Glial physiology and pathophysiology

Glial Physiology and Pathophysiology provides a comprehensive, advanced text on the biology and pathology of glial cells. Coverae includes: * the morphology and interrelationships between glial cells and neurones in different parts of the nervous systems * the cellular physiology of the different ki...

Full description

Saved in:
Bibliographic Details
Main Authors: Verkhratskiĭ, A. N. (Alekseĭ Nestorovich), Butt, Arthur
Format: eBook Book
Language:English
Published: Chichester, West Sussex John Wiley & Sons 2013
Wiley
John Wiley & Sons, Incorporated
Wiley-Blackwell
Edition:1
Subjects:
ISBN:0470978538, 9780470978528, 047097852X, 9780470978535, 1118402057, 9781118402054, 9781118402061, 1118402065
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • (iv) What is the role of astroglia in regulation of synaptic transmission? -- 4.6.14 Astroglia and central chemoception of pH and CO2 -- 4.6.15 Astrocytes in regulation of systemic sodium homeostasis -- 4.6.16 Astroglia and glucose sensing -- 4.6.17 Astroglia and circadian rhythms -- 4.6.18 Astroglia and sleep -- 4.6.19 Astroglia and control of reproduction -- 4.6.20 Müller glial cells as light guides in retina -- 4.6.21 Astroglia in ageing -- 4.6.22 Astrocytes as a cellular substrate of memory and consciousness? -- 4.7 Concluding remarks -- References -- 5 Oligodendrocytes -- 5.1 Oligodendrocyte anatomy -- 5.1.1 The generalised structure of a myelinating oligodendrocyte -- 5.1.2 Subtypes of myelinating oligodendrocytes -- 5.1.3 Non-myelinating oligodendrocytes -- 5.2 Myelin structure and function -- 5.2.1 Myelin and saltatory conduction -- 5.2.2 Oligodendrocyte-axon interactions and nodes of Ranvier -- 5.2.3 Myelin structure and metabolism -- 5.2.4 Myelin biochemistry -- (i) Lipids -- (ii) Proteins -- 5.2.5 Myelin transport -- 5.3 Physiology of oligodendrocytes -- 5.3.1 Voltage-operated ion channels -- (i) Outwardly rectifying potassium channels -- (ii) Inward rectifier potassium channels (Kir) -- (iii) Voltage-operated sodium channels (Nav) -- (iv) Voltage-operated calcium channels (VOCC, Cav) -- (v) Chloride and acid-sensing ion channels (ASIC) -- 5.3.2 Glutamate receptors -- (i) Ionotropic glutamate receptors (iGluRs) -- (ii) Metabotropic glutamate receptors (mGluRs) -- 5.3.3 Purinergic receptors -- (i) P1 purinergic receptors -- (ii) P2X receptors -- (iii) P2Y receptors -- 5.3.4 GABA receptors -- 5.3.5 Other neurotransmitter receptors -- 5.3.6 Transporters and exchangers -- 5.3.7 Gap junctions -- 5.3.8 Intracellular calcium -- 5.4 Oligodendrocyte development -- 5.4.1 Developmental origins of oligodendrocytes
  • 5.4.2 Stages of oligodendrocyte differentiation -- 5.4.3 Trophic factors and oligodendrocyte differentiation -- 5.4.4 Regulation of oligodendrocyte differentiation -- 5.4.5 Axoglial interactions regulating oligodendrocyte differentiation and myelination -- 5.4.6 Downstream signalling cascades that regulate oligodendrocyte differentiation and myelination -- 5.5 Concluding remarks -- References -- 6 NG2-glial Cells -- 6.1 Definition of NG2-glia -- 6.2 Structure of NG2-glia -- 6.2.1 Identification -- 6.2.2 Morphology and distribution -- 6.2.3 Relationship of NG2-glia with neuroglial domains -- 6.2.4 NG2-glia and synapses -- 6.3 Physiology of NG2-glia -- 6.3.1 Membrane properties -- 6.3.2 Gap junctional coupling -- 6.3.3 Voltage-operated