Soil water erosion susceptibility assessment using deep learning algorithms

•Soil water erosion (SWE) is predicted though three kinds of deep learning algorithms.•Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long-Short Term Memory (LSTM) are investigated.•All three models had good prediction performance, with RNN being marginally the most superior....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of hydrology (Amsterdam) Ročník 618; s. 129229
Hlavní autori: Khosravi, Khabat, Rezaie, Fatemeh, Cooper, James R., Kalantari, Zahra, Abolfathi, Soroush, Hatamiafkoueieh, Javad
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.03.2023
Predmet:
ISSN:0022-1694, 1879-2707, 1879-2707
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Soil water erosion (SWE) is predicted though three kinds of deep learning algorithms.•Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long-Short Term Memory (LSTM) are investigated.•All three models had good prediction performance, with RNN being marginally the most superior.•Elevation was the most effective variable on soil water erosion susceptibility.•Maps of SWE susceptibility revealed that almost 40% of the catchment was highly or very highly susceptible to SWE. Accurate assessment of soil water erosion (SWE) susceptibility is critical for reducing land degradation and soil loss, and for mitigating the negative impacts of erosion on ecosystem services, water quality, flooding and infrastructure. Deep learning algorithms have been gaining attention in geoscience due to their high performance and flexibility. However, an understanding of the potential for these algorithms to provide fast, cheap, and accurate predictions of soil erosion susceptibility is lacking. This study provides the first quantification of this potential. Spatial predictions of susceptibility are made using three deep learning algorithms – Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long-Short Term Memory (LSTM) – for an Iranian catchment that has historically experienced severe water erosion. Through a comparison of their predictive performance and an analysis of the driving geo-environmental factors, the results reveal: (1) elevation was the most effective variable on SWE susceptibility; (2) all three developed models had good prediction performance, with RNN being marginally the most superior; (3) maps of SWE susceptibility revealed that almost 40 % of the catchment was highly or very highly susceptible to SWE and 20 % moderately susceptible, indicating the critical need for soil erosion control in this catchment. Through these algorithms, the soil erosion susceptibility of catchments can potentially be predicted accurately and with ease using readily available data. Thus, the results reveal that these models have great potential for use in data poor catchments, such as the one studied here, especially in developing nations where technical modeling skills and understanding of the erosion processes occurring in the catchment may be lacking.
AbstractList Accurate assessment of soil water erosion (SWE) susceptibility is critical for reducing land degradation and soil loss, and for mitigating the negative impacts of erosion on ecosystem services, water quality, flooding and infrastructure. Deep learning algorithms have been gaining attention in geoscience due to their high performance and flexibility. However, an understanding of the potential for these algorithms to provide fast, cheap, and accurate predictions of soil erosion susceptibility is lacking. This study provides the first quantification of this potential. Spatial predictions of susceptibility are made using three deep learning algorithms – Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long-Short Term Memory (LSTM) – for an Iranian catchment that has historically experienced severe water erosion. Through a comparison of their predictive performance and an analysis of the driving geo-environmental factors, the results reveal: (1) elevation was the most effective variable on SWE susceptibility; (2) all three developed models had good prediction performance, with RNN being marginally the most superior; (3) maps of SWE susceptibility revealed that almost 40 % of the catchment was highly or very highly susceptible to SWE and 20 % moderately susceptible, indicating the critical need for soil erosion control in this catchment. Through these algorithms, the soil erosion susceptibility of catchments can potentially be predicted accurately and with ease using readily available data. Thus, the results reveal that these models have great potential for use in data poor catchments, such as the one studied here, especially in developing nations where technical modeling skills and understanding of the erosion processes occurring in the catchment may be lacking.
•Soil water erosion (SWE) is predicted though three kinds of deep learning algorithms.•Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long-Short Term Memory (LSTM) are investigated.•All three models had good prediction performance, with RNN being marginally the most superior.•Elevation was the most effective variable on soil water erosion susceptibility.•Maps of SWE susceptibility revealed that almost 40% of the catchment was highly or very highly susceptible to SWE. Accurate assessment of soil water erosion (SWE) susceptibility is critical for reducing land degradation and soil loss, and for mitigating the negative impacts of erosion on ecosystem services, water quality, flooding and infrastructure. Deep learning algorithms have been gaining attention in geoscience due to their high performance and flexibility. However, an understanding of the potential for these algorithms to provide fast, cheap, and accurate predictions of soil erosion susceptibility is lacking. This study provides the first quantification of this potential. Spatial predictions of susceptibility are made using three deep learning algorithms – Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long-Short Term Memory (LSTM) – for an Iranian catchment that has historically experienced severe water erosion. Through a comparison of their predictive performance and an analysis of the driving geo-environmental factors, the results reveal: (1) elevation was the most effective variable on SWE susceptibility; (2) all three developed models had good prediction performance, with RNN being marginally the most superior; (3) maps of SWE susceptibility revealed that almost 40 % of the catchment was highly or very highly susceptible to SWE and 20 % moderately susceptible, indicating the critical need for soil erosion control in this catchment. Through these algorithms, the soil erosion susceptibility of catchments can potentially be predicted accurately and with ease using readily available data. Thus, the results reveal that these models have great potential for use in data poor catchments, such as the one studied here, especially in developing nations where technical modeling skills and understanding of the erosion processes occurring in the catchment may be lacking.
ArticleNumber 129229
Author Hatamiafkoueieh, Javad
Khosravi, Khabat
Cooper, James R.
Kalantari, Zahra
Rezaie, Fatemeh
Abolfathi, Soroush
Author_xml – sequence: 1
  givenname: Khabat
  surname: Khosravi
  fullname: Khosravi, Khabat
  email: khabat.khosravi@gmail.com, kkhosrav@fiu.edu
  organization: Department of Earth and Environment, Florida International University, Miami, USA
– sequence: 2
  givenname: Fatemeh
  surname: Rezaie
  fullname: Rezaie, Fatemeh
  email: rezaie@kigam.re.kr
  organization: Geoscience Data Center, Korea Institute of Geoscience and Mineral Resources (KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea
– sequence: 3
  givenname: James R.
  surname: Cooper
  fullname: Cooper, James R.
  email: james.cooper@liverpool.ac.uk
  organization: Department of Geography & Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
– sequence: 4
  givenname: Zahra
  orcidid: 0000-0002-7978-0040
  surname: Kalantari
  fullname: Kalantari, Zahra
  email: zahrak@kth.se
  organization: Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 5
  givenname: Soroush
  orcidid: 0000-0001-7319-4289
  surname: Abolfathi
  fullname: Abolfathi, Soroush
  email: Soroush.Abolfathi@warwick.ac.uk
  organization: School of Engineering, University of Warwick, CV4 7AL Coventry, UK
– sequence: 6
  givenname: Javad
  surname: Hatamiafkoueieh
  fullname: Hatamiafkoueieh, Javad
  email: khatamiafkuiekh-d@rudn.ru
  organization: Department of Mechanics and Control Processes, Academy of Engineering, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, Moscow 117198, Russian Federation
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-325309$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
BookMark eNqFkEtPHDEQhC1EJJbHT0CaI5fZ-DUv5YAQJAEFiUMQV8v29O724h0Ptido_328GnLJhb60WqoqVX-n5HjwAxByyeiSUVZ_3S63m30fvFtyysWS8Y7z7ogsWNt0JW9oc0wWlHJesrqTJ-Q0xi3NI4RckF-_PbriXScIBQQf0Q9FnKKFMaFBh2lf6Bghxh0MqZgiDuuiBxgLBzoMh0u7tQ-YNrt4Tr6stItw8bHPyPOP78-39-Xj08-H25vHUsuKprLqmxXntdS6hg44E1a3tqmZaU3u1xphmG1E1xrZUGOhFlCZSveVpVYabcUZKefY-A7jZNQYcKfDXnmN6g5fbpQPa_WaNkrwStAu669m_Rj82wQxqR3mB53TA_gpKt4KyWknZZWl32apzShigJWymHTKUFLQ6BSj6kBcbdUHcXUgrmbi2V395_5X7TPf9eyDDO0PQlDRIgwWegxgk-o9fpLwF66tom8
