000-0001-8844-9563
0000-0003-0158-9147
0000-0003-3861-6030
0000-0002-7415-1966
0000-0002-1774-3391
0000-0002-2212-0172
0000000301589147
0000000217743391
0000000274151966
0000000222120172
0000000338616030
0000000209648589
0000000188449563
OpenAccessLink https://doaj.org/article/a3c3cada500e41d7a777f823316a5322
PMID 34723269
PQID 2591217039
PQPubID 23479
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_a3c3cada500e41d7a777f823316a5322
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8549061
osti_scitechconnect_1813644
proquest_miscellaneous_2591217039
crossref_primary_10_1021_jacsau_1c00276
crossref_citationtrail_10_1021_jacsau_1c00276
acs_journals_10_1021_jacsau_1c00276
PublicationCentury 2000
PublicationDate 2021-10-25
PublicationDateYYYYMMDD 2021-10-25
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle JACS Au
PublicationTitleAlternate JACS Au
PublicationYear 2021
Publisher American Chemical Society
ACS Publications
Publisher_xml – sequence: 0
  name: ACS Publications
– name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref109/cit109
ref13/cit13
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
Turányi T. (ref94/cit94) 2014
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
ref106/cit106
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
Saltelli A. (ref90/cit90) 2004; 1
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref25/cit25
  doi: 10.1038/s41467-020-14613-5
– ident: ref18/cit18
  doi: 10.1016/j.jcat.2007.12.016
– volume: 1
  volume-title: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models
  year: 2004
  ident: ref90/cit90
– ident: ref82/cit82
  doi: 10.1016/j.jcat.2011.05.019
– ident: ref76/cit76
  doi: 10.1002/cctc.202000278
– ident: ref73/cit73
  doi: 10.1063/1.1329672
– ident: ref80/cit80
  doi: 10.1021/jp047912y
– ident: ref86/cit86
  doi: 10.1016/j.combustflame.2013.01.008
– ident: ref67/cit67
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref20/cit20
  doi: 10.1021/acs.iecr.8b01957
– ident: ref13/cit13
  doi: 10.1021/jacs.6b06939
– ident: ref38/cit38
  doi: 10.1073/pnas.1006652108
– ident: ref58/cit58
  doi: 10.1016/j.jcat.2016.03.013
– ident: ref39/cit39
  doi: 10.1002/aic.16663
– ident: ref17/cit17
  doi: 10.1021/acscatal.6b00822
– ident: ref51/cit51
  doi: 10.1038/ncomms14621
– ident: ref30/cit30
  doi: 10.1016/j.jcat.2021.03.013
– ident: ref15/cit15
  doi: 10.1002/cctc.201500547
– ident: ref53/cit53
  doi: 10.1021/acscatal.9b01234
– ident: ref93/cit93
  doi: 10.1016/j.ress.2008.10.008
– ident: ref54/cit54
  doi: 10.3389/fctls.2021.658965
– ident: ref32/cit32
  doi: 10.1021/acs.accounts.0c00340
– ident: ref92/cit92
  doi: 10.1007/978-3-319-12385-1_56
– ident: ref22/cit22