ion channels -- 6.3.4 Neurotransmitter receptors -- 6.3.5 Neurone-NG2-glial cell signalling at synapses -- 6.4 Proliferation of NG2-glia and generation of oligodendrocytes -- 6.4.1 Normal adult brain -- 6.4.2 Are NG2-glia multipotent stem cells? -- 6.4.3 Response of NG2-glia to injury and demyelination -- 6.5 Relationship between NG2-glia and CNS pericytes -- 6.5.1 Identification of pericytes -- 6.5.2 Developmental origin of pericytes -- 6.5.3 Pericytes are multipotent stem cells in the adult brain -- 6.6 Evolution of NG2-glia -- 6.7 Concluding remarks -- References -- 7 Microglia -- 7.1 Definition of microglia -- 7.2 Microglial origin and development -- 7.3 Morphology of microglia -- 7.3.1 Morphology in the healthy tissue: resting or survelliant phenotype -- 7.3.2 Morphology in pathological tissue: activated phenotype -- 7.3.3 Morphology in the dish -- 7.3.4 Identification of microglial cells in neural tissues -- 7.4 General physiology of microglia -- 7.4.1 Membrane potential and ion distribution -- 7.4.2 Ion channels in microglia -- (i) Sodium channels -- (ii) Calcium-permeable channels -- (iii) Potassium channels
  • (iv) Astrocytes as a main source of adenosine in the CNS -- (v) Physiological role of astroglial release of neurotransmitters -- 4.6 Functions of astroglia -- 4.6.1 Developmental function: neurogenesis and gliogenesis -- (i) Embryonic neurogenesis and gliogenesis -- (ii) Neurogenesis and gliogenesis in the adult brain -- 4.6.2 Neuronal guidance -- 4.6.3 Regulation of synaptogenesis and control of synaptic maintenance and elimination -- 4.6.4 Structural function: astrocytes define the micro-architecture of the grey matter and create neurovascular units -- 4.6.5 Structural function: astrocytes and the brain-blood barrier -- 4.6.6 Astrocytes regulate brain microcirculation -- 4.6.7 Brain energetics and neuronal metabolic support -- 4.6.8 Astroglia and neuroimaging -- 4.6.9 Ion homeostasis in the extracellular space -- (i) Astrocytes and extracellular potassium homeostasis -- (ii) Astrocytes and chloride homeostasis -- (iii) Astrocytes and extracellular Ca2+ -- (iv) Astrocytes and regulation of pH -- (v) Astrocytes and zinc homeostasis -- 4.6.10 Astrocytes and homeostasis of reactive oxygen species -- 4.6.11 Water homeostasis and regulation of the extracellular space volume -- (i) Regulation of water homeostasis -- (ii) Regulatory volume decrease in astrocytes -- (iii) Redistribution of water during neuronal activity and dynamic regulation of the extracellular space -- 4.6.12 Neurotransmitters homeostasis -- (i) Astroglia control glutamate homeostasis and glutamatergic transmission in the CNS -- (ii) Astroglia and GABA-ergic transmission -- (iii) Astroglia and adenosine homeostasis -- 4.6.13 Astroglia in synaptic transmission -- (i) The astroglial synaptic compartment: concept of the tripartite synapse -- (ii) The astroglial synaptic compartment: concept of the astroglial cradle -- (iii) Morphological plasticity of the astroglial synaptic compartment