CitedBy_id crossref_primary_10_1007_s11069_024_06887_5
crossref_primary_10_1016_j_ijsrc_2024_08_003
crossref_primary_10_1016_j_jenvman_2023_118403
crossref_primary_10_1109_ACCESS_2025_3561137
crossref_primary_10_1016_j_clet_2025_100984
crossref_primary_10_1016_j_jenvman_2023_118368
crossref_primary_10_1016_j_oceaneng_2023_115583
crossref_primary_10_1016_j_engappai_2023_107613
crossref_primary_10_1109_ACCESS_2025_3582906
crossref_primary_10_48077_scihor12_2023_76
crossref_primary_10_1016_j_rineng_2025_104254
crossref_primary_10_1016_j_engappai_2024_108156
crossref_primary_10_1016_j_jhydrol_2025_134004
crossref_primary_10_1016_j_ecolind_2025_113340
crossref_primary_10_1002_hyp_70138
crossref_primary_10_1016_j_heliyon_2024_e33082
crossref_primary_10_3390_agronomy14112467
crossref_primary_10_1007_s00477_025_03042_9
crossref_primary_10_1007_s11069_023_06357_4
crossref_primary_10_1016_j_jwpe_2023_104303
crossref_primary_10_1109_ACCESS_2024_3463871
crossref_primary_10_1016_j_chemosphere_2024_141394
crossref_primary_10_3390_app15063139
crossref_primary_10_1002_ldr_70152
crossref_primary_10_1007_s13197_025_06428_3
crossref_primary_10_1109_ACCESS_2024_3351754
crossref_primary_10_1016_j_jwpe_2024_104778
crossref_primary_10_3390_w15071437
crossref_primary_10_1007_s11629_025_9645_9
crossref_primary_10_3390_su152115374
crossref_primary_10_3390_w15142674
crossref_primary_10_1016_j_jenvman_2025_126214
crossref_primary_10_1016_j_rineng_2025_104674
crossref_primary_10_1029_2023JD039538
crossref_primary_10_1016_j_jwpe_2023_103957
crossref_primary_10_1016_j_ecolind_2024_112915
crossref_primary_10_1016_j_rsase_2025_101498
crossref_primary_10_2166_hydro_2023_216
crossref_primary_10_1038_s41598_023_32343_8
crossref_primary_10_2166_hydro_2023_327
crossref_primary_10_1016_j_jenvman_2023_119589
crossref_primary_10_1016_j_jhydrol_2024_130719
crossref_primary_10_1016_j_jwpe_2024_104789
crossref_primary_10_1016_j_landusepol_2025_107592
crossref_primary_10_1186_s40068_025_00402_w
crossref_primary_10_1002_gj_70070
crossref_primary_10_1007_s11368_023_03668_8
crossref_primary_10_1016_j_jwpe_2025_107158
crossref_primary_10_3390_rs16142595
crossref_primary_10_2166_wst_2023_340
crossref_primary_10_1038_s41598_024_55942_5
crossref_primary_10_1016_j_engappai_2024_108444
crossref_primary_10_1016_j_jwpe_2023_104757
crossref_primary_10_1016_j_heliyon_2023_e17620
crossref_primary_10_1109_TGRS_2023_3324043
crossref_primary_10_1111_ejss_70202
crossref_primary_10_2166_hydro_2025_287
crossref_primary_10_1016_j_jece_2023_110593
crossref_primary_10_1016_j_jwpe_2024_104876
crossref_primary_10_1016_j_jhydrol_2024_132269
crossref_primary_10_1016_j_jenvrad_2025_107667
crossref_primary_10_1016_j_rineng_2025_104606
crossref_primary_10_3390_su17052250
crossref_primary_10_1007_s10661_025_14401_y
crossref_primary_10_1016_j_jag_2024_104305
crossref_primary_10_1016_j_uclim_2024_102272
crossref_primary_10_1109_ACCESS_2024_3369673
crossref_primary_10_1007_s11069_025_07482_y
crossref_primary_10_3390_w17091351
crossref_primary_10_3390_su16020795
crossref_primary_10_3390_w16203009
crossref_primary_10_1016_j_catena_2025_108954
crossref_primary_10_1007_s00477_023_02637_4
crossref_primary_10_1016_j_ijsrc_2025_02_004
crossref_primary_10_1016_j_scitotenv_2023_166960
crossref_primary_10_1007_s41101_024_00324_1
crossref_primary_10_1007_s12040_024_02294_3
crossref_primary_10_1007_s10668_024_05285_y
crossref_primary_10_1016_j_jhydrol_2024_132003
crossref_primary_10_1007_s12145_025_01995_7
crossref_primary_10_1029_2024WR039169
crossref_primary_10_1016_j_jhydrol_2024_130987
crossref_primary_10_1016_j_ejrh_2025_102285
crossref_primary_10_3390_rs15164067
crossref_primary_10_3390_su16208918
crossref_primary_10_1016_j_jclepro_2023_137689
crossref_primary_10_1080_10106049_2024_2367611
crossref_primary_10_1007_s10661_023_11796_4
crossref_primary_10_3389_fbuil_2024_1343398
crossref_primary_10_1016_j_ecolind_2025_113839
crossref_primary_10_1016_j_aeolia_2024_100924
crossref_primary_10_2478_johh_2024_0009
crossref_primary_10_1038_s41598_023_38447_5
crossref_primary_10_1016_j_engappai_2024_108238
crossref_primary_10_1016_j_jclepro_2023_140031
crossref_primary_10_1016_j_asoc_2024_112352
crossref_primary_10_1109_ACCESS_2023_3314335
crossref_primary_10_3390_agronomy15030596
crossref_primary_10_1038_s41598_024_70262_4
crossref_primary_10_1016_j_catena_2025_109388
Cites_doi 10.1155/2012/974638
10.1029/2005WR004468
10.1016/j.scitotenv.2017.04.046
10.1300/J411v11n01_04
10.1080/03736245.2020.1716838
10.1007/s12665-015-4648-4
10.3390/ijgi8120578
10.1002/hyp.9966
10.1016/j.agwat.2010.12.012
10.1016/S0012-8252(99)00046-X
10.1007/s12665-014-3523-z
10.1016/j.agee.2010.10.015
10.1016/j.compag.2016.01.026
10.1186/s41610-018-0075-2
10.1002/ldr.3794
10.2166/hydro.2013.234
10.1002/ldr.2560
10.1016/j.envsoft.2021.105285
10.1016/j.jenvman.2021.112206
10.3390/hydrology8040171
10.1016/j.iswcr.2020.09.005
10.1016/j.iswcr.2020.10.005
10.1016/j.jhydrol.2016.06.027
10.1016/j.jhydrol.2010.01.024
10.1007/s11069-007-9188-0
10.1007/s11269-014-0774-0
10.3390/agronomy11071426
10.1016/j.jclepro.2018.08.207
10.2478/jwld-2018-0002
10.1016/j.dsp.2021.103093
10.1007/s10668-012-9351-y
10.1016/j.eswa.2014.02.047
10.1016/j.geoderma.2016.09.002
10.1623/hysj.53.3.656
10.1080/1747423X.2011.560292
10.1080/17538947.2021.1919230
10.1007/s40333-015-0057-5
10.1016/j.scitotenv.2015.01.008
10.1061/(ASCE)0887-3801(2001)15:3(208)
10.1016/j.jhydrol.2020.125734
10.1016/j.jenvrad.2010.03.008
10.13031/2013.31195
10.1016/S0143-6228(97)00002-7
10.1016/j.geomorph.2010.06.011
10.13031/2013.27570
10.1016/j.geoderma.2014.11.025
10.13031/2013.27535
10.1016/j.measurement.2020.108066
10.1016/j.jenvman.2012.10.043
10.1016/j.catena.2016.03.015
10.1016/j.geomorph.2016.03.018
10.5194/hess-22-4771-2018
10.1016/j.jhydrol.2020.125552
10.1002/ldr.3058
10.3390/rs11172046
10.1016/j.jhydrol.2008.04.002
10.1016/j.jhydrol.2012.05.031
10.1002/ldr.4391
10.1111/j.1475-2743.2003.tb00320.x
10.1029/2017MS001270
10.1023/B:NHAZ.0000007172.62651.2b
10.1016/j.procs.2017.08.227
10.1177/0309133312444943
10.1002/esp.1624
10.1016/j.jhydrol.2020.125423
10.1016/0341-8162(92)90007-X
10.4137/ASWR.S3427
10.1017/S1355770X11000180
10.1016/j.asej.2020.09.015
10.1016/j.epsr.2022.108635
10.1016/j.gsf.2020.06.013
10.1007/s13244-018-0639-9
10.1080/19475705.2021.1994474
10.3390/land10040422
10.3390/w12071995
10.1016/j.aej.2022.03.008
10.3923/pjbs.2008.1893.1900
10.1046/j.1365-2664.2000.00491.x
10.1016/j.knosys.2018.08.036
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOI 10.1016/j.jhydrol.2023.129229
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID oai_DiVA_org_kth_325309
10_1016_j_jhydrol_2023_129229
S0022169423001713
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ID FETCH-LOGICAL-a450t-5d7f2264aa6e9e213ca8c761b8b6948b3b1c7398b470bce63e5b5ad5c0c4bac3
ISICitedReferencesCount 115
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000942641000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
1879-2707
IngestDate Tue Nov 04 16:25:57 EST 2025
Mon Sep 29 06:40:48 EDT 2025
Tue Nov 18 22:42:24 EST 2025
Sat Nov 29 06:54:44 EST 2025
Sat Feb 24 15:50:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
CNN
Soil erosion
RNN
LSTM
Land degradation
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a450t-5d7f2264aa6e9e213ca8c761b8b6948b3b1c7398b470bce63e5b5ad5c0c4bac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7978-0040
0000-0001-7319-4289
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-325309
PQID 2834209445
PQPubID 24069
ParticipantIDs swepub_primary_oai_DiVA_org_kth_325309
proquest_miscellaneous_2834209445
crossref_citationtrail_10_1016_j_jhydrol_2023_129229
crossref_primary_10_1016_j_jhydrol_2023_129229
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2023_129229
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Anastasakis, Mort (b0050) 2001
Marques, Mora (b0265) 1992; 19
Panahi, Khosravi, Golkarian, Roostaei, Barzegar, Omidvar, Rezaie, Saco, Sharifi, Jun, Bateni, Lee, Lee (b0325) 2022; 1–23
Melesse, Ahmad, McClain, Wang, Lim (b0270) 2011; 98
Mohammadi, Balouei, Haji, Khaledi Darvishan, Karydas (b0280) 2021; 14
Raza, Ahrends, Habib-Ur-Rahman, Gaiser (b0350) 2021; 10
Wischmeier, W.H., Smith, D.D., 1965. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains:guide for selection of practices for soil and water conservation. Agricultural Research Service, U. S. Dept of Agriculture in cooperation with Purdue Agricultural Experiment Station.
Emadodin, Narita, Bork (b0160) 2012; 14
Wainwright, Parsons, Müller, Brazier, Powell, Fenti (b0440) 2008; 33
Abrahart, Anctil, Coulibaly, Dawson, Mount, See, Shamseldin, Solomatine, Toth, Wilby (b0010) 2012; 36
Thi Ngo, Panahi, Khosravi, Ghorbanzadeh, Kariminejad, Cerda, Lee (b0400) 2021; 12
Orgill, Condon, Conyers, Morris, Alcock, Murphy, Greene (b0310) 2018; 29
Phinzi, Ngetar, Ebhuoma (b0335) 2021; 103
Ghorbanzadeh, Meena, Blaschke, Aryal (b0190) 2019; 11
Tan, Leung, Li, Tesfa (b0390) 2018; 10
Williams, J.R., 1975. Sediment-yield prediction with Universal Equation using runoff energy factor.
Afshar, Ayoubi, Jalalian (b0020) 2010; 101
Puigdefabregas, Sole, Gutierrez, del Barrio, Boer (b0340) 1999; 48
Sajedi-Hosseini, Choubin, Solaimani, Cerdà, Kavian (b0375) 2018; 29
Kinnell (b0230) 2017; 596–597
Ajitha, Goel, Assudani, Radhika, Goel (b0030) 2022; 212
.