  doi: 10.1039/C9CP02970B
– ident: ref111/cit111
  doi: 10.1021/cr9700890
– ident: ref112/cit112
  doi: 10.1016/j.apcata.2019.04.005
– ident: ref9/cit9
  doi: 10.1038/s41929-017-0016-y
– ident: ref41/cit41
  doi: 10.1039/C3GC41386A
– ident: ref46/cit46
  doi: 10.1021/acs.iecr.9b01464
– ident: ref3/cit3
  doi: 10.1002/cctc.201600996
– ident: ref84/cit84
  doi: 10.1016/j.jcat.2014.12.033
– ident: ref85/cit85
  doi: 10.1103/PhysRevB.85.235149
– ident: ref104/cit104
  doi: 10.1021/jacs.0c12689
– ident: ref48/cit48
– ident: ref110/cit110
  doi: 10.1021/acs.accounts.9b00506
– ident: ref102/cit102
  doi: 10.1016/j.ces.2011.05.050
– ident: ref88/cit88
  doi: 10.1016/0041-5553(67)90144-9
– ident: ref108/cit108
  doi: 10.1016/j.jcat.2015.07.015
– ident: ref23/cit23
  doi: 10.1021/jp210408x
– ident: ref42/cit42
  doi: 10.1021/ef5010539
– ident: ref49/cit49
  doi: 10.1016/j.pecs.2014.10.002
– ident: ref105/cit105
  doi: 10.1021/ja8099322
– ident: ref4/cit4
  doi: 10.1016/j.ces.2018.09.053
– ident: ref28/cit28
  doi: 10.1016/j.jcat.2012.06.004
– ident: ref37/cit37
  doi: 10.1038/nchem.121
– ident: ref99/cit99
  doi: 10.1016/j.apcatb.2013.09.015
– ident: ref59/cit59
  doi: 10.1021/acs.jpcc.9b08755
– ident: ref45/cit45
  doi: 10.1021/acscatal.0c04100
– ident: ref47/cit47
  doi: 10.1021/acs.jcim.0c01480
– ident: ref24/cit24
  doi: 10.1021/acs.jpclett.6b00555
– ident: ref8/cit8
  doi: 10.1021/acs.jpcc.0c09985
– ident: ref34/cit34
  doi: 10.1038/s41929-019-0298-3
– ident: ref60/cit60
  doi: 10.1021/acscatal.0c00630
– ident: ref79/cit79
  doi: 10.1002/kin.21348
– ident: ref44/cit44
  doi: 10.1021/acs.jpcc.7b02133
– ident: ref109/cit109
  doi: 10.1016/j.jcat.2019.09.044
– ident: ref11/cit11
  doi: 10.1016/j.apcatb.2018.12.064
– ident: ref97/cit97
  doi: 10.1016/j.fuel.2013.06.012
– ident: ref91/cit91
  doi: 10.1137/S1064827503427741
– ident: ref106/cit106
  doi: 10.1016/j.jcat.2013.08.002
– ident: ref65/cit65
  doi: 10.1103/PhysRevB.59.7413
– ident: ref14/cit14
  doi: 10.1016/j.apsusc.2015.05.173
– ident: ref77/cit77
– ident: ref66/cit66
  doi: 10.1103/PhysRevB.54.11169
– ident: ref36/cit36
  doi: 10.1016/j.ces.2014.09.011
– ident: ref83/cit83
  doi: 10.1007/s11244-013-0169-0
– ident: ref7/cit7
  doi: 10.1039/C4RA16114A
– ident: ref63/cit63
  doi: 10.1021/jp9637690
– ident: ref29/cit29
  doi: 10.1038/nchem.1873
– ident: ref87/cit87
  doi: 10.1021/ie5043374
– ident: ref5/cit5
  doi: 10.1021/acs.iecr.9b02863
– ident: ref95/cit95
  doi: 10.1021/acscatal.7b00115
– ident: ref50/cit50
  doi: 10.1063/1.5004770
– ident: ref61/cit61
  doi: 10.1006/jcat.2001.3396
– ident: ref31/cit31
  doi: 10.1021/acscatal.9b05424
– ident: ref35/cit35
  doi: 10.1103/PhysRevLett.99.016105