  • Glial Physiology and Pathophysiology -- Contents -- Preface -- About the Authors -- Abbreviations -- About the Companion Website -- 1 History of Neuroscience and the Dawn of Research in Neuroglia -- 1.1 The miraculous human brain: localising the brain functions -- 1.2 Cellular organisation of the brain -- 1.3 Mechanisms of communications in neural networks -- 1.3.1 Electrical/ionic nature of excitability -- 1.3.2 Chemical signalling between neural cells -- 1.4 The concept of neuroglia -- 1.5 Beginning of the modern era -- 1.6 Concluding remarks -- References -- 2 General Overview of Signalling in the Nervous System -- 2.1 Intercellular signalling: wiring and volume modes of transmission -- 2.2 Cellular signalling: receptors -- 2.3 Intracellular signalling: second messengers -- 2.4 Calcium signalling -- 2.4.1 Cellular Ca2+ regulation -- 2.5 Concluding remarks -- 3 Neuroglia: Definition, Classification, Evolution, Numbers, Development -- 3.1 Definition of neuroglia as homeostatic cells of the nervous system -- 3.2 Classification -- 3.3 Evolution of neuroglia -- 3.3.1 Evolution of astrocytes -- (i) Nematoda: neuroglia in Caenorhabditis elegans -- (ii) Annelida: astroglia in leech -- (iii) Arthropoda: astrocytes in Drosophila and other insects -- (iv) Neuroglia in early Deuterostomia (Hemichordata and Echinodermata) -- (v) Neuroglia in low vertebrates -- (vi) Glial advance in higher vertebrates -- 3.3.2 Evolution of myelination -- 3.3.3 Evolution of microglia -- 3.4 Numbers: how many glial cells are in the brain? -- 3.5 Embryogenesis and development of neuroglia in mammals -- 3.5.1 Macroglial cells -- 3.5.2 Astroglial cells are brain stem cells -- 3.5.3 Peripheral glia and schwann cell lineage -- 3.5.4 Microglial cell lineage -- 3.6 Concluding remarks -- References -- 4 Astroglia -- 4.1 Definition and heterogeneity
  • 4.2 Morphology of the main types of astroglia -- 4.3 How to identify astrocytes in the nervous tissue -- 4.4 Astroglial syncytial networks -- 4.4.1 Gap junctions, connexons and connexins -- 4.4.2 Astroglial networks -- 4.5 Physiology of astroglia -- 4.5.1 Membrane potential and ion distribution -- 4.5.2 Ion channels -- (i) Potassium channels -- (ii) Voltage-operated sodium channels (Nav) -- (iii) Calcium channels -- (iv) Transient receptor potential or TRP channels -- (v) Anion/chloride channels -- (vi) Aquaporins -- 4.5.3 Receptors to neurotransmitters and neuromodulators -- (i) Glutamate receptors -- (ii) Purinoceptors -- (iii) γ-aminobutiric acid receptors (GABA) receptors -- (iv) Glycine receptors -- (v) Acetylcholine receptors -- (vi) Adrenergic receptors -- (vii) Serotonin receptors -- (viii) Histamine receptors -- (ix) Cannabinoid receptors -- (x) Neuropeptide receptors -- (xi) Cytokine and chemokine receptors -- (xii) Complement receptors -- (xiii) Platelet-activating factor receptors -- (xiv) Thrombin receptors -- (xv) Ephrin receptors -- (xvi) Succinate receptors -- 4.5.4 Astroglial membrane transporters -- (i) ATP-dependent transporters -- (ii) Secondary transporters -- 4.5.5 Calcium signalling in astroglia -- (i) Endoplasmic reticulum provides for Ca2+ excitability of astrocytes -- (ii) Store-operated Ca2+ entry in astrocytes -- (iii) Ionotropic Ca2+ permeable receptors in astrocytes -- (iv) Sodium/calcium exchanger in astroglial Ca2+ signalling -- (v) Mitochondria in astroglial Ca2+ signalling -- (vi) Calcium waves in astrocytes -- 4.5.6 Sodium signalling in astrocytes -- 4.5.7 Release of neurotransmitters and neuromodulators from astroglia -- (i) Exocytotic release of neurotransmitters from astrocytes -- (ii) Diffusional release of neurotransmitters from astrocytes -- (iii) Transporter-mediated neurotransmitter release from astrocytes
  • (iv) Anion channels