Ebtehaj, Bonakdari (b0150) 2014; 28
Emadodin, Bork (b0155) 2012; 7
Auerswald, Kainz, Fiener (b0070) 2006; 19
Solaimani, Hadian Amr (b0380) 2008; 11
Akbari, A.-M., 2017. Soil erosion in Iran 2.5 times the world average [WWW Document]. Tehran Times. URL https://www.tehrantimes.com/news/418381/Soil-erosion-in-Iran-2-5-times-the-world-average#:∼:text=TEHRAN — Iran has a mean, deputy agriculture minister has said.
Evans (b0165) 1997; 17
Yousefi, Moradi, Boll, Schönbrodt-Stitt (b0485) 2016; 284
Rosskopf, Di Iorio, Circelli, Colombo, Aucelli (b0365) 2020; 8
Petroselli, Apollonio, Luca, Salvaneschi, Pecci, Marras, Schirone (b0330) 2021; 8
Wischmeier, W.H., Smith, D.D., 1978. Predicting rainfall erosion losses: a guide to conservation planning. Science and Education Administration, U.S. Dept. of Agriculture.
Amiri (b0045) 2010; 3
Deng, Huang, Huang, Rozelle, Gibson (b0120) 2011; 16
Fang, Guo (b0170) 2015; 74
Angileri, Conoscenti, Hochschild, Märker, Rotigliano, Agnesi (b0055) 2016; 262
Goyal, Bharti, Quilty, Adamowski, Pandey (b0200) 2014; 41
Sternberg, Gutman, Perevolotsky, Ungar, Kigel (b0385) 2000; 37
Khosravi, Panahi, Tien Bui (b0215) 2018; 22
Gliessman (b0195) 2004; 11
Pally, Samadi (b0315) 2022; 148
Liu, Lang, Liu, Yan (b0260) 2019; 163
Yu, Rosewell (b0495) 1996; 39
Mutlu, Nefeslioglu, Sezer, Akcayol, Gokceoglu (b0290) 2019; 8
Tang, Xu, Bennett, Li (b0395) 2015; 73
Tien Bui, Pradhan, Nampak, Bui, Tran, Nguyen (b0410) 2016; 540
Yousefi, Pourghasemi, Avand, Janizadeh, Tavangar, Santosh (b0490) 2021; 32
Mirzabaev, Ahmed, Werner, Pender, Louhaichi (b0275) 2016; 8
Novakovic (b0305) 2009
World Bank, 2005. Islamic Republic of Iran, Cost Assessment of Environmental Degradation.
Khalili Moghadam, Jabarifar, Bagheri, Shahbazi (b0210) 2015; 241–242
Vu, Tran, Cao, Tran, Hoang (b0435) 2020; 164
Robinson (b0360) 1998
Kisi, Dailr, Cimen, Shiri (b0235) 2012; 450–451
Wijitkosum (b0445) 2021; 9
Fang, Wang, Peng, Hong (b0175) 2021; 594
Dodangeh, Panahi, Rezaie, Lee, Tien Bui, Lee, Pradhan (b0130) 2020; 590
Cerdan, Govers, Le Bissonnais, Van Oost, Poesen, Saby, Gobin, Vacca, Quinton, Auerswald, Klik, Kwaad, Raclot, Ionita, Rejman, Rousseva, Muxart, Roxo, Dostal (b0085) 2010; 122
Ahmad, Reynolds, Rezgui (b0025) 2018; 203
Chen, Young (b0090) 2006; 42
Boudjemline, Semar (b0075) 2018; 36
Akhavan, Abedi-Koupai, Mousavi, Afyuni, Eslamian, Abbaspour (b0040) 2010; 139
Zhang, Nearing, Risse, McGregor (b0500) 1996; 39
Ebtehaj, Bonakdari (b0145) 2013; 7
Ganguli, Reddy (b0185) 2014; 28
Li, Xu, He, Fan, Yang, Li (b0255) 2021; 12
Çimen (b0100) 2008; 53
Donovan, Monaghan (b0135) 2021; 287
Chung, Fabbri (b0095) 2003; 30
Darvishan, Sadeghi, Gholami (b0115) 2010; 42
Abolhasani, Zehtabian, Khosravi, Rahmati, Alamdarloo, D'Odorico (b0005) 2022; 33
Tien Bui, Pradhan, Lofman, Revhaug (b0405) 2012; 2012
Laylin, D., 2018. Environmental and wildlife degradation in Iran [WWW Document]. Atl. Counc. URL
Vaezi, Hasanzadeh, Cerdà (b0420) 2016; 142
Vojinovic, Abebe, Ranasinghe, Vacher, Martens, Mandl (b091) 2013; 15
Capolongo, Diodato, Mannaerts, Piccarreta, Strobl (b0080) 2008; 356
Nearing, Foster, Lane, Finkner (b0300) 1989; 32
Kinnell (b0225) 2010; 385
Narantsetseg, Kang, Ko (b0295) 2018; 42
Cooper, Wainwright, Parsons, Onda, Fukuwara, Obana, Kitchener, Long, Hargrave (b0110) 2012; 117
Dibike, Velickov, Solomatine, Abbott (b0125) 2001; 15
Du, Liu, Fu, Meng, Liu (b0140) 2022; 61
Yesilnacar (b0480) 2005
Aslam, Maqsoom, Salah Alaloul, Ali Musarat, Jabbar, Zafar (b0065) 2021; 12
Keshkamat, Tsendbazar, Zuidgeest, Shiirev-Adiya, van der Veen, van Maarseveen (b0205) 2013; 114
Panagos, Ballabio, Borrelli, Meusburger, Klik, Rousseva, Tadić, Michaelides, Hrabalíková, Olsen, Aalto, Lakatos, Rymszewicz, Dumitrescu, Beguería, Alewell (b0320) 2015; 511
Trabelsi, Meddouri, Maddouri (b0415) 2017; 112
Woolhiser, D.A., Smith, R.E., Goodrich, D.C., 1990. KINEROS:a kinematic runoff and erosion model: documentation and user manual.
Rapp (b0345) 1963
Yamashita, Nishio, Do, Togashi (b0475) 2018; 9
Mosavi, Sajedi-Hosseini, Choubin, Taromideh, Rahi, Dineva (b0285) 2020; 12
Khosravi, Panahi, Golkarian, Keesstra, Saco, Bui, Lee (b0220) 2020; 591
Venkatappareddy, Culli, Srivastava, Lall (b0430) 2021; 115
Kisi, Genc, Dinc, Zounemat-Kermani (b0240) 2016; 122
Abuzaid, AbdelRahman, Fadl, Scopa (b0015) 2021; 11
Conoscenti, Di Maggio, Rotigliano (b0105) 2008; 46
Renard, K.G., Foster, G.R., Weesies, G.A., Mccool, D.K., Yoder, D.C., 1997. Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE).
Sadeghi (b0370) 2017; 63
Vaezi (10.1016/j.jhydrol.2023.129229_b0420) 2016; 142
Puigdefabregas (10.1016/j.jhydrol.2023.129229_b0340) 1999; 48
Conoscenti (10.1016/j.jhydrol.2023.129229_b0105) 2008; 46
Fang (10.1016/j.jhydrol.2023.129229_b0170) 2015; 74
Narantsetseg (10.1016/j.jhydrol.2023.129229_b0295) 2018; 42
Phinzi (10.1016/j.jhydrol.2023.129229_b0335) 2021; 103
Kinnell (10.1016/j.jhydrol.2023.129229_b0225) 2010; 385
Emadodin (10.1016/j.jhydrol.2023.129229_b0155) 2012; 7
Aslam (10.1016/j.jhydrol.2023.129229_b0065) 2021; 12
Marques (10.1016/j.jhydrol.2023.129229_b0265) 1992; 19
Keshkamat (10.1016/j.jhydrol.2023.129229_b0205) 2013; 114
Tien Bui (10.1016/j.jhydrol.2023.129229_b0410) 2016; 540
Çimen (10.1016/j.jhydrol.2023.129229_b0100) 2008; 53
Thi Ngo (10.1016/j.jhydrol.2023.129229_b0400) 2021; 12
Abolhasani (10.1016/j.jhydrol.2023.129229_b0005) 2022; 33
10.1016/j.jhydrol.2023.129229_b0035
Kisi (10.1016/j.jhydrol.2023.129229_b0235) 2012; 450–451
Angileri (10.1016/j.jhydrol.2023.129229_b0055) 2016; 262
Mirzabaev (10.1016/j.jhydrol.2023.129229_b0275) 2016; 8
Dodangeh (10.1016/j.jhydrol.2023.129229_b0130) 2020; 590
Cooper (10.1016/j.jhydrol.2023.129229_b0110) 2012; 117
Pally (10.1016/j.jhydrol.2023.129229_b0315) 2022; 148
Yamashita (10.1016/j.jhydrol.2023.129229_b0475) 2018; 9
Sternberg (10.1016/j.jhydrol.2023.129229_b0385) 2000; 37
Vu (10.1016/j.jhydrol.2023.129229_b0435) 2020; 164
Abrahart (10.1016/j.jhydrol.2023.129229_b0010) 2012; 36
Tien Bui (10.1016/j.jhydrol.2023.129229_b0405) 2012; 2012
Vojinovic (10.1016/j.jhydrol.2023.129229_b091) 2013; 15
Trabelsi (10.1016/j.jhydrol.2023.129229_b0415) 2017; 112
Du (10.1016/j.jhydrol.2023.129229_b0140) 2022; 61
Kisi (10.1016/j.jhydrol.2023.129229_b0240) 2016; 122
Goyal (10.1016/j.jhydrol.2023.129229_b0200) 2014; 41
Sadeghi (10.1016/j.jhydrol.2023.129229_b0370) 2017; 63
Wainwright (10.1016/j.jhydrol.2023.129229_b0440) 2008; 33
Afshar (10.1016/j.jhydrol.2023.129229_b0020) 2010; 101
Amiri (10.1016/j.jhydrol.2023.129229_b0045) 2010; 3
10.1016/j.jhydrol.2023.129229_b0450
Capolongo (10.1016/j.jhydrol.2023.129229_b0080) 2008; 356
10.1016/j.jhydrol.2023.129229_b0455
Anastasakis (10.1016/j.jhydrol.2023.129229_b0050) 2001
Rosskopf (10.1016/j.jhydrol.2023.129229_b0365) 2020; 8
10.1016/j.jhydrol.2023.129229_b0460
Deng (10.1016/j.jhydrol.2023.129229_b0120) 2011; 16
10.1016/j.jhydrol.2023.129229_b0465
Chen (10.1016/j.jhydrol.2023.129229_b0090) 2006; 42
Donovan (10.1016/j.jhydrol.2023.129229_b0135) 2021; 287
Evans (10.1016/j.jhydrol.2023.129229_b0165) 1997; 17
Fang (10.1016/j.jhydrol.2023.129229_b0175) 2021; 594
Liu (10.1016/j.jhydrol.2023.129229_b0260) 2019; 163
Ebtehaj (10.1016/j.jhydrol.2023.129229_b0145) 2013; 7
Li (10.1016/j.jhydrol.2023.129229_b0255) 2021; 12
Tang (10.1016/j.jhydrol.2023.129229_b0395) 2015; 73
Auerswald (10.1016/j.jhydrol.2023.129229_b0070) 2006; 19