– ident: ref81/cit81
– ident: ref12/cit12
  doi: 10.1021/acscatal.0c01599
– ident: ref10/cit10
  doi: 10.1038/s41467-019-12858-3
– ident: ref43/cit43
  doi: 10.1016/j.cpc.2016.02.013
– ident: ref71/cit71
  doi: 10.1007/s10562-010-0477-y
– ident: ref6/cit6
  doi: 10.1002/cite.202000019
– ident: ref26/cit26
  doi: 10.1021/cs200055d
– ident: ref70/cit70
  doi: 10.1021/acs.iecr.1c00389
– ident: ref69/cit69
  doi: 10.3390/catal5020871
– ident: ref75/cit75
  doi: 10.1016/j.catcom.2013.10.034
– ident: ref64/cit64
  doi: 10.1007/s11244-012-9805-3
– ident: ref101/cit101
  doi: 10.1021/jp034954y
– ident: ref52/cit52
  doi: 10.1038/nchem.2454
– ident: ref27/cit27
  doi: 10.1021/acscatal.6b00634
– ident: ref21/cit21
  doi: 10.1002/cjce.23655
– ident: ref114/cit114
  doi: 10.1016/j.jcat.2006.02.016
– ident: ref62/cit62
  doi: 10.1021/ja9000097
– ident: ref89/cit89
– ident: ref98/cit98
  doi: 10.1016/j.apcatb.2015.07.026
– ident: ref78/cit78
  doi: 10.5281/zenodo.4662851
– ident: ref56/cit56
  doi: 10.1016/j.jcat.2004.02.034
– ident: ref72/cit72
  doi: 10.1021/jp312593u
– ident: ref33/cit33
  doi: 10.1021/acsomega.8b03200
– ident: ref40/cit40
  doi: 10.1016/j.apcatb.2013.01.030
– ident: ref2/cit2
  doi: 10.1038/s41929-019-0244-4
– ident: ref19/cit19
  doi: 10.1021/jp302488f
– ident: ref57/cit57
  doi: 10.1126/science.1253486
– ident: ref103/cit103
  doi: 10.1021/jz900221c
– ident: ref16/cit16
  doi: 10.1021/jacs.7b08984
– ident: ref68/cit68
  doi: 10.1002/jcc.20495
– volume-title: Analysis of Kinetic Reaction Mechanisms
  year: 2014
  ident: ref94/cit94
  doi: 10.1007/978-3-662-44562-4
– ident: ref96/cit96
  doi: 10.1021/jp053270i
– ident: ref100/cit100
  doi: 10.1039/C9CY00532C
– ident: ref1/cit1
  doi: 10.1016/j.renene.2015.07.066
– ident: ref74/cit74
  doi: 10.3390/catal10121410
– ident: ref55/cit55
  doi: 10.1016/j.susc.2015.03.023
– ident: ref107/cit107
  doi: 10.1007/s11244-010-9455-2
– ident: ref113/cit113
  doi: 10.1088/0953-8984/20/6/064239
SSID ssj0002513060
Score 2.374621
Snippet Automatic mechanism generation is used to determine mechanisms for the CO2 hydrogenation on Ni(111) in a two-stage process while considering the correlated...
Automatic mechanism generation is used to determine mechanisms for the CO2 hydrogenation on Ni(111) in a two-stage process while considering the correlated...
SourceID doaj
pubmedcentral
osti
proquest
crossref
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1656
SubjectTerms carbon dioxide
global uncertainty analysis
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
methanation
rate-based algorithm
RMG
SummonAdditionalLinks – databaseName: American Chemical Society (ACS) Open Access
  dbid: N~.