Raza (10.1016/j.jhydrol.2023.129229_b0350) 2021; 10
Robinson (10.1016/j.jhydrol.2023.129229_b0360) 1998
Melesse (10.1016/j.jhydrol.2023.129229_b0270) 2011; 98
Panagos (10.1016/j.jhydrol.2023.129229_b0320) 2015; 511
10.1016/j.jhydrol.2023.129229_b0470
Venkatappareddy (10.1016/j.jhydrol.2023.129229_b0430) 2021; 115
10.1016/j.jhydrol.2023.129229_b0355
Emadodin (10.1016/j.jhydrol.2023.129229_b0160) 2012; 14
Ajitha (10.1016/j.jhydrol.2023.129229_b0030) 2022; 212
Boudjemline (10.1016/j.jhydrol.2023.129229_b0075) 2018; 36
Yousefi (10.1016/j.jhydrol.2023.129229_b0490) 2021; 32
Cerdan (10.1016/j.jhydrol.2023.129229_b0085) 2010; 122
Panahi (10.1016/j.jhydrol.2023.129229_b0325) 2022; 1–23
Sajedi-Hosseini (10.1016/j.jhydrol.2023.129229_b0375) 2018; 29
Mutlu (10.1016/j.jhydrol.2023.129229_b0290) 2019; 8
Dibike (10.1016/j.jhydrol.2023.129229_b0125) 2001; 15
Ghorbanzadeh (10.1016/j.jhydrol.2023.129229_b0190) 2019; 11
Solaimani (10.1016/j.jhydrol.2023.129229_b0380) 2008; 11
Wijitkosum (10.1016/j.jhydrol.2023.129229_b0445) 2021; 9
Ahmad (10.1016/j.jhydrol.2023.129229_b0025) 2018; 203
Orgill (10.1016/j.jhydrol.2023.129229_b0310) 2018; 29
Kinnell (10.1016/j.jhydrol.2023.129229_b0230) 2017; 596–597
10.1016/j.jhydrol.2023.129229_b0245
Petroselli (10.1016/j.jhydrol.2023.129229_b0330) 2021; 8
Rapp (10.1016/j.jhydrol.2023.129229_b0345) 1963
Khosravi (10.1016/j.jhydrol.2023.129229_b0215) 2018; 22
Akhavan (10.1016/j.jhydrol.2023.129229_b0040) 2010; 139
Nearing (10.1016/j.jhydrol.2023.129229_b0300) 1989; 32
Khosravi (10.1016/j.jhydrol.2023.129229_b0220) 2020; 591
Yu (10.1016/j.jhydrol.2023.129229_b0495) 1996; 39
Novakovic (10.1016/j.jhydrol.2023.129229_b0305) 2009
Abuzaid (10.1016/j.jhydrol.2023.129229_b0015) 2021; 11
Gliessman (10.1016/j.jhydrol.2023.129229_b0195) 2004; 11
Mohammadi (10.1016/j.jhydrol.2023.129229_b0280) 2021; 14
Darvishan (10.1016/j.jhydrol.2023.129229_b0115) 2010; 42
Zhang (10.1016/j.jhydrol.2023.129229_b0500) 1996; 39
Chung (10.1016/j.jhydrol.2023.129229_b0095) 2003; 30
Ganguli (10.1016/j.jhydrol.2023.129229_b0185) 2014; 28
Yousefi (10.1016/j.jhydrol.2023.129229_b0485) 2016; 284
Khalili Moghadam (10.1016/j.jhydrol.2023.129229_b0210) 2015; 241–242
Mosavi (10.1016/j.jhydrol.2023.129229_b0285) 2020; 12
Tan (10.1016/j.jhydrol.2023.129229_b0390) 2018; 10
Yesilnacar (10.1016/j.jhydrol.2023.129229_b0480) 2005
Ebtehaj (10.1016/j.jhydrol.2023.129229_b0150) 2014; 28
References_xml – volume: 98
  start-page: 855
  year: 2011
  end-page: 866
  ident: b0270
  article-title: Suspended sediment load prediction of river systems: An artificial neural network approach
  publication-title: Agric. Water Manag.
– volume: 1–23
  year: 2022
  ident: b0325
  article-title: A country-wide assessment of Iran’s land subsidence susceptibility using satellite-based InSAR and machine learning
  publication-title: Geocarto Int.
– volume: 11
  start-page: 1426
  year: 2021
  ident: b0015
  article-title: Land Degradation Vulnerability Mapping in a Newly-Reclaimed Desert Oasis in a Hyper-Arid Agro-Ecosystem Using AHP and Geospatial Techniques
  publication-title: Agronomy
– volume: 163
  start-page: 332
  year: 2019
  end-page: 341
  ident: b0260
  article-title: CNN and RNN based payload classification methods for attack detection
  publication-title: Knowl.-Based Syst.
– volume: 48
  start-page: 39
  year: 1999
  end-page: 70
  ident: b0340
  article-title: Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in Southeast Spain
  publication-title: Earth-Sci. Rev.
– volume: 16
  start-page: 751
  year: 2011
  end-page: 773
  ident: b0120
  article-title: Do roads lead to grassland degradation or restoration? A case study in Inner Mongolia, China
  publication-title: Environ. Dev. Econ.
– volume: 7
  start-page: 382
  year: 2013
  end-page: 392
  ident: b0145
  article-title: Evaluation of Sediment Transport in Sewer using Artificial Neural Network
  publication-title: Eng. Appl. Comput. Fluid Mech.
– reference: Woolhiser, D.A., Smith, R.E., Goodrich, D.C., 1990. KINEROS:a kinematic runoff and erosion model: documentation and user manual.
– volume: 15
  start-page: 208
  year: 2001
  end-page: 216
  ident: b0125
  article-title: Model Induction with Support Vector Machines: Introduction and Applications
  publication-title: J. Comput. Civ. Eng.
– volume: 450–451
  start-page: 48
  year: 2012
  end-page: 58
  ident: b0235
  article-title: Suspended sediment modeling using genetic programming and soft computing techniques
  publication-title: J. Hydrol.
– reference: Akbari, A.-M., 2017. Soil erosion in Iran 2.5 times the world average [WWW Document]. Tehran Times. URL https://www.tehrantimes.com/news/418381/Soil-erosion-in-Iran-2-5-times-the-world-average#:∼:text=TEHRAN — Iran has a mean, deputy agriculture minister has said.
– volume: 9
  start-page: 611
  year: 2018
  end-page: 629
  ident: b0475
  article-title: Convolutional neural networks: an overview and application in radiology
  publication-title: Insights Imaging
– volume: 101
  start-page: 606
  year: 2010
  end-page: 614
  ident: b0020
  article-title: Soil redistribution rate and its relationship with soil organic carbon and total nitrogen using 137Cs technique in a cultivated complex hillslope in western Iran
  publication-title: J. Environ. Radioact.
– volume: 73
  start-page: 1715
  year: 2015
  end-page: 1724
  ident: b0395
  article-title: Assessment of soil erosion using RUSLE and GIS: a case study of the Yangou watershed in the Loess Plateau, China
  publication-title: Environ. Earth Sci.
– volume: 61
  start-page: 9901
  year: 2022
  end-page: 9909
  ident: b0140
  article-title: Random noise attenuation via convolutional neural network in seismic datasets
  publication-title: Alexandria Eng. J.
– volume: 142
  start-page: 221
  year: 2016
  end-page: 232
  ident: b0420
  article-title: Developing an erodibility triangle for soil textures in semi-arid regions, NW Iran
  publication-title: CATENA
– volume: 32
  start-page: 1452
  year: 2021
  end-page: 1466
  ident: b0490
  article-title: Assessment of land degradation using machine-learning techniques: A case of declining rangelands
  publication-title: L. Degrad. Dev.
– reference: Wischmeier, W.H., Smith, D.D., 1978. Predicting rainfall erosion losses: a guide to conservation planning. Science and Education Administration, U.S. Dept. of Agriculture.
– volume: 30
  start-page: 451
  year: 2003
  end-page: 472
  ident: b0095
  article-title: Validation of Spatial Prediction Models for Landslide Hazard Mapping
  publication-title: Nat. Hazards
– volume: 103
  start-page: 139
  year: 2021
  end-page: 162
  ident: b0335
  article-title: Soil erosion risk assessment in the Umzintlava catchment (T32E), Eastern Cape, South Africa, using RUSLE and random forest algorithm
  publication-title: South Afr. Geogr. J.
– reference: Wischmeier, W.H., Smith, D.D., 1965. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains:guide for selection of practices for soil and water conservation. Agricultural Research Service, U. S. Dept of Agriculture in cooperation with Purdue Agricultural Experiment Station.
– volume: 12
  start-page: 505
  year: 2021
  end-page: 519
  ident: b0400
  article-title: Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran
  publication-title: Geosci. Front.