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96Cvrit1hPJaKgPvTYJO02eTwXj_PB9QQP7i1M88EtaCvbVrgX_3Znst3VKgcHhUIaSsjMZH6TTH7D2GuPXngGUecRvWNezEHmtVQmV2UEb4z3XvhUbKJaLvXZmTn5s9_x7wm-JH4g18FwIBxFUPPr7IZEjEv6u_x1sNtNQS-N2Jc2VOTcCLSaWbFlaPzvF-SHXDfxQ4muH18tmtUEak4TJf_yPEd3rz7me-zOiC754UYd7rNroXnAbi22Rd0esu7LAJQeRJebOGI__jHdkuRt5CdAeVpE2M9PURNSpkB_wduGHw59m5hd-adAF4VX3Xe-oasmqXKEvXzxWfLjC79uUR83rfgsV29xjXv3iJ0effi6OM7Hugs5FKXo86quoTYQ6WI1FKGsg_ZOaB20jhAwxAmVBFWUUUWnwOnSAxDVV6m8N4D47DHba9omPGHcVHXpECKBmbuCSEij9zNRIwjEBogiY69wquxoN51NR-ISQ5I0gXacwIzlW1lZN1KXUwWNb5f2f7Pr_2ND2nFpz_ck-l0vIttODShNO9quBeWUA0-1I0IhfAVVVUUtlRJzKHFBzNg-KY5FzELEu44ylFxvETspRJsZe7nVJ4vCpvMYaEI7dBYjT4ER4UyZjFUTRZuMZ_qlWZ0nEnCNgT1isadXmsB9dltSLg76XFk-Y3v9egjP2U33s1916xfJlH4DdIUblQ
  priority: 102
  providerName: American Chemical Society
Title Quantifying the Impact of Parametric Uncertainty on Automatic Mechanism Generation for CO2 Hydrogenation on Ni(111)
URI http://dx.doi.org/10.1021/jacsau.1c00276
https://www.proquest.com/docview/2591217039
https://www.osti.gov/biblio/1813644
https://pubmed.ncbi.nlm.nih.gov/PMC8549061
https://doaj.org/article/a3c3cada500e41d7a777f823316a5322
Volume 1
WOSCitedRecordID wos000711198900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society (ACS) Open Access
  customDbUrl:
  eissn: 2691-3704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513060
  issn: 2691-3704
  databaseCode: N~.
  dateStart: 20210125
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org
  providerName: American Chemical Society
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2691-3704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513060
  issn: 2691-3704
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2691-3704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513060
  issn: 2691-3704
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtKLSX0id10waVFtoenK4teyUd0yUhPWSbQgN7E2M96EJrl7UdyCW_PTOyN6wPoZeCkbGsg-wZab5BM98w9sGhFZ5BUGlA65gWc8jTKhc6FWUAp7VzLnOx2IRcLtVqpc93Sn1RTNhADzz8uC8grLDgiLjfF5mTIKUMKhcim0OJ2ki770zqHWeK9mC02oiFZ1uWxpxohmwL_WFmyREjghF8ntiiSNmPtwaX1gRuToMld6zPyRP2eISN_GiY7lN2z9fP2MPFtlrbc9b-6IHifihriSOo499i-iNvAj8HCsAiJn5-gSKOIQDdFW9qftR3TaRs5WeeMoDX7R8-8FCTuDjiWb74nvPTK7dpUNGGXryW60-4eX1-wS5Ojn8uTtOxoEIKRZl1qawqqDQEypiGwpeVV85mSnmlAnj0XbzMQRRlEMEKsKp0AMThVQrnNCDwesn26qb2rxjXsiotYh_Qc1sQu2hwbpZViO6wA0KWsPf4g824IFoTz7pz9DWiGMwohoSlWwEYO3KSU2mM33eO_3g7_u_AxnHnyK8kz9tRxKIdO1C3zKhb5l-6lbB90gaDYIQYdS2FHtnOICgSCCMT9m6rJAaFTQctUPumbw26lBm6ejOhEyYn2jOZz_RNvf4V2b0VeuwIsl7_jw_YZ49yisFBW5uXb9het-n9W_bAXnbrdnPA7suVOogLB9uz62Nsl9eHNyy0IK4