– volume: 287
  year: 2021
  ident: b0135
  article-title: Impacts of grazing on ground cover, soil physical properties and soil loss via surface erosion: A novel geospatial modelling approach
  publication-title: J. Environ. Manage.
– year: 1963
  ident: b0345
  article-title: Error assessment of the revised universal soil loss equation using natural runoff plot data
– volume: 596–597
  start-page: 32
  year: 2017
  end-page: 42
  ident: b0230
  article-title: A comparison of the abilities of the USLE-M, RUSLE2 and WEPP to model event erosion from bare fallow areas
  publication-title: Sci. Total Environ.
– volume: 36
  start-page: 17
  year: 2018
  end-page: 26
  ident: b0075
  article-title: Assessment and mapping of desertification sensitivity with MEDALUS model and GIS – Case study: basin of Hodna, Algeria
  publication-title: J. Water L. Dev.
– volume: 15
  start-page: 1408
  year: 2013
  end-page: 1424
  ident: b091
  article-title: A machine learning approach for estimation of shallow water depths from optical satellite images and sonar measurements
  publication-title: Journal of Hydroinformatics
– volume: 42
  start-page: 13
  year: 2018
  ident: b0295
  article-title: Livestock grazing and trampling effects on plant functional composition at three wells in the desert steppe of Mongolia
  publication-title: J. Ecol. Environ.
– volume: 10
  start-page: 422
  year: 2021
  ident: b0350
  article-title: Modeling Approaches to Assess Soil Erosion by Water at the Field Scale with Special Emphasis on Heterogeneity of Soils and Crops
  publication-title: Land
– volume: 8
  start-page: 171
  year: 2021
  ident: b0330
  article-title: Comparative Evaluation of the Rainfall Erosivity in the Rieti Province, Central Italy, Using Empirical Formulas and a Stochastic Rainfall Generator
  publication-title: Hydrology
– volume: 46
  start-page: 287
  year: 2008
  end-page: 305
  ident: b0105
  article-title: Soil erosion susceptibility assessment and validation using a geostatistical multivariate approach: a test in Southern Sicily
  publication-title: Nat. Hazards
– volume: 19
  start-page: 305
  year: 2006
  end-page: 311
  ident: b0070
  article-title: Soil erosion potential of organic versus conventional farming evaluated by USLE modelling of cropping statistics for agricultural districts in Bavaria
  publication-title: Soil Use Manag.
– volume: 385
  start-page: 384
  year: 2010
  end-page: 397
  ident: b0225
  article-title: Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review
  publication-title: J. Hydrol.
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 26
  ident: b0405
  article-title: Landslide Susceptibility Assessment in Vietnam Using Support Vector Machines, Decision Tree, and Naïve Bayes Models
  publication-title: Math. Probl. Eng.
– year: 2005
  ident: b0480
  article-title: The Application of Computational Intelligence to Landslide Susceptibility Mapping in Turkey
– volume: 36
  start-page: 480
  year: 2012
  end-page: 513
  ident: b0010
  article-title: Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting
  publication-title: Prog. Phys. Geogr. Earth Environ.
– volume: 9
  start-page: 217
  year: 2021
  end-page: 228
  ident: b0445
  article-title: Factor influencing land degradation sensitivity and desertification in a drought prone watershed in Thailand
  publication-title: Int. Soil Water Conserv. Res.
– reference: Renard, K.G., Foster, G.R., Weesies, G.A., Mccool, D.K., Yoder, D.C., 1997. Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE).
– volume: 39
  start-page: 559
  year: 1996
  end-page: 561
  ident: b0495
  article-title: Technical Notes: A Robust Estimator of the R-factor for the Universal Soil Loss Equation
  publication-title: Trans. ASAE
– year: 1998
  ident: b0360
  article-title: Multi-objective optimisation of polynomial models for time series prediction using genetic algorithms and neural networks
– volume: 33
  start-page: 3358
  year: 2022
  end-page: 3374
  ident: b0005
  article-title: A new conceptual framework for spatial predictive modelling of land degradation in a semiarid area
  publication-title: L. Degrad. Dev.
– volume: 39
  start-page: 855
  year: 1996
  end-page: 863
  ident: b0500
  article-title: Evaluation of WEPP Runoff And Soil Loss Predictions Using Natural Runoff Plot Data
  publication-title: Trans. ASAE
– volume: 53
  start-page: 656
  year: 2008
  end-page: 666
  ident: b0100
  article-title: Estimation of daily suspended sediments using support vector machines
  publication-title: Hydrol. Sci. J.
– reference: Williams, J.R., 1975. Sediment-yield prediction with Universal Equation using runoff energy factor.
– volume: 12
  start-page: 3089
  year: 2021
  end-page: 3113
  ident: b0255
  article-title: Temporal detection of sharp landslide deformation with ensemble-based LSTM-RNNs and Hurst exponent. Geomatics
  publication-title: Nat. Hazards Risk
– volume: 262
  start-page: 61
  year: 2016
  end-page: 76
  ident: b0055
  article-title: Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy)
  publication-title: Geomorphology
– volume: 8
  start-page: 578
  year: 2019
  ident: b0290
  article-title: An experimental research on the use of recurrent neural networks in landslide susceptibility mapping ISPRS
  publication-title: Int. J. Geo-Inf.
– volume: 14
  start-page: 611
  year: 2012
  end-page: 625
  ident: b0160
  article-title: Soil degradation and agricultural sustainability: an overview from Iran
  publication-title: Environ. Dev. Sustain.
– volume: 22
  start-page: 4771
  year: 2018
  end-page: 4792
  ident: b0215
  article-title: Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 42
  start-page: 51
  year: 2010
  end-page: 60
  ident: b0115
  article-title: Efficacy of Time-Area Method in simulating temporal variation of sediment yield in Chehelgazi watershed, Iran. Ann. Warsaw Univ
  publication-title: Life Sci. - SGGW. L. Reclam.
– volume: 63
  year: 2017
  ident: b0370
  article-title: Soil erosion in Iran: State of the art, tendency and solutions
  publication-title: J. Agric. For.
– volume: 203
  start-page: 810
  year: 2018
  end-page: 821
  ident: b0025
  article-title: Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees
  publication-title: J. Clean. Prod.
– volume: 112
  start-page: 186
  year: 2017
  end-page: 194
  ident: b0415
  article-title: A New Feature Selection Method for Nominal Classifier based on Formal Concept Analysis
  publication-title: Proc. Comput. Sci.
– volume: 540
  start-page: 317
  year: 2016
  end-page: 330
  ident: b0410
  article-title: Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS
  publication-title: J. Hydrol.
– volume: 164
  year: 2020
  ident: b0435
  article-title: Machine learning based soil erosion susceptibility prediction using social spider algorithm optimized multivariate adaptive regression spline
  publication-title: Measurement
– start-page: 1351
  year: 2009
  end-page: 1354
  ident: b0305
  article-title: Using Information Gain Attribute Evaluation to Classify Sonar Targets
  publication-title: 17th Telecommunications Forum TELFOR 2009
– volume: 41
  start-page: 5267
  year: 2014
  end-page: 5276
  ident: b0200
  article-title: Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS
  publication-title: Expert Syst. Appl.
– volume: 14
  start-page: 1019
  year: 2021
  end-page: 1039
  ident: b0280
  article-title: Country-scale spatio-temporal monitoring of soil erosion in Iran using the G2 model
  publication-title: Int. J. Digit. Earth
– volume: 29
  start-page: 274
  year: 2018
  end-page: 283
  ident: b0310
  article-title: Removing Grazing Pressure from a Native Pasture Decreases Soil Organic Carbon in Southern New South Wales, Australia
  publication-title: L. Degrad. Dev.
– volume: 511
  start-page: 801
  year: 2015
  end-page: 814
  ident: b0320
  article-title: Rainfall erosivity in Europe
  publication-title: Sci. Total Environ.
– volume: 29
  start-page: 3092
  year: 2018
  end-page: 3103
  ident: b0375
  article-title: Spatial prediction of soil erosion susceptibility using a fuzzy analytical network process: Application of the fuzzy decision making trial and evaluation laboratory approach
  publication-title: L. Degrad. Dev.
– volume: 212
  year: 2022
  ident: b0030
  article-title: Design and development of Residential Sector Load Prediction model during COVID-19 Pandemic using LSTM based RNN
  publication-title: Electr. Power Syst. Res.
– volume: 32
  start-page: 1587
  year: 1989
  end-page: 1593
  ident: b0300
  article-title: A process-based soil erosion model for USDA-water erosion prediction project technology
  publication-title: Trans. ASAE
– volume: 356
  start-page: 119
  year: 2008
  end-page: 130
  ident: b0080
  article-title: Analyzing temporal changes in climate erosivity using a simplified rainfall erosivity model in Basilicata (southern Italy)
  publication-title: J. Hydrol.
– volume: 114
  start-page: 433
  year: 2013
  end-page: 444
  ident: b0205
  article-title: Understanding transportation-caused rangeland damage in Mongolia
  publication-title: J. Environ. Manage.
– volume: 11
  start-page: 61
  year: 2004
  end-page: 80
  ident: b0195
  article-title: Integrating Agroecological Processes into Cropping Systems Research
  publication-title: J. Crop Improv.
– volume: 117
  start-page: n/a
  year: 2012
  end-page: n/a
  ident: b0110
  article-title: A new approach for simulating the redistribution of soil particles by water erosion: A marker-in-cell model
  publication-title: J. Geophys. Res.
– volume: 8
  start-page: 354
  year: 2020
  end-page: 362
  ident: b0365
  article-title: Assessing spatial variability and erosion susceptibility of soils in hilly agricultural areas in Southern Italy
  publication-title: Int. Soil Water Conserv. Res.
– volume: 33
  start-page: 813
  year: 2008
  end-page: 826
  ident: b0440
  article-title: A transport-distance approach to scaling erosion rates: 1. Background and model development
  publication-title: Earth Surf. Process. Landforms
– volume: 591
  year: 2020
  ident: b0220
  article-title: Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran
  publication-title: J. Hydrol.
– volume: 148
  year: 2022
  ident: b0315
  article-title: Application of image processing and convolutional neural networks for flood image classification and semantic segmentation
  publication-title: Environ. Model. Softw.
– volume: 10
  start-page: 2192
  year: 2018
  end-page: 2213
  ident: b0390
  article-title: Modeling Sediment Yield in Land Surface and Earth System Models: Model Comparison, Development, and Evaluation
  publication-title: J. Adv. Model. Earth Syst.
– volume: 74
  start-page: 5677
  year: 2015
  end-page: 5685
  ident: b0170
  article-title: Aspect-induced differences in soil erosion intensity in a gullied hilly region on the Chinese Loess Plateau
  publication-title: Environ. Earth Sci.
– volume: 17
  start-page: 127
  year: 1997
  end-page: 141
  ident: b0165
  article-title: Soil erosion in the UK initiated by grazing animals
  publication-title: Appl. Geogr.
– volume: 122
  start-page: 112
  year: 2016
  end-page: 117
  ident: b0240
  article-title: Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks, classification and regression tree
  publication-title: Comput. Electron. Agric.
– volume: 594
  year: 2021
  ident: b0175
  article-title: Predicting flood susceptibility using LSTM neural networks
  publication-title: J. Hydrol.
– volume: 11
  start-page: 1893
  year: 2008
  end-page: 1900
  ident: b0380
  article-title: Application of IRS-1D Data in Water Erosion Features Detection (Case Study: Nour Roud Catchment, Iran)
  publication-title: Pakistan J. Biol. Sci.
– volume: 12
  start-page: 1995
  year: 2020
  ident: b0285
  article-title: Susceptibility Mapping of Soil Water Erosion Using Machine Learning Models
  publication-title: Water
– volume: 11
  start-page: 2046
  year: 2019
  ident: b0190
  article-title: UAV-based slope failure detection using deep-learning convolutional neural networks
  publication-title: Remote Sens.
– volume: 37
  start-page: 224
  year: 2000
  end-page: 237
  ident: b0385
  article-title: Vegetation response to grazing management in a Mediterranean herbaceous community: a functional group approach
  publication-title: J. Appl. Ecol.
– volume: 284
  start-page: 103
  year: 2016
  end-page: 112
  ident: b0485
  article-title: Effects of road construction on soil degradation and nutrient transport in Caspian Hyrcanian mixed forests
  publication-title: Geoderma
– year: 2001
  ident: b0050
  article-title: The Development of Self-Organization Techniques in Modelling: A Review of the Group Method of Data Handling (GMDH)
  publication-title: United Kingdom
– volume: 241–242
  start-page: 210
  year: 2015
  end-page: 220
  ident: b0210
  article-title: Effects of land use change on soil splash erosion in the semi-arid region of Iran
  publication-title: Geoderma
– volume: 122
  start-page: 167
  year: 2010
  end-page: 177
  ident: b0085
  article-title: Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data
  publication-title: Geomorphology
– volume: 12
  start-page: 1637
  year: 2021
  end-page: 1649
  ident: b0065
  article-title: Soil erosion susceptibility mapping using a GIS-based multi-criteria decision approach: Case of district Chitral, Pakistan
  publication-title: Ain Shams Eng. J.
– volume: 28
  start-page: 4989
  year: 2014
  end-page: 5009
  ident: b0185
  article-title: Ensemble prediction of regional droughts using climate inputs and the SVM-copula approach
  publication-title: Hydrol. Process.
– volume: 8
  start-page: 93
  year: 2016
  end-page: 108
  ident: b0275
  article-title: Rangelands of Central Asia: challenges and opportunities
  publication-title: J. Arid Land
– volume: 42
  year: 2006
  ident: b0090
  article-title: Green-Ampt infiltration model for sloping surfaces
  publication-title: Water Resour. Res.
– volume: 139
  start-page: 675
  year: 2010
  end-page: 688
  ident: b0040
  article-title: Application of SWAT model to investigate nitrate leaching in Hamadan-Bahar Watershed
  publication-title: Iran. Agric. Ecosyst. Environ.
– reference: .
– volume: 3
  start-page: ASWR.S3427
  year: 2010
  ident: b0045
  article-title: Estimate of Erosion and Sedimentation in Semi-arid Basin using Empirical Models of Erosion Potential within a Geographic Information System. Air
  publication-title: Soil Water Res.
– volume: 28
  start-page: 4765
  year: 2014
  end-page: 4779
  ident: b0150
  article-title: Performance Evaluation of Adaptive Neural Fuzzy Inference System for Sediment Transport in Sewers
  publication-title: Water Resour. Manag.
– volume: 7
  start-page: 203
  year: 2012
  end-page: 219
  ident: b0155
  article-title: Degradation of soils as a result of long-term human-induced transformation of the environment in Iran: an overview
  publication-title: J. Land Use Sci.
– reference: World Bank, 2005. Islamic Republic of Iran, Cost Assessment of Environmental Degradation.
– volume: 19
  start-page: 333
  year: 1992
  end-page: 344
  ident: b0265
  article-title: The influence of aspect on runoff and soil loss in a Mediterranean burnt forest (Spain)
  publication-title: CATENA
– reference: Laylin, D., 2018. Environmental and wildlife degradation in Iran [WWW Document]. Atl. Counc. URL
– volume: 590
  year: 2020
  ident: b0130
  article-title: Novel hybrid intelligence models for flood-susceptibility prediction: Meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search
  publication-title: J. Hydrol.
– volume: 115
  year: 2021
  ident: b0430
  article-title: A Legendre polynomial based activation function: An aid for modeling of max pooling
  publication-title: Digit. Signal Process.
– volume: 2012
  start-page: 1
  year: 2012
  ident: 10.1016/j.jhydrol.2023.129229_b0405
  article-title: Landslide Susceptibility Assessment in Vietnam Using Support Vector Machines, Decision Tree, and Naïve Bayes Models
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2012/974638
– year: 1963
  ident: 10.1016/j.jhydrol.2023.129229_b0345
– volume: 42
  issue: 7
  year: 2006
  ident: 10.1016/j.jhydrol.2023.129229_b0090
  article-title: Green-Ampt infiltration model for sloping surfaces
  publication-title: Water Resour. Res.
  doi: 10.1029/2005WR004468
– volume: 596–597
  start-page: 32
  year: 2017
  ident: 10.1016/j.jhydrol.2023.129229_b0230
  article-title: A comparison of the abilities of the USLE-M, RUSLE2 and WEPP to model event erosion from bare fallow areas
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.04.046
– volume: 11
  start-page: 61
  year: 2004
  ident: 10.1016/j.jhydrol.2023.129229_b0195
  article-title: Integrating Agroecological Processes into Cropping Systems Research
  publication-title: J. Crop Improv.
  doi: 10.1300/J411v11n01_04
– volume: 103
  start-page: 139
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129229_b0335
  article-title: Soil erosion risk assessment in the Umzintlava catchment (T32E), Eastern Cape, South Africa, using RUSLE and random forest algorithm
  publication-title: South Afr. Geogr. J.
  doi: 10.1080/03736245.2020.1716838
– volume: 74
  start-page: 5677
  year: 2015
  ident: 10.1016/j.jhydrol.2023.129229_b0170
  article-title: Aspect-induced differences in soil erosion intensity in a gullied hilly region on the Chinese Loess Plateau
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4648-4
– year: 2001
  ident: 10.1016/j.jhydrol.2023.129229_b0050
  article-title: The Development of Self-Organization Techniques in Modelling: A Review of the Group Method of Data Handling (GMDH)
  publication-title: United Kingdom
– volume: 8
  start-page: 578
  issue: 12
  year: 2019
  ident: 10.1016/j.jhydrol.2023.129229_b0290
  article-title: An experimental research on the use of recurrent neural networks in landslide susceptibility mapping ISPRS
  publication-title: Int. J. Geo-Inf.
  doi: 10.3390/ijgi8120578
– volume: 28
  start-page: 4989
  year: 2014
  ident: 10.1016/j.jhydrol.2023.129229_b0185
  article-title: Ensemble prediction of regional droughts using climate inputs and the SVM-copula approach
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.9966
– volume: 98
  start-page: 855
  year: 2011
  ident: 10.1016/j.jhydrol.2023.129229_b0270
  article-title: Suspended sediment load prediction of river systems: An artificial neural network approach
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2010.12.012
– volume: 48
  start-page: 39
  year: 1999
  ident: 10.1016/j.jhydrol.2023.129229_b0340
  article-title: Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in Southeast Spain
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/S0012-8252(99)00046-X
– volume: 73
  start-page: 1715
  year: 2015
  ident: 10.1016/j.jhydrol.2023.129229_b0395
  article-title: Assessment of soil erosion using RUSLE and GIS: a case study of the Yangou watershed in the Loess Plateau, China
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-014-3523-z
– volume: 139
  start-page: 675
  year: 2010
  ident: 10.1016/j.jhydrol.2023.129229_b0040
  article-title: Application of SWAT model to investigate nitrate leaching in Hamadan-Bahar Watershed
  publication-title: Iran. Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2010.10.015
– volume: 122
  start-page: 112
  year: 2016
  ident: 10.1016/j.jhydrol.2023.129229_b0240
  article-title: Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks, classification and regression tree
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.01.026
– volume: 42
  start-page: 13
  year: 2018
  ident: 10.1016/j.jhydrol.2023.129229_b0295
  article-title: Livestock grazing and trampling effects on plant functional composition at three wells in the desert steppe of Mongolia
  publication-title: J. Ecol. Environ.
  doi: 10.1186/s41610-018-0075-2
– volume: 32
  start-page: 1452
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129229_b0490
  article-title: Assessment of land degradation using machine-learning techniques: A case of declining rangelands
  publication-title: L. Degrad. Dev.
  doi: 10.1002/ldr.3794
– ident: 10.1016/j.jhydrol.2023.129229_b0035
– volume: 15
  start-page: 1408
  issue: 4
  year: 2013
  ident: 10.1016/j.jhydrol.2023.129229_b091
  article-title: A machine learning approach for estimation of shallow water depths from optical satellite images and sonar measurements
  publication-title: Journal of Hydroinformatics
  doi: 10.2166/hydro.2013.234
– volume: 29
  start-page: 274
  year: 2018
  ident: 10.1016/j.jhydrol.2023.129229_b0310
  article-title: Removing Grazing Pressure from a Native Pasture Decreases Soil Organic Carbon in Southern New South Wales, Australia
  publication-title: L. Degrad. Dev.