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEF5qFdoX79JYLysK6kPqSTaby2M9WE6xjRVa6Nsy2Qse0EROEqEv_nZn9iRHgxQUAoHNEpbdmZ1vdme-YeyVQSs8A5eHDq1jmKQQh1UsilBIB6YojDGR8cUmsrLMLy-Lsy32bsyFwUG0-KfWX-L_ZhcgmiDdQn8QaXKk0hvspkwTfy9b_jzYHKqgsUYITOcqcVpEqDyzZCRq_OsXZI50OzFHnrUfXw1q1wRxTuMl_zBAR3f-e-h32e0Ba_LDtXDcY1u2vs925mOJtwes_dwDBQtRqhNHJMiPfc4kbxw_A4raIvp-foFy4eMGuive1Pyw7xrP88pPLaUNL9tvfE1eTWvMEQTz-aeYL67MqkHpXLfiUy7f4I739iG7OPpwPl-EQxWGEBIZdWFWVVAV4CjNGhIrK5sbHeW5zXMHFh0em8UgEumE0wJ0Lg0AEX9JYUwBiNYese26qe0e40VWSY2ACYpUJ0RJ6oyZRRVCQmwAFwXsJU6VGrSoVf6CPEYHxU-gGiYwYOG4ZEoPROZUT-Prtf1fb_p_X1N4XNvzPUnAphdRb_sGXFE1aLICoYUGQ5UkbBKZDLIsc3ksRJSCxO0xYPskPwoRDNHwaopX0p1CJCUQewbsxShWChebbmegtk3fKvRDI_QPZ6IIWDaRt8l4pl_q5RdPCZ6jm4_I7PE_TeBztrM4Pz1RJ8flx322G1OUDlrjWD5h292qt0_ZLf2jW7arZ167fgFZaiP0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96ivrit1jPj4iC-tBj0zT9eDxXlzvUuoIH9xam-cAFbY9tK9yLf7sz2e5ikQMRCoU0lJDMZH6TzPyGsZcWrfAMfBF7tI5xmkES14ksY6k82LK01gobik3kVVWcnpbLMY-bcmFwEB3-qQuX-KTVZ9aPDANEFWQ6GA6EIWcqu8yuqCzNSKyrXwe7gxU02AiD6WwlyUqBCjRLt2SNf_2CTJLpJiYpMPfjq0UNm6DOaczkH0Zoceu_hn-b3RwxJz_cCMkddsk1d9n1-bbU2z3WfRmAgoYo5YkjIuTHIXeSt54vgaK3iMafn6B8hPiB_py3DT8c-jbwvfJPjtKHV90PviGxprXmCIb5_HPCj87tukUp3bTiU61e48735j47Wbz_Oj-Kx2oMMaRK9HFe11CX4CndGlKnaldYI4rCFYUHh46PyxOQqfLSGwmmUBaACMCUtLYERG0P2F7TNu4h42VeK4PACcrMpERN6q2diRqhITaAFxF7gVOlR23qdLgoT9BRCROoxwmMWLxdNm1GQnOqq_H9wv6vdv3PNlQeF_Z8S1Kw60UU3KEBV1WPGq1BGmnAUkUJlwqbQ57nvkikFBko3CYjtk8ypBHJEB2vobgl02tEVBIxaMSeb0VL42LTLQ00rh06jf6oQD9xJsuI5ROZm4xn-qVZfQvU4AW6-4jQHv3TBD5j15bvFvrjcfVhn91IKFgHjXKiHrO9fj24J-yq-dmvuvXToGC_Aat9Jnc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+the+Impact+of+parametric+uncertainty+on+automatic+mechanism+generation+for+co2+hydrogenation+on+Ni%28111%29&rft.jtitle=JACS+Au&rft.au=Kreitz%2C+Bjarne&rft.au=Sargsyan%2C+Khachik&rft.au=Bl%C3%B6ndal%2C+Katr%C3%ADn&rft.au=Mazeau%2C+Emily+J.&rft.date=2021-10-25&rft.issn=2691-3704&rft.eissn=2691-3704&rft.volume=1&rft.issue=10&rft.spage=1656&rft.epage=1673&rft_id=info:doi/10.1021%2Fjacsau.1c00276&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacsau_1c00276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3704&client=summon