  doi: 10.1002/ldr.2560
– volume: 148
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129229_b0315
  article-title: Application of image processing and convolutional neural networks for flood image classification and semantic segmentation
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2021.105285
– volume: 287
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129229_b0135
  article-title: Impacts of grazing on ground cover, soil physical properties and soil loss via surface erosion: A novel geospatial modelling approach
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2021.112206
– volume: 8
  start-page: 171
  issue: 4
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129229_b0330
  article-title: Comparative Evaluation of the Rainfall Erosivity in the Rieti Province, Central Italy, Using Empirical Formulas and a Stochastic Rainfall Generator
  publication-title: Hydrology
  doi: 10.3390/hydrology8040171
– volume: 8
  start-page: 354
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129229_b0365
  article-title: Assessing spatial variability and erosion susceptibility of soils in hilly agricultural areas in Southern Italy
  publication-title: Int. Soil Water Conserv. Res.
  doi: 10.1016/j.iswcr.2020.09.005
– ident: 10.1016/j.jhydrol.2023.129229_b0465
– volume: 9
  start-page: 217
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129229_b0445
  article-title: Factor influencing land degradation sensitivity and desertification in a drought prone watershed in Thailand
  publication-title: Int. Soil Water Conserv. Res.
  doi: 10.1016/j.iswcr.2020.10.005
– volume: 540
  start-page: 317
  year: 2016
  ident: 10.1016/j.jhydrol.2023.129229_b0410
  article-title: Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.06.027
– start-page: 1351
  year: 2009
  ident: 10.1016/j.jhydrol.2023.129229_b0305
  article-title: Using Information Gain Attribute Evaluation to Classify Sonar Targets
– volume: 385
  start-page: 384
  year: 2010
  ident: 10.1016/j.jhydrol.2023.129229_b0225
  article-title: Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.01.024
– volume: 46
  start-page: 287
  year: 2008
  ident: 10.1016/j.jhydrol.2023.129229_b0105
  article-title: Soil erosion susceptibility assessment and validation using a geostatistical multivariate approach: a test in Southern Sicily
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-007-9188-0
– year: 2005
  ident: 10.1016/j.jhydrol.2023.129229_b0480
– ident: 10.1016/j.jhydrol.2023.129229_b0355
– volume: 28
  start-page: 4765
  year: 2014
  ident: 10.1016/j.jhydrol.2023.129229_b0150
  article-title: Performance Evaluation of Adaptive Neural Fuzzy Inference System for Sediment Transport in Sewers
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-014-0774-0
– ident: 10.1016/j.jhydrol.2023.129229_b0460
– volume: 11
  start-page: 1426
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129229_b0015
  article-title: Land Degradation Vulnerability Mapping in a Newly-Reclaimed Desert Oasis in a Hyper-Arid Agro-Ecosystem Using AHP and Geospatial Techniques
  publication-title: Agronomy
  doi: 10.3390/agronomy11071426
– volume: 203
  start-page: 810
  year: 2018
  ident: 10.1016/j.jhydrol.2023.129229_b0025
  article-title: Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.08.207
– volume: 7
  start-page: 382
  year: 2013
  ident: 10.1016/j.jhydrol.2023.129229_b0145
  article-title: Evaluation of Sediment Transport in Sewer using Artificial Neural Network
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 1–23
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129229_b0325
  article-title: A country-wide assessment of Iran’s land subsidence susceptibility using satellite-based InSAR and machine learning
  publication-title: Geocarto Int.
– volume: 36
  start-page: 17
  year: 2018
  ident: 10.1016/j.jhydrol.2023.129229_b0075
  article-title: Assessment and mapping of desertification sensitivity with MEDALUS model and GIS – Case study: basin of Hodna, Algeria
  publication-title: J. Water L. Dev.
  doi: 10.2478/jwld-2018-0002
– volume: 115
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129229_b0430
  article-title: A Legendre polynomial based activation function: An aid for modeling of max pooling
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2021.103093
– volume: 14
  start-page: 611
  year: 2012
  ident: 10.1016/j.jhydrol.2023.129229_b0160
  article-title: Soil degradation and agricultural sustainability: an overview from Iran
  publication-title: Environ. Dev. Sustain.
  doi: 10.1007/s10668-012-9351-y
– volume: 41
  start-page: 5267
  year: 2014
  ident: 10.1016/j.jhydrol.2023.129229_b0200
  article-title: Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.02.047
– ident: 10.1016/j.jhydrol.2023.129229_b0245
– volume: 284
  start-page: 103
  year: 2016
  ident: 10.1016/j.jhydrol.2023.129229_b0485
  article-title: Effects of road construction on soil degradation and nutrient transport in Caspian Hyrcanian mixed forests
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.09.002
– volume: 53
  start-page: 656
  year: 2008
  ident: 10.1016/j.jhydrol.2023.129229_b0100
  article-title: Estimation of daily suspended sediments using support vector machines
  publication-title: Hydrol. Sci. J.
  doi: 10.1623/hysj.53.3.656
– volume: 7
  start-page: 203
  year: 2012
  ident: 10.1016/j.jhydrol.2023.129229_b0155
  article-title: Degradation of soils as a result of long-term human-induced transformation of the environment in Iran: an overview
  publication-title: J. Land Use Sci.
  doi: 10.1080/1747423X.2011.560292
– volume: 14
  start-page: 1019
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129229_b0280
  article-title: Country-scale spatio-temporal monitoring of soil erosion in Iran using the G2 model
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2021.1919230
– volume: 42
  start-page: 51
  year: 2010
  ident: 10.1016/j.jhydrol.2023.129229_b0115
  article-title: Efficacy of Time-Area Method in simulating temporal variation of sediment yield in Chehelgazi watershed, Iran. Ann. Warsaw Univ
  publication-title: Life Sci. - SGGW. L. Reclam.
– volume: 8
  start-page: 93
  year: 2016
  ident: 10.1016/j.jhydrol.2023.129229_b0275
  article-title: Rangelands of Central Asia: challenges and opportunities
  publication-title: J. Arid Land
  doi: 10.1007/s40333-015-0057-5
– volume: 511
  start-page: 801
  year: 2015
  ident: 10.1016/j.jhydrol.2023.129229_b0320
  article-title: Rainfall erosivity in Europe
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.01.008
– volume: 15
  start-page: 208
  year: 2001
  ident: 10.1016/j.jhydrol.2023.129229_b0125
  article-title: Model Induction with Support Vector Machines: Introduction and Applications
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(2001)15:3(208)
– volume: 594
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129229_b0175
  article-title: Predicting flood susceptibility using LSTM neural networks
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125734
– volume: 101
  start-page: 606
  year: 2010
  ident: 10.1016/j.jhydrol.2023.129229_b0020
  article-title: Soil redistribution rate and its relationship with soil organic carbon and total nitrogen using 137Cs technique in a cultivated complex hillslope in western Iran
  publication-title: J. Environ. Radioact.
  doi: 10.1016/j.jenvrad.2010.03.008
– volume: 32
  start-page: 1587
  year: 1989
  ident: 10.1016/j.jhydrol.2023.129229_b0300
  article-title: A process-based soil erosion model for USDA-water erosion prediction project technology
  publication-title: Trans. ASAE
  doi: 10.13031/2013.31195
– volume: 17
  start-page: 127
  year: 1997
  ident: 10.1016/j.jhydrol.2023.129229_b0165
  article-title: Soil erosion in the UK initiated by grazing animals
  publication-title: Appl. Geogr.
  doi: 10.1016/S0143-6228(97)00002-7
– volume: 117
  start-page: n/a
  issue: F4
  year: 2012
  ident: 10.1016/j.jhydrol.2023.129229_b0110
  article-title: A new approach for simulating the redistribution of soil particles by water erosion: A marker-in-cell model
  publication-title: J. Geophys. Res.
– volume: 122
  start-page: 167
  year: 2010
  ident: 10.1016/j.jhydrol.2023.129229_b0085
  article-title: Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2010.06.011
– volume: 39
  start-page: 855
  year: 1996
  ident: 10.1016/j.jhydrol.2023.129229_b0500
  article-title: Evaluation of WEPP Runoff And Soil Loss Predictions Using Natural Runoff Plot Data
  publication-title: Trans. ASAE
  doi: 10.13031/2013.27570
– volume: 241–242
  start-page: 210
  year: 2015
  ident: 10.1016/j.jhydrol.2023.129229_b0210
  article-title: Effects of land use change on soil splash erosion in the semi-arid region of Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.11.025
– volume: 39
  start-page: 559
  year: 1996
  ident: 10.1016/j.jhydrol.2023.129229_b0495
  article-title: Technical Notes: A Robust Estimator of the R-factor for the Universal Soil Loss Equation
  publication-title: Trans. ASAE
  doi: 10.13031/2013.27535
– volume: 164
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129229_b0435
  article-title: Machine learning based soil erosion susceptibility prediction using social spider algorithm optimized multivariate adaptive regression spline
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108066
– volume: 114
  start-page: 433
  year: 2013
  ident: 10.1016/j.jhydrol.2023.129229_b0205
  article-title: Understanding transportation-caused rangeland damage in Mongolia
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2012.10.043
– volume: 142
  start-page: 221
  year: 2016
  ident: 10.1016/j.jhydrol.2023.129229_b0420
  article-title: Developing an erodibility triangle for soil textures in semi-arid regions, NW Iran
  publication-title: CATENA
  doi: 10.1016/j.catena.2016.03.015
– ident: 10.1016/j.jhydrol.2023.129229_b0455
– volume: 262
  start-page: 61
  year: 2016
  ident: 10.1016/j.jhydrol.2023.129229_b0055
  article-title: Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.03.018
– volume: 22
  start-page: 4771
  year: 2018
  ident: 10.1016/j.jhydrol.2023.129229_b0215
  article-title: Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-4771-2018
– volume: 591
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129229_b0220
  article-title: Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125552
– volume: 29
  start-page: 3092
  year: 2018
  ident: 10.1016/j.jhydrol.2023.129229_b0375
  article-title: Spatial prediction of soil erosion susceptibility using a fuzzy analytical network process: Application of the fuzzy decision making trial and evaluation laboratory approach
  publication-title: L. Degrad. Dev.
  doi: 10.1002/ldr.3058
– volume: 11
  start-page: 2046
  year: 2019
  ident: 10.1016/j.jhydrol.2023.129229_b0190
  article-title: UAV-based slope failure detection using deep-learning convolutional neural networks
  publication-title: Remote Sens.
  doi: 10.3390/rs11172046
– volume: 356
  start-page: 119
  issue: 1–2
  year: 2008
  ident: 10.1016/j.jhydrol.2023.129229_b0080
  article-title: Analyzing temporal changes in climate erosivity using a simplified rainfall erosivity model in Basilicata (southern Italy)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.04.002
– volume: 450–451
  start-page: 48
  year: 2012
  ident: 10.1016/j.jhydrol.2023.129229_b0235
  article-title: Suspended sediment modeling using genetic programming and soft computing techniques
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.05.031
– volume: 33
  start-page: 3358
  issue: 17
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129229_b0005
  article-title: A new conceptual framework for spatial predictive modelling of land degradation in a semiarid area
  publication-title: L. Degrad. Dev.
  doi: 10.1002/ldr.4391
– volume: 19
  start-page: 305
  year: 2006
  ident: 10.1016/j.jhydrol.2023.129229_b0070
  article-title: Soil erosion potential of organic versus conventional farming evaluated by USLE modelling of cropping statistics for agricultural districts in Bavaria
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2003.tb00320.x
– volume: 10
  start-page: 2192
  year: 2018
  ident: 10.1016/j.jhydrol.2023.129229_b0390
  article-title: Modeling Sediment Yield in Land Surface and Earth System Models: Model Comparison, Development, and Evaluation
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2017MS001270
– volume: 30
  start-page: 451
  year: 2003
  ident: 10.1016/j.jhydrol.2023.129229_b0095
  article-title: Validation of Spatial Prediction Models for Landslide Hazard Mapping
  publication-title: Nat. Hazards
  doi: 10.1023/B:NHAZ.0000007172.62651.2b
– volume: 112
  start-page: 186
  year: 2017
  ident: 10.1016/j.jhydrol.2023.129229_b0415
  article-title: A New Feature Selection Method for Nominal Classifier based on Formal Concept Analysis
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2017.08.227
– volume: 36
  start-page: 480
  year: 2012
  ident: 10.1016/j.jhydrol.2023.129229_b0010
  article-title: Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting
  publication-title: Prog. Phys. Geogr. Earth Environ.
  doi: 10.1177/0309133312444943
– ident: 10.1016/j.jhydrol.2023.129229_b0450
– volume: 33
  start-page: 813
  year: 2008
  ident: 10.1016/j.jhydrol.2023.129229_b0440
  article-title: A transport-distance approach to scaling erosion rates: 1. Background and model development
  publication-title: Earth Surf. Process. Landforms
  doi: 10.1002/esp.1624
– volume: 590
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129229_b0130
  article-title: Novel hybrid intelligence models for flood-susceptibility prediction: Meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125423
– volume: 19
  start-page: 333
  issue: 3–4
  year: 1992
  ident: 10.1016/j.jhydrol.2023.129229_b0265
  article-title: The influence of aspect on runoff and soil loss in a Mediterranean burnt forest (Spain)
  publication-title: CATENA
  doi: 10.1016/0341-8162(92)90007-X
– volume: 3
  start-page: ASWR.S3427
  year: 2010
  ident: 10.1016/j.jhydrol.2023.129229_b0045
  article-title: Estimate of Erosion and Sedimentation in Semi-arid Basin using Empirical Models of Erosion Potential within a Geographic Information System. Air
  publication-title: Soil Water Res.
  doi: 10.4137/ASWR.S3427
– volume: 16
  start-page: 751
  year: 2011
  ident: 10.1016/j.jhydrol.2023.129229_b0120
  article-title: Do roads lead to grassland degradation or restoration? A case study in Inner Mongolia, China
  publication-title: Environ. Dev. Econ.
  doi: 10.1017/S1355770X11000180
– year: 1998
  ident: 10.1016/j.jhydrol.2023.129229_b0360
– volume: 12
  start-page: 1637
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129229_b0065
  article-title: Soil erosion susceptibility mapping using a GIS-based multi-criteria decision approach: Case of district Chitral, Pakistan
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2020.09.015
– volume: 212
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129229_b0030
  article-title: Design and development of Residential Sector Load Prediction model during COVID-19 Pandemic using LSTM based RNN
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.108635
– volume: 12
  start-page: 505
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129229_b0400
  article-title: Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.06.013
– volume: 9
  start-page: 611
  year: 2018
  ident: 10.1016/j.jhydrol.2023.129229_b0475
  article-title: Convolutional neural networks: an overview and application in radiology
  publication-title: Insights Imaging
  doi: 10.1007/s13244-018-0639-9
– ident: 10.1016/j.jhydrol.2023.129229_b0470
– volume: 12
  start-page: 3089
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129229_b0255
  article-title: Temporal detection of sharp landslide deformation with ensemble-based LSTM-RNNs and Hurst exponent. Geomatics
  publication-title: Nat. Hazards Risk
  doi: 10.1080/19475705.2021.1994474
– volume: 10
  start-page: 422
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129229_b0350
  article-title: Modeling Approaches to Assess Soil Erosion by Water at the Field Scale with Special Emphasis on Heterogeneity of Soils and Crops
  publication-title: Land
  doi: 10.3390/land10040422
– volume: 12
  start-page: 1995
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129229_b0285
  article-title: Susceptibility Mapping of Soil Water Erosion Using Machine Learning Models
  publication-title: Water
  doi: 10.3390/w12071995
– volume: 61
  start-page: 9901
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129229_b0140
  article-title: Random noise attenuation via convolutional neural network in seismic datasets
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2022.03.008
– volume: 11
  start-page: 1893
  year: 2008
  ident: 10.1016/j.jhydrol.2023.129229_b0380
  article-title: Application of IRS-1D Data in Water Erosion Features Detection (Case Study: Nour Roud Catchment, Iran)
  publication-title: Pakistan J. Biol. Sci.
  doi: 10.3923/pjbs.2008.1893.1900
– volume: 37
  start-page: 224
  year: 2000
  ident: 10.1016/j.jhydrol.2023.129229_b0385
  article-title: Vegetation response to grazing management in a Mediterranean herbaceous community: a functional group approach
  publication-title: J. Appl. Ecol.
  doi: 10.1046/j.1365-2664.2000.00491.x
– volume: 163
  start-page: 332
  year: 2019
  ident: 10.1016/j.jhydrol.2023.129229_b0260
  article-title: CNN and RNN based payload classification methods for attack detection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.08.036
– volume: 63
  year: 2017
  ident: 10.1016/j.jhydrol.2023.129229_b0370
  article-title: Soil erosion in Iran: State of the art, tendency and solutions
  publication-title: J. Agric. For.
SSID ssj0000334
Score 2.6681688
Snippet •Soil water erosion (SWE) is predicted though three kinds of deep learning algorithms.•Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and...
Accurate assessment of soil water erosion (SWE) susceptibility is critical for reducing land degradation and soil loss, and for mitigating the negative impacts...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 129229
SubjectTerms CNN
Deep learning
ecosystems
erosion control
infrastructure
Land degradation
LSTM
neural networks
prediction
RNN
Soil erosion
soil water
water erosion
water quality
watersheds
Title Soil water erosion susceptibility assessment using deep learning algorithms
URI https://dx.doi.org/10.1016/j.jhydrol.2023.129229
https://www.proquest.com/docview/2834209445
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-325309
Volume 618
WOSCitedRecordID wos000942641000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 1879-2707
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZO9hexq40u-HB2EuwF1uSLT-Grt0NyujCCHsRki3HyVI7OE7W7NfvyPIlJRvdBnsxxiDL0vf56Eg65xNCL0PBiAfjkO0llNpESvilKInsxBMswUIGrmcOmwjOzthkEn7q9bZNLsxmEWQZu7wMl_8VangGYOvU2b-Au30pPIB7AB2uADtc_wj4z_lsMfgutPihgiFQw7tar6rolSoQdjsQrRrnYF0tFcRKLZvzI6YDsZjmxaxMax3zfc813caFkW4C93R0oaUWYs2rLm47zVeF2JhAgVRI0cbWnKsfwuyInMIXXqh2Mfo4z5eGPVXc7uDcaV-mgy9LYTLiv4q0ELsrFR7uQrXM8tleCk2bTuD65qRjRxkrzIJQJ8oFu2baN3Z6z-Sb1Ye5MzeNd3TNDngxXt3qq2raenPa09XB1EtLBeEb6NALaAg2_XD0_mTyoRvGMSaN1Lwu0KV_vf5lZb9zbHYnLrtitJUDM76L7tT4WSPDmHuop7L76NZbVWuWP0AfNXOsijlWzRzrKnOsjjlWxRxLM8dqmGN1zHmIxqcn4-N3dn3Whi0IHZY2jYNE51QL4atQeS6OBIsC35VMQtuZxNKNAhwySYKhjJSPFZVUxDQaRkSKCD9CB1meqSNkscgnoQJPV-IE5v4ei2FG7ybgespQJW7cR6TpJx7VOvT6OJQFbwIO57zuXq67l5vu7SOnLbY0QizXFWANCLz2Jo2XyIE51xV90YDGwdrqLTSRqXy94uCMa9NGCO2jVwbN9mu0UPub2ZcRz4sp_1amHHsUD8PH__4dT9Dt7j96ig7KYq2eoZvRppytiuc1YX8C4Ym4sQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+water+erosion+susceptibility+assessment+using+deep+learning+algorithms&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Khosravi%2C+Khabat&rft.au=Rezaie%2C+Fatemeh&rft.au=Cooper%2C+James+R.&rft.au=Kalantari%2C+Zahra&rft.date=2023-03-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=618&rft_id=info:doi/10.1016%2Fj.jhydrol.2023.129229&rft.externalDocID=S0022169423001713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon