Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of Chlamydia trachomatis during Treatment with β-Lactam Antimicrobials

The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis . Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:mBio Jg. 12; H. 2
Hauptverfasser: Shima, Kensuke, Kaufhold, Inga, Eder, Thomas, Käding, Nadja, Schmidt, Nis, Ogunsulire, Iretiolu M., Deenen, René, Köhrer, Karl, Friedrich, Dirk, Isay, Sophie E., Grebien, Florian, Klinger, Matthias, Richer, Barbara C., Günther, Ulrich L., Deepe, George S., Rattei, Thomas, Rupp, Jan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States American Society for Microbiology 30.03.2021
Schlagworte:
ISSN:2150-7511, 2161-2129, 2150-7511
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis . Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Infection with the obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date, antimicrobial therapy is the only alternative in C. trachomatis infection. However, changes in chlamydial replicative activity and the occurrence of chlamydial persistence caused by diverse stimuli have been proven to impair treatment effectiveness. Here, we report the mechanism for C. trachomatis regulating host signaling processes and mitochondrial function, which can be used for chlamydial metabolic reprogramming during treatment with β-lactam antimicrobials. Activation of signal transducer and activator of transcription 3 (STAT3) is a well-known host response in various bacterial and viral infections. In C. trachomatis infection, inactivation of STAT3 by host protein tyrosine phosphatases increased mitochondrial respiration in both the absence and presence of β-lactam antimicrobials. However, during treatment with β-lactam antimicrobials, C. trachomatis increased the production of citrate as well as the activity of host ATP-citrate lyase involved in fatty acid synthesis. Concomitantly, chlamydial metabolism switched from the tricarboxylic acid cycle to fatty acid synthesis. This metabolic switch was a unique response in treatment with β-lactam antimicrobials and was not observed in gamma interferon (IFN-γ)-induced persistent infection. Inhibition of fatty acid synthesis was able to attenuate β-lactam-induced chlamydial persistence. Our findings highlight the importance of the mitochondrion-fatty acid interplay for the metabolic reprogramming of C. trachomatis during treatment with β-lactam antimicrobials. IMPORTANCE The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis . Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Phospholipids, which are composed of fatty acids, are the central components of the bacterial membrane and play a crucial role in the protection against antimicrobials. Chlamydial persistence that is induced by various stimuli is clinically relevant. While one of the well-recognized inducers, β-lactam antimicrobials, has been used to characterize chlamydial persistence, little is known about the role of mitochondria in persistent infection. Here, we demonstrate how C. trachomatis undergoes metabolic reprogramming to switch from the tricarboxylic acid cycle to fatty acid synthesis with promoted host mitochondrial activity in response to treatment with β-lactam antimicrobials.
AbstractList Infection with the obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date, antimicrobial therapy is the only alternative in C. trachomatis infection. However, changes in chlamydial replicative activity and the occurrence of chlamydial persistence caused by diverse stimuli have been proven to impair treatment effectiveness. Here, we report the mechanism for C. trachomatis regulating host signaling processes and mitochondrial function, which can be used for chlamydial metabolic reprogramming during treatment with β-lactam antimicrobials. Activation of signal transducer and activator of transcription 3 (STAT3) is a well-known host response in various bacterial and viral infections. In C. trachomatis infection, inactivation of STAT3 by host protein tyrosine phosphatases increased mitochondrial respiration in both the absence and presence of β-lactam antimicrobials. However, during treatment with β-lactam antimicrobials, C. trachomatis increased the production of citrate as well as the activity of host ATP-citrate lyase involved in fatty acid synthesis. Concomitantly, chlamydial metabolism switched from the tricarboxylic acid cycle to fatty acid synthesis. This metabolic switch was a unique response in treatment with β-lactam antimicrobials and was not observed in gamma interferon (IFN-γ)-induced persistent infection. Inhibition of fatty acid synthesis was able to attenuate β-lactam-induced chlamydial persistence. Our findings highlight the importance of the mitochondrion-fatty acid interplay for the metabolic reprogramming of C. trachomatis during treatment with β-lactam antimicrobials.IMPORTANCE The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Phospholipids, which are composed of fatty acids, are the central components of the bacterial membrane and play a crucial role in the protection against antimicrobials. Chlamydial persistence that is induced by various stimuli is clinically relevant. While one of the well-recognized inducers, β-lactam antimicrobials, has been used to characterize chlamydial persistence, little is known about the role of mitochondria in persistent infection. Here, we demonstrate how C. trachomatis undergoes metabolic reprogramming to switch from the tricarboxylic acid cycle to fatty acid synthesis with promoted host mitochondrial activity in response to treatment with β-lactam antimicrobials.Infection with the obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date, antimicrobial therapy is the only alternative in C. trachomatis infection. However, changes in chlamydial replicative activity and the occurrence of chlamydial persistence caused by diverse stimuli have been proven to impair treatment effectiveness. Here, we report the mechanism for C. trachomatis regulating host signaling processes and mitochondrial function, which can be used for chlamydial metabolic reprogramming during treatment with β-lactam antimicrobials. Activation of signal transducer and activator of transcription 3 (STAT3) is a well-known host response in various bacterial and viral infections. In C. trachomatis infection, inactivation of STAT3 by host protein tyrosine phosphatases increased mitochondrial respiration in both the absence and presence of β-lactam antimicrobials. However, during treatment with β-lactam antimicrobials, C. trachomatis increased the production of citrate as well as the activity of host ATP-citrate lyase involved in fatty acid synthesis. Concomitantly, chlamydial metabolism switched from the tricarboxylic acid cycle to fatty acid synthesis. This metabolic switch was a unique response in treatment with β-lactam antimicrobials and was not observed in gamma interferon (IFN-γ)-induced persistent infection. Inhibition of fatty acid synthesis was able to attenuate β-lactam-induced chlamydial persistence. Our findings highlight the importance of the mitochondrion-fatty acid interplay for the metabolic reprogramming of C. trachomatis during treatment with β-lactam antimicrobials.IMPORTANCE The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Phospholipids, which are composed of fatty acids, are the central components of the bacterial membrane and play a crucial role in the protection against antimicrobials. Chlamydial persistence that is induced by various stimuli is clinically relevant. While one of the well-recognized inducers, β-lactam antimicrobials, has been used to characterize chlamydial persistence, little is known about the role of mitochondria in persistent infection. Here, we demonstrate how C. trachomatis undergoes metabolic reprogramming to switch from the tricarboxylic acid cycle to fatty acid synthesis with promoted host mitochondrial activity in response to treatment with β-lactam antimicrobials.
The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis . Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Infection with the obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date, antimicrobial therapy is the only alternative in C. trachomatis infection. However, changes in chlamydial replicative activity and the occurrence of chlamydial persistence caused by diverse stimuli have been proven to impair treatment effectiveness. Here, we report the mechanism for C. trachomatis regulating host signaling processes and mitochondrial function, which can be used for chlamydial metabolic reprogramming during treatment with β-lactam antimicrobials. Activation of signal transducer and activator of transcription 3 (STAT3) is a well-known host response in various bacterial and viral infections. In C. trachomatis infection, inactivation of STAT3 by host protein tyrosine phosphatases increased mitochondrial respiration in both the absence and presence of β-lactam antimicrobials. However, during treatment with β-lactam antimicrobials, C. trachomatis increased the production of citrate as well as the activity of host ATP-citrate lyase involved in fatty acid synthesis. Concomitantly, chlamydial metabolism switched from the tricarboxylic acid cycle to fatty acid synthesis. This metabolic switch was a unique response in treatment with β-lactam antimicrobials and was not observed in gamma interferon (IFN-γ)-induced persistent infection. Inhibition of fatty acid synthesis was able to attenuate β-lactam-induced chlamydial persistence. Our findings highlight the importance of the mitochondrion-fatty acid interplay for the metabolic reprogramming of C. trachomatis during treatment with β-lactam antimicrobials. IMPORTANCE The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis . Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Phospholipids, which are composed of fatty acids, are the central components of the bacterial membrane and play a crucial role in the protection against antimicrobials. Chlamydial persistence that is induced by various stimuli is clinically relevant. While one of the well-recognized inducers, β-lactam antimicrobials, has been used to characterize chlamydial persistence, little is known about the role of mitochondria in persistent infection. Here, we demonstrate how C. trachomatis undergoes metabolic reprogramming to switch from the tricarboxylic acid cycle to fatty acid synthesis with promoted host mitochondrial activity in response to treatment with β-lactam antimicrobials.
Infection with the obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date, antimicrobial therapy is the only alternative in C. trachomatis infection. However, changes in chlamydial replicative activity and the occurrence of chlamydial persistence caused by diverse stimuli have been proven to impair treatment effectiveness. Here, we report the mechanism for C. trachomatis regulating host signaling processes and mitochondrial function, which can be used for chlamydial metabolic reprogramming during treatment with β-lactam antimicrobials. Activation of signal transducer and activator of transcription 3 (STAT3) is a well-known host response in various bacterial and viral infections. In C. trachomatis infection, inactivation of STAT3 by host protein tyrosine phosphatases increased mitochondrial respiration in both the absence and presence of β-lactam antimicrobials. However, during treatment with β-lactam antimicrobials, C. trachomatis increased the production of citrate as well as the activity of host ATP-citrate lyase involved in fatty acid synthesis. Concomitantly, chlamydial metabolism switched from the tricarboxylic acid cycle to fatty acid synthesis. This metabolic switch was a unique response in treatment with β-lactam antimicrobials and was not observed in gamma interferon (IFN-γ)-induced persistent infection. Inhibition of fatty acid synthesis was able to attenuate β-lactam-induced chlamydial persistence. Our findings highlight the importance of the mitochondrion-fatty acid interplay for the metabolic reprogramming of C. trachomatis during treatment with β-lactam antimicrobials. IMPORTANCE The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis. Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Phospholipids, which are composed of fatty acids, are the central components of the bacterial membrane and play a crucial role in the protection against antimicrobials. Chlamydial persistence that is induced by various stimuli is clinically relevant. While one of the well-recognized inducers, β-lactam antimicrobials, has been used to characterize chlamydial persistence, little is known about the role of mitochondria in persistent infection. Here, we demonstrate how C. trachomatis undergoes metabolic reprogramming to switch from the tricarboxylic acid cycle to fatty acid synthesis with promoted host mitochondrial activity in response to treatment with β-lactam antimicrobials.
The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis. Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Infection with the obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date, antimicrobial therapy is the only alternative in C. trachomatis infection. However, changes in chlamydial replicative activity and the occurrence of chlamydial persistence caused by diverse stimuli have been proven to impair treatment effectiveness. Here, we report the mechanism for C. trachomatis regulating host signaling processes and mitochondrial function, which can be used for chlamydial metabolic reprogramming during treatment with β-lactam antimicrobials. Activation of signal transducer and activator of transcription 3 (STAT3) is a well-known host response in various bacterial and viral infections. In C. trachomatis infection, inactivation of STAT3 by host protein tyrosine phosphatases increased mitochondrial respiration in both the absence and presence of β-lactam antimicrobials. However, during treatment with β-lactam antimicrobials, C. trachomatis increased the production of citrate as well as the activity of host ATP-citrate lyase involved in fatty acid synthesis. Concomitantly, chlamydial metabolism switched from the tricarboxylic acid cycle to fatty acid synthesis. This metabolic switch was a unique response in treatment with β-lactam antimicrobials and was not observed in gamma interferon (IFN-γ)-induced persistent infection. Inhibition of fatty acid synthesis was able to attenuate β-lactam-induced chlamydial persistence. Our findings highlight the importance of the mitochondrion-fatty acid interplay for the metabolic reprogramming of C. trachomatis during treatment with β-lactam antimicrobials.
ABSTRACT Infection with the obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date, antimicrobial therapy is the only alternative in C. trachomatis infection. However, changes in chlamydial replicative activity and the occurrence of chlamydial persistence caused by diverse stimuli have been proven to impair treatment effectiveness. Here, we report the mechanism for C. trachomatis regulating host signaling processes and mitochondrial function, which can be used for chlamydial metabolic reprogramming during treatment with β-lactam antimicrobials. Activation of signal transducer and activator of transcription 3 (STAT3) is a well-known host response in various bacterial and viral infections. In C. trachomatis infection, inactivation of STAT3 by host protein tyrosine phosphatases increased mitochondrial respiration in both the absence and presence of β-lactam antimicrobials. However, during treatment with β-lactam antimicrobials, C. trachomatis increased the production of citrate as well as the activity of host ATP-citrate lyase involved in fatty acid synthesis. Concomitantly, chlamydial metabolism switched from the tricarboxylic acid cycle to fatty acid synthesis. This metabolic switch was a unique response in treatment with β-lactam antimicrobials and was not observed in gamma interferon (IFN-γ)-induced persistent infection. Inhibition of fatty acid synthesis was able to attenuate β-lactam-induced chlamydial persistence. Our findings highlight the importance of the mitochondrion-fatty acid interplay for the metabolic reprogramming of C. trachomatis during treatment with β-lactam antimicrobials. IMPORTANCE The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis. Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Phospholipids, which are composed of fatty acids, are the central components of the bacterial membrane and play a crucial role in the protection against antimicrobials. Chlamydial persistence that is induced by various stimuli is clinically relevant. While one of the well-recognized inducers, β-lactam antimicrobials, has been used to characterize chlamydial persistence, little is known about the role of mitochondria in persistent infection. Here, we demonstrate how C. trachomatis undergoes metabolic reprogramming to switch from the tricarboxylic acid cycle to fatty acid synthesis with promoted host mitochondrial activity in response to treatment with β-lactam antimicrobials.
Infection with the obligate intracellular bacterium is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date, antimicrobial therapy is the only alternative in infection. However, changes in chlamydial replicative activity and the occurrence of chlamydial persistence caused by diverse stimuli have been proven to impair treatment effectiveness. Here, we report the mechanism for regulating host signaling processes and mitochondrial function, which can be used for chlamydial metabolic reprogramming during treatment with β-lactam antimicrobials. Activation of signal transducer and activator of transcription 3 (STAT3) is a well-known host response in various bacterial and viral infections. In infection, inactivation of STAT3 by host protein tyrosine phosphatases increased mitochondrial respiration in both the absence and presence of β-lactam antimicrobials. However, during treatment with β-lactam antimicrobials, increased the production of citrate as well as the activity of host ATP-citrate lyase involved in fatty acid synthesis. Concomitantly, chlamydial metabolism switched from the tricarboxylic acid cycle to fatty acid synthesis. This metabolic switch was a unique response in treatment with β-lactam antimicrobials and was not observed in gamma interferon (IFN-γ)-induced persistent infection. Inhibition of fatty acid synthesis was able to attenuate β-lactam-induced chlamydial persistence. Our findings highlight the importance of the mitochondrion-fatty acid interplay for the metabolic reprogramming of during treatment with β-lactam antimicrobials. The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Phospholipids, which are composed of fatty acids, are the central components of the bacterial membrane and play a crucial role in the protection against antimicrobials. Chlamydial persistence that is induced by various stimuli is clinically relevant. While one of the well-recognized inducers, β-lactam antimicrobials, has been used to characterize chlamydial persistence, little is known about the role of mitochondria in persistent infection. Here, we demonstrate how undergoes metabolic reprogramming to switch from the tricarboxylic acid cycle to fatty acid synthesis with promoted host mitochondrial activity in response to treatment with β-lactam antimicrobials.
Author Klinger, Matthias
Kaufhold, Inga
Isay, Sophie E.
Ogunsulire, Iretiolu M.
Rupp, Jan
Käding, Nadja
Friedrich, Dirk
Eder, Thomas
Richer, Barbara C.
Köhrer, Karl
Rattei, Thomas
Deepe, George S.
Günther, Ulrich L.
Shima, Kensuke
Schmidt, Nis
Deenen, René
Grebien, Florian
Author_xml – sequence: 1
  givenname: Kensuke
  orcidid: 0000-0002-5357-4230
  surname: Shima
  fullname: Shima, Kensuke
  organization: Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
– sequence: 2
  givenname: Inga
  surname: Kaufhold
  fullname: Kaufhold, Inga
  organization: Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
– sequence: 3
  givenname: Thomas
  surname: Eder
  fullname: Eder, Thomas
  organization: Division of Computational Systems Biology, University Vienna, Vienna, Austria, Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
– sequence: 4
  givenname: Nadja
  surname: Käding
  fullname: Käding, Nadja
  organization: Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
– sequence: 5
  givenname: Nis
  surname: Schmidt
  fullname: Schmidt, Nis
  organization: Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
– sequence: 6
  givenname: Iretiolu M.
  surname: Ogunsulire
  fullname: Ogunsulire, Iretiolu M.
  organization: Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
– sequence: 7
  givenname: René
  surname: Deenen
  fullname: Deenen, René
  organization: Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
– sequence: 8
  givenname: Karl
  surname: Köhrer
  fullname: Köhrer, Karl
  organization: Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
– sequence: 9
  givenname: Dirk
  orcidid: 0000-0001-8812-489X
  surname: Friedrich
  fullname: Friedrich, Dirk
  organization: Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
– sequence: 10
  givenname: Sophie E.
  surname: Isay
  fullname: Isay, Sophie E.
  organization: Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
– sequence: 11
  givenname: Florian
  surname: Grebien
  fullname: Grebien, Florian
  organization: Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
– sequence: 12
  givenname: Matthias
  surname: Klinger
  fullname: Klinger, Matthias
  organization: Institute of Anatomy, University of Lübeck, Lübeck, Germany
– sequence: 13
  givenname: Barbara C.
  surname: Richer
  fullname: Richer, Barbara C.
  organization: Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
– sequence: 14
  givenname: Ulrich L.
  surname: Günther
  fullname: Günther, Ulrich L.
  organization: Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
– sequence: 15
  givenname: George S.
  surname: Deepe
  fullname: Deepe, George S.
  organization: Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
– sequence: 16
  givenname: Thomas
  surname: Rattei
  fullname: Rattei, Thomas
  organization: Division of Computational Systems Biology, University Vienna, Vienna, Austria
– sequence: 17
  givenname: Jan
  orcidid: 0000-0001-8722-1233
  surname: Rupp
  fullname: Rupp, Jan
  organization: Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany, German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33785629$$D View this record in MEDLINE/PubMed
BookMark eNp1kstuEzEUhkeoiJbSJVtkiQ1CmuJLZjyzQQpRC5WCkKqyts74kjgaj4PtKeRJ-h48CM-Ek5TSVurKls_nz8f2_7I4GPygi-I1waeE0OaD-2T9KcaYspKSZ8URJRUueUXIwb35YXES4ypTmDHSMPyiOGSMN1VN26Pi5lIvxh6S9QPyBqWlRl9t8nLpBxXyYnkOKW3QVFqFpr9sRMaHPaUTdL63El3qdfCLAM7ZYbGVzJY9uI2ygFKAbHJZH5Eaw7Z-FTQkp4eEftq0RH9-l3OQCRyaDsk6K4PvLPTxVfHc5EGf3I7Hxffzs6vZl3L-7fPFbDovYTKpU9lxo2tJSVfJimrMlapwy3lXN60BoqGrWqy7RnMzUcYojjvNCakoSFA171p2XFzsvcrDSqyDdRA2woMVuwUfFgJCsrLXghhK1KSuaWXwxGQt4fk5JTUU53M4ya6Pe9d67JxWMl8yQP9A-rAy2KVY-GvR4JaSlmXBu1tB8D9GHZNwNkrd9zBoP0ZBK8xrjnMLGX37CF35MQz5qQSjNaWsamidqfd7CqKj_wmCxTY-YhsfsYuPoNv239xv_67vf2HJQLkH8ifFGLS5Q54Sske8tGkXtXx72z-x6y-hTuWr
CitedBy_id crossref_primary_10_1016_j_jbc_2022_102338
crossref_primary_10_1038_s41579_023_00860_y
crossref_primary_10_1128_aem_00681_23
crossref_primary_10_3389_fmicb_2021_812448
crossref_primary_10_1016_j_ejphar_2025_177511
crossref_primary_10_3389_fmicb_2021_676747
crossref_primary_10_3390_antibiotics13050421
crossref_primary_10_3390_diagnostics12081795
crossref_primary_10_3389_fcimb_2022_835181
Cites_doi 10.1158/0008-5472.CAN-11-4112
10.1093/jac/dkh283
10.1038/ncomms5201
10.1016/s1369-5274(02)00291-6
10.1016/S1473-3099(18)30159-2
10.1128/mBio.01902-20
10.1126/science.282.5389.754
10.1038/s41598-020-69397-x
10.1093/cid/civ076
10.18632/aging.100232
10.2217/fvl-2018-0033
10.1016/j.mib.2013.11.003
10.1074/jbc.M114.584185
10.18632/oncoscience.62
10.1186/1471-2105-12-366
10.1186/s13059-014-0550-8
10.1016/j.micinf.2011.03.004
10.1128/AAC.45.1.303-305.2001
10.1074/jbc.M115.671008
10.1007/s12079-012-0171-5
10.1073/pnas.2535394100
10.1128/IAI.02576-14
10.1016/j.micinf.2012.07.017
10.18632/oncotarget.2433
10.1093/bioinformatics/btt656
10.1128/mSystems.00689-20
10.1046/j.1523-1755.1999.055003778.x
10.1038/srep29297
10.1371/journal.pone.0004251
10.1073/pnas.90.9.3998
10.1038/s41564-020-0762-5
10.3389/fcimb.2014.00071
10.1006/jmre.2000.2071
10.1126/science.1164551
10.1099/0022-1317-83-7-1651
10.1128/IAI.63.9.3302-3308.1995
10.1073/pnas.0608643103
10.1016/j.tim.2016.09.006
10.1128/AAC.49.5.1787-1793.2005
10.1016/j.bbrc.2004.07.039
10.1073/pnas.89.4.1271
10.3389/fcimb.2014.00044
10.1371/journal.pone.0007723
10.1038/ncomms3236
10.1038/nature12892
10.1073/pnas.1212831109
10.1016/j.febslet.2004.10.005
10.1074/jbc.M115.657148
10.1073/pnas.1521990113
10.1016/j.tibs.2014.06.005
10.1371/journal.ppat.1002092
10.1038/sj.bjc.6605007
10.1016/j.cyto.2018.05.039
10.1038/s41467-019-09746-1
10.1038/nri1226
10.1128/IAI.01377-07
10.1099/00221287-147-11-3135
10.1128/MR.58.4.686-699.1994
10.3389/fmicb.2019.02350
10.1128/JB.101.1.278-285.1970
10.1371/journal.ppat.1002198
10.1046/j.1462-5822.2000.00077.x
10.3390/cancers6031579
10.1083/jcb.201608063
10.1371/journal.ppat.1002108
10.1007/BF02123623
10.1515/hmbci-2012-0006
10.3390/cells7010001
10.3390/ijms19092708
10.1038/s41598-018-23691-x
ContentType Journal Article
Copyright Copyright © 2021 Shima et al.
2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2021 Shima et al. 2021 Shima et al.
Copyright_xml – notice: Copyright © 2021 Shima et al.
– notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2021 Shima et al. 2021 Shima et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8C1
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1128/mBio.00023-21
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
ProQuest Biological Science
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Publicly Available Content Database


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2150-7511
Editor Ouellette, Scot P
Editor_xml – sequence: 1
  givenname: Scot P
  surname: Ouellette
  fullname: Ouellette, Scot P
ExternalDocumentID oai_doaj_org_article_1f21d46625f04f0eb17183c2f20ab571
PMC8092193
mBio00023-21
33785629
10_1128_mBio_00023_21
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI106269
– fundername: NIAID NIH HHS
  grantid: R01 AI133797
– fundername: The DFG-funded international research training group (IRTG) 1911
  grantid: project B 8.1
– fundername: ERA_NET PathoGenoMics (Pathomics)
  grantid: 0315442C
– fundername: German Center for Infection Research (DZIF)
  grantid: TI07.003/80115MDMAW/FKZ 80002043
– fundername: The German Research Foundation (DFG)
  grantid: KA4420/1-1
– fundername: The University of Luebeck
  grantid: E10-2013
– fundername: ;
  grantid: 0315442C
– fundername: ;
  grantid: TI07.003/80115MDMAW/FKZ 80002043
– fundername: ;
  grantid: project B 8.1
– fundername: ;
  grantid: E10-2013
– fundername: ;
  grantid: KA4420/1-1
GroupedDBID ---
0R~
53G
5VS
8C1
AAFWJ
AAGFI
AAUOK
AAYXX
ABUWG
ADBBV
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BTFSW
CCPQU
CITATION
DIK
E3Z
EBS
FRP
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
HZ~
KQ8
M48
M7P
O5R
O5S
O9-
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
RHI
RNS
RPM
RSF
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
-
0R
ADACO
BXI
HZ
M~E
RHF
8FE
8FH
AZQEC
COVID
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-a446t-b7fe6c21b5c52e07dd50977b689fa1eab590eb8e7f4dffd70be71152acad67b93
IEDL.DBID 8C1
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000643634500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2150-7511
2161-2129
IngestDate Fri Oct 03 12:51:51 EDT 2025
Tue Nov 04 02:02:27 EST 2025
Sun Nov 09 14:17:18 EST 2025
Sat Oct 25 00:41:12 EDT 2025
Tue Dec 28 13:59:02 EST 2021
Thu Apr 03 06:53:33 EDT 2025
Sat Nov 29 03:11:06 EST 2025
Tue Nov 18 22:37:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords penicillin
beta-lactams
citrate
fatty acids
mitochondria
protein tyrosine phosphatase
STAT3
persistence
Chlamydia trachomatis
metabolism
Language English
License Copyright © 2021 Shima et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a446t-b7fe6c21b5c52e07dd50977b689fa1eab590eb8e7f4dffd70be71152acad67b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8722-1233
0000-0001-8812-489X
0000-0002-5357-4230
OpenAccessLink https://www.proquest.com/docview/3262235826?pq-origsite=%requestingapplication%
PMID 33785629
PQID 3262235826
PQPubID 7421146
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_1f21d46625f04f0eb17183c2f20ab571
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8092193
proquest_miscellaneous_2507670662
proquest_journals_3262235826
asm2_journals_10_1128_mBio_00023_21
pubmed_primary_33785629
crossref_primary_10_1128_mBio_00023_21
crossref_citationtrail_10_1128_mBio_00023_21
PublicationCentury 2000
PublicationDate 20210330
PublicationDateYYYYMMDD 2021-03-30
PublicationDate_xml – month: 3
  year: 2021
  text: 20210330
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
– name: Washington
PublicationTitle mBio
PublicationTitleAbbrev mBio
PublicationTitleAlternate mBio
PublicationYear 2021
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
e_1_3_2_72_2
e_1_3_2_70_2
Workowski KA (e_1_3_2_15_2) 2015; 64
World Health Organization (e_1_3_2_16_2) 2016
Shuai, K, Liu, B (B39) 2003; 3
Günther, UL, Ludwig, C, Rüterjans, H (B69) 2000; 145
Lewis, ME, Belland, RJ, AbdelRahman, YM, Beatty, WL, Aiyar, AA, Zea, AH, Greene, SJ, Marrero, L, Buckner, LR, Tate, DJ, McGowin, CL, Kozlowski, PA, O’Brien, M, Lillis, RA, Martin, DH, Quayle, AJ (B5) 2014; 4
Schoborg, RV (B42) 2011; 13
Sala, D, Cunningham, TJ, Stec, MJ, Etxaniz, U, Nicoletti, C, Dall’Agnese, A, Puri, PL, Duester, G, Latella, L, Sacco, A (B33) 2019; 10
Love, MI, Huber, W, Anders, S (B71) 2014; 15
Beatty, WL, Byrne, GI, Morrison, RP (B43) 1993; 90
(B15) 2016
Hicks, LA, Bartoces, MG, Roberts, RM, Suda, KJ, Hunkler, RJ, Taylor, TH, Schrag, SJ (B16) 2015; 60
Sharick, JT, Favreau, PF, Gillette, AA, Sdao, SM, Merrins, MJ, Skala, MC (B57) 2018; 8
Reveneau, N, Crane, DD, Fischer, E, Caldwell, HD (B17) 2005; 49
Su, H, Caldwell, HD (B8) 1995; 63
Chiarelli, TJ, Grieshaber, NA, Omsland, A, Remien, CH, Grieshaber, SS (B59) 2020; 5
Mashima, T, Seimiya, H, Tsuruo, T (B45) 2009; 100
Wyrick, PB, Knight, ST (B3) 2004; 54
Kim, M, Morales, LD, Jang, I-S, Cho, Y-Y, Kim, DJ (B38) 2018; 19
Clark, RB, Schatzki, PF, Dalton, HP (B12) 1982; 171
Liechti, GW, Kuru, E, Hall, E, Kalinda, A, Brun, YV, VanNieuwenhze, M, Maurelli, AT (B18) 2014; 506
Yao, J, Cherian, PT, Frank, MW, Rock, CO (B26) 2015; 290
Yao, J, Dodson, VJ, Frank, MW, Rock, CO (B27) 2015; 290
Camporeale, A, Demaria, M, Monteleone, E, Giorgi, C, Wieckowski, MR, Pinton, P, Poli, V (B35) 2014; 6
Schep, DG, Zhao, J, Rubinstein, JL (B60) 2016; 113
Wegrzyn, J, Potla, R, Chwae, Y-J, Sepuri, NBV, Zhang, Q, Koeck, T, Derecka, M, Szczepanek, K, Szelag, M, Gornicka, A, Moh, A, Moghaddas, S, Chen, Q, Bobbili, S, Cichy, J, Dulak, J, Baker, DP, Wolfman, A, Stuehr, D, Hassan, MO, Fu, X-Y, Avadhani, N, Drake, JI, Fawcett, P, Lesnefsky, EJ, Larner, AC (B37) 2009; 323
Szaszák, M, Steven, P, Shima, K, Orzekowsky-Schröder, R, Hüttmann, G, König, IR, Solbach, W, Rupp, J (B40) 2011; 7
Stephens, RS, Kalman, S, Lammel, C, Fan, J, Marathe, R, Aravind, L, Mitchell, W, Olinger, L, Tatusov, RL, Zhao, Q, Koonin, EV, Davis, RW (B22) 1998; 282
Yang, C, Kari, L, Lei, L, Carlson, JH, Ma, L, Couch, CE, Whitmire, WM, Bock, K, Moore, I, Bonner, C, McClarty, G, Caldwell, HD (B64) 2020; 11
Pensa, S, Demaria, M, Avalle, L, Barbieri, I, Camporeale, A, Poli, V (B36) 2012; 10
Zhao, J, Dong, Y, Kang, W, Go, MY, Tong, JH, Ng, EK, Chiu, PW, Cheng, AS, To, KF, Sung, JJ, Yu, J (B49) 2014; 1
Van Ooij, C, Kalman, L, Van Ijzendoorn, S, Nishijima, M, Hanada, K, Mostov, K, Engel, JN (B29) 2000; 2
Sun, S, Steinberg, BM (B53) 2002; 83
Kiriyama, Y, Nochi, H (B47) 2018; 7
Kintner, J, Lajoie, D, Hall, J, Whittimore, J, Schoborg, RV (B7) 2014; 4
Phillips Campbell, R, Kintner, J, Whittimore, J, Schoborg, RV (B6) 2012; 14
Matsumoto, A, Manire, GP (B11) 1970; 101
Mizutani, T, Fukushi, S, Murakami, M, Hirano, T, Saijo, M, Kurane, I, Morikawa, S (B52) 2004; 577
Fendt, S-M, Bell, EL, Keibler, MA, Olenchock, BA, Mayers, JR, Wasylenko, TM, Vokes, NI, Guarente, L, Vander Heiden, MG, Stephanopoulos, G (B62) 2013; 4
Demaria, M, Giorgi, C, Lebiedzinska, M, Esposito, G, D’Angeli, L, Bartoli, A, Gough, DJ, Turkson, J, Levy, DE, Watson, CJ, Wieckowski, MR, Provero, P, Pinton, P, Poli, V (B34) 2010; 2
Storey, C, Chopra, I (B4) 2001; 45
Lakowicz, JR, Szmacinski, H, Nowaczyk, K, Johnson, ML (B58) 1992; 89
Ludwig, C, Günther, UL (B70) 2011; 12
Loomis, WP, Starnbach, MN (B44) 2002; 5
Lin, T, Bost, KL (B48) 2004; 321
Derré, I, Swiss, R, Agaisse, H (B31) 2011; 7
Kubo, A, Stephens, RS (B23) 2001; 147
Yang, M, Rajeeve, K, Rudel, T, Dandekar, T (B56) 2019; 10
Vromman, F, Subtil, A (B32) 2014; 17
Queval, CJ, Song, O-R, Deboosère, N, Delorme, V, Debrie, A-S, Iantomasi, R, Veyron-Churlet, R, Jouny, S, Redhage, K, Deloison, G, Baulard, A, Chamaillard, M, Locht, C, Brodin, P (B50) 2016; 6
McCoy, AJ, Adams, NE, Hudson, AO, Gilvarg, C, Leustek, T, Maurelli, AT (B63) 2006; 103
Liu, Y, Huang, Y, Yang, Z, Sun, Y, Gong, S, Hou, S, Chen, C, Li, Z, Liu, Q, Wu, Y, Baseman, J, Zhong, G (B67) 2014; 82
Zaidi, N, Swinnen, JV, Smans, K (B25) 2012; 72
Stumvoll, M, Perriello, G, Meyer, C, Gerich, J (B55) 1999; 55
Liao, Y, Smyth, GK, Shi, W (B72) 2014; 30
Shima, K, Kaeding, N, Ogunsulire, IM, Kaufhold, I, Klinger, M, Rupp, J (B10) 2018; 112
Skilton, RJ, Cutcliffen, LT, Barlow, D, Wang, Y, Salim, O, Lambden, PR, Clarke, IN (B13) 2009; 4
Yao, J, Abdelrahman, YM, Robertson, RM, Cox, JV, Belland, RJ, White, SW, Rock, CO (B28) 2014; 289
Li, Z, Chen, D, Zhong, Y, Wang, S, Zhong, G (B66) 2008; 76
Tiziani, S, Lodi, A, Khanim, FL, Viant, MR, Bunce, CM, Günther, UL (B68) 2009; 4
Belland, RJ, Nelson, DE, Virok, D, Crane, DD, Hogan, D, Sturdevant, D, Beatty, WL, Caldwell, HD (B9) 2003; 100
Omsland, A, Sager, J, Nair, V, Sturdevant, DE, Hackstadt, T (B2) 2012; 109
Workowski, KA, Bolan, GA (B14) 2015; 64
Xu, Y, Fisher, GJ (B54) 2012; 6
Rajeeve, K, Vollmuth, N, Janaki-Raman, S, Wulff, TF, Baluapuri, A, Dejure, FR, Huber, C, Fink, J, Schmalhofer, M, Schmitz, W, Sivadasan, R, Eilers, M, Wolf, E, Eisenreich, W, Schulze, A, Seibel, J, Rudel, T (B24) 2020; 5
Beatty, WL, Morrison, RP, Byrne, GI (B41) 1994; 58
Cox, JV, Abdelrahman, YM, Ouellette, SP (B20) 2020; 10
Chowdhury, SR, Reimer, A, Sharan, M, Kozjak-Pavlovic, V, Eulalio, A, Prusty, BK, Fraunholz, M, Karunakaran, K, Rudel, T (B21) 2017; 216
Patra, KC, Hay, N (B61) 2014; 39
Zhong, G (B65) 2017; 25
Klöckner, A, Otten, C, Derouaux, A, Vollmer, W, Bühl, H, De Benedetti, S, Münch, D, Josten, M, Mölleken, K, Sahl, H-G, Henrichfreise, B (B19) 2014; 5
Elwell, CA, Jiang, S, Kim, JH, Lee, A, Wittmann, T, Hanada, K, Melancon, P, Engel, JN (B30) 2011; 7
Sadowski, MC, Pouwer, RH, Gunter, JH, Lubik, AA, Quinn, RJ, Nelson, CC (B46) 2014; 5
Chang, Z, Wang, Y, Zhou, X, Long, J-E (B51) 2018; 13
Woodhall, SC, Gorwitz, RJ, Migchelsen, SJ, Gottlieb, SL, Horner, PJ, Geisler, WM, Winstanley, C, Hufnagel, K, Waterboer, T, Martin, DL, Huston, WM, Gaydos, CA, Deal, C, Unemo, M, Dunbar, JK, Bernstein, K (B1) 2018; 18
References_xml – ident: e_1_3_2_26_2
  doi: 10.1158/0008-5472.CAN-11-4112
– ident: e_1_3_2_4_2
  doi: 10.1093/jac/dkh283
– ident: e_1_3_2_20_2
  doi: 10.1038/ncomms5201
– ident: e_1_3_2_45_2
  doi: 10.1016/s1369-5274(02)00291-6
– ident: e_1_3_2_2_2
  doi: 10.1016/S1473-3099(18)30159-2
– ident: e_1_3_2_65_2
  doi: 10.1128/mBio.01902-20
– ident: e_1_3_2_23_2
  doi: 10.1126/science.282.5389.754
– ident: e_1_3_2_21_2
  doi: 10.1038/s41598-020-69397-x
– ident: e_1_3_2_17_2
  doi: 10.1093/cid/civ076
– ident: e_1_3_2_35_2
  doi: 10.18632/aging.100232
– ident: e_1_3_2_52_2
  doi: 10.2217/fvl-2018-0033
– ident: e_1_3_2_33_2
  doi: 10.1016/j.mib.2013.11.003
– ident: e_1_3_2_29_2
  doi: 10.1074/jbc.M114.584185
– ident: e_1_3_2_50_2
  doi: 10.18632/oncoscience.62
– ident: e_1_3_2_71_2
  doi: 10.1186/1471-2105-12-366
– ident: e_1_3_2_72_2
  doi: 10.1186/s13059-014-0550-8
– ident: e_1_3_2_43_2
  doi: 10.1016/j.micinf.2011.03.004
– ident: e_1_3_2_5_2
  doi: 10.1128/AAC.45.1.303-305.2001
– ident: e_1_3_2_28_2
  doi: 10.1074/jbc.M115.671008
– ident: e_1_3_2_55_2
  doi: 10.1007/s12079-012-0171-5
– ident: e_1_3_2_10_2
  doi: 10.1073/pnas.2535394100
– ident: e_1_3_2_68_2
  doi: 10.1128/IAI.02576-14
– ident: e_1_3_2_7_2
  doi: 10.1016/j.micinf.2012.07.017
– ident: e_1_3_2_47_2
  doi: 10.18632/oncotarget.2433
– ident: e_1_3_2_73_2
  doi: 10.1093/bioinformatics/btt656
– ident: e_1_3_2_60_2
  doi: 10.1128/mSystems.00689-20
– ident: e_1_3_2_56_2
  doi: 10.1046/j.1523-1755.1999.055003778.x
– ident: e_1_3_2_51_2
  doi: 10.1038/srep29297
– ident: e_1_3_2_69_2
  doi: 10.1371/journal.pone.0004251
– ident: e_1_3_2_44_2
  doi: 10.1073/pnas.90.9.3998
– ident: e_1_3_2_25_2
  doi: 10.1038/s41564-020-0762-5
– ident: e_1_3_2_6_2
  doi: 10.3389/fcimb.2014.00071
– ident: e_1_3_2_70_2
  doi: 10.1006/jmre.2000.2071
– ident: e_1_3_2_38_2
  doi: 10.1126/science.1164551
– ident: e_1_3_2_54_2
  doi: 10.1099/0022-1317-83-7-1651
– ident: e_1_3_2_9_2
  doi: 10.1128/IAI.63.9.3302-3308.1995
– ident: e_1_3_2_64_2
  doi: 10.1073/pnas.0608643103
– ident: e_1_3_2_66_2
  doi: 10.1016/j.tim.2016.09.006
– volume-title: WHO guidelines for the treatment of Chlamydia trachomatis
  year: 2016
  ident: e_1_3_2_16_2
– ident: e_1_3_2_18_2
  doi: 10.1128/AAC.49.5.1787-1793.2005
– volume: 64
  start-page: 1
  year: 2015
  ident: e_1_3_2_15_2
  article-title: Sexually transmitted diseases treatment guidelines, 2015
  publication-title: MMWR Recommend Rep
– ident: e_1_3_2_49_2
  doi: 10.1016/j.bbrc.2004.07.039
– ident: e_1_3_2_59_2
  doi: 10.1073/pnas.89.4.1271
– ident: e_1_3_2_8_2
  doi: 10.3389/fcimb.2014.00044
– ident: e_1_3_2_14_2
  doi: 10.1371/journal.pone.0007723
– ident: e_1_3_2_63_2
  doi: 10.1038/ncomms3236
– ident: e_1_3_2_19_2
  doi: 10.1038/nature12892
– ident: e_1_3_2_3_2
  doi: 10.1073/pnas.1212831109
– ident: e_1_3_2_53_2
  doi: 10.1016/j.febslet.2004.10.005
– ident: e_1_3_2_27_2
  doi: 10.1074/jbc.M115.657148
– ident: e_1_3_2_61_2
  doi: 10.1073/pnas.1521990113
– ident: e_1_3_2_62_2
  doi: 10.1016/j.tibs.2014.06.005
– ident: e_1_3_2_32_2
  doi: 10.1371/journal.ppat.1002092
– ident: e_1_3_2_46_2
  doi: 10.1038/sj.bjc.6605007
– ident: e_1_3_2_11_2
  doi: 10.1016/j.cyto.2018.05.039
– ident: e_1_3_2_34_2
  doi: 10.1038/s41467-019-09746-1
– ident: e_1_3_2_40_2
  doi: 10.1038/nri1226
– ident: e_1_3_2_67_2
  doi: 10.1128/IAI.01377-07
– ident: e_1_3_2_24_2
  doi: 10.1099/00221287-147-11-3135
– ident: e_1_3_2_42_2
  doi: 10.1128/MR.58.4.686-699.1994
– ident: e_1_3_2_57_2
  doi: 10.3389/fmicb.2019.02350
– ident: e_1_3_2_12_2
  doi: 10.1128/JB.101.1.278-285.1970
– ident: e_1_3_2_31_2
  doi: 10.1371/journal.ppat.1002198
– ident: e_1_3_2_30_2
  doi: 10.1046/j.1462-5822.2000.00077.x
– ident: e_1_3_2_36_2
  doi: 10.3390/cancers6031579
– ident: e_1_3_2_22_2
  doi: 10.1083/jcb.201608063
– ident: e_1_3_2_41_2
  doi: 10.1371/journal.ppat.1002108
– ident: e_1_3_2_13_2
  doi: 10.1007/BF02123623
– ident: e_1_3_2_37_2
  doi: 10.1515/hmbci-2012-0006
– ident: e_1_3_2_48_2
  doi: 10.3390/cells7010001
– ident: e_1_3_2_39_2
  doi: 10.3390/ijms19092708
– ident: e_1_3_2_58_2
  doi: 10.1038/s41598-018-23691-x
– volume: 45
  start-page: 303
  year: 2001
  end-page: 305
  ident: B4
  article-title: Affinities of beta-lactams for penicillin binding proteins of Chlamydia trachomatis and their antichlamydial activities
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.45.1.303-305.2001
– volume: 506
  start-page: 507
  year: 2014
  end-page: 510
  ident: B18
  article-title: A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis
  publication-title: Nature
  doi: 10.1038/nature12892
– volume: 63
  start-page: 3302
  year: 1995
  end-page: 3308
  ident: B8
  article-title: CD4+ T cells play a significant role in adoptive immunity to Chlamydia trachomatis infection of the mouse genital tract
  publication-title: Infect Immun
  doi: 10.1128/IAI.63.9.3302-3308.1995
– volume: 290
  start-page: 18874
  year: 2015
  end-page: 18888
  ident: B26
  article-title: Chlamydia trachomatis relies on autonomous phospholipid synthesis for membrane biogenesis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M115.657148
– volume: 7
  year: 2011
  ident: B40
  article-title: Fluorescence lifetime imaging unravels C. trachomatis metabolism and its crosstalk with the host cell
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002108
– volume: 58
  start-page: 686
  year: 1994
  end-page: 699
  ident: B41
  article-title: Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis
  publication-title: Microbiol Rev
  doi: 10.1128/MR.58.4.686-699.1994
– volume: 18
  start-page: e399
  year: 2018
  end-page: e407
  ident: B1
  article-title: Advancing the public health applications of Chlamydia trachomatis serology
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(18)30159-2
– volume: 89
  start-page: 1271
  year: 1992
  end-page: 1275
  ident: B58
  article-title: Fluorescence lifetime imaging of free and protein-bound NADH
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.89.4.1271
– volume: 90
  start-page: 3998
  year: 1993
  end-page: 4002
  ident: B43
  article-title: Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.90.9.3998
– volume: 5
  start-page: 9362
  year: 2014
  end-page: 9381
  ident: B46
  article-title: The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.2433
– volume: 5
  year: 2020
  ident: B59
  article-title: Single-inclusion kinetics of Chlamydia trachomatis development
  publication-title: mSystems
  doi: 10.1128/mSystems.00689-20
– volume: 3
  start-page: 900
  year: 2003
  end-page: 911
  ident: B39
  article-title: Regulation of JAK-STAT signalling in the immune system
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri1226
– volume: 6
  start-page: 125
  year: 2012
  end-page: 138
  ident: B54
  article-title: Receptor type protein tyrosine phosphatases (RPTPs)—roles in signal transduction and human disease
  publication-title: J Cell Commun Signal
  doi: 10.1007/s12079-012-0171-5
– volume: 2
  start-page: 823
  year: 2010
  end-page: 842
  ident: B34
  article-title: A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100232
– volume: 39
  start-page: 347
  year: 2014
  end-page: 354
  ident: B61
  article-title: The pentose phosphate pathway and cancer
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2014.06.005
– volume: 10
  start-page: 2350
  year: 2019
  ident: B56
  article-title: Comprehensive flux modeling of Chlamydia trachomatis proteome and qRT-PCR data indicate biphasic metabolic differences between elementary bodies and reticulate bodies during infection
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.02350
– volume: 49
  start-page: 1787
  year: 2005
  end-page: 1793
  ident: B17
  article-title: Bactericidal activity of first-choice antibiotics against gamma interferon-induced persistent infection of human epithelial cells by Chlamydia trachomatis
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.49.5.1787-1793.2005
– volume: 113
  start-page: 3245
  year: 2016
  end-page: 3250
  ident: B60
  article-title: Models for the a subunits of the Thermus thermophilus V/A-ATPase and Saccharomyces cerevisiae V-ATPase enzymes by cryo-EM and evolutionary covariance
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1521990113
– volume: 101
  start-page: 278
  year: 1970
  end-page: 285
  ident: B11
  article-title: Electron microscopic observations on the effects of penicillin on the morphology of Chlamydia psittaci
  publication-title: J Bacteriol
  doi: 10.1128/JB.101.1.278-285.1970
– volume: 64
  start-page: 1
  year: 2015
  end-page: 137
  ident: B14
  article-title: Sexually transmitted diseases treatment guidelines, 2015
  publication-title: MMWR Recommend Rep
– volume: 4
  year: 2009
  ident: B68
  article-title: Metabolomic profiling of drug responses in acute myeloid leukaemia cell lines
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0004251
– volume: 100
  start-page: 15971
  year: 2003
  end-page: 15976
  ident: B9
  article-title: Transcriptome analysis of chlamydial growth during IFN-gamma-mediated persistence and reactivation
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2535394100
– volume: 11
  year: 2020
  ident: B64
  article-title: Chlamydia trachomatis plasmid gene protein 3 is essential for the establishment of persistent infection and associated immunopathology
  publication-title: mBio
  doi: 10.1128/mBio.01902-20
– volume: 15
  start-page: 550
  year: 2014
  ident: B71
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– year: 2016
  ident: B15
  publication-title: WHO guidelines for the treatment of Chlamydia trachomatis ;World Health Organization ;Geneva, Switzerland
– volume: 282
  start-page: 754
  year: 1998
  end-page: 759
  ident: B22
  article-title: Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis
  publication-title: Science
  doi: 10.1126/science.282.5389.754
– volume: 83
  start-page: 1651
  year: 2002
  end-page: 1658
  ident: B53
  article-title: PTEN is a negative regulator of STAT3 activation in human papillomavirus-infected cells
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-83-7-1651
– volume: 100
  start-page: 1369
  year: 2009
  end-page: 1372
  ident: B45
  article-title: De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6605007
– volume: 13
  start-page: 557
  year: 2018
  end-page: 574
  ident: B51
  article-title: STAT3 roles in viral infection: antiviral or proviral?
  publication-title: Future Virol
  doi: 10.2217/fvl-2018-0033
– volume: 5
  start-page: 4201
  year: 2014
  ident: B19
  article-title: AmiA is a penicillin target enzyme with dual activity in the intracellular pathogen Chlamydia pneumoniae
  publication-title: Nat Commun
  doi: 10.1038/ncomms5201
– volume: 103
  start-page: 17909
  year: 2006
  end-page: 17914
  ident: B63
  article-title: l,l-Diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0608643103
– volume: 323
  start-page: 793
  year: 2009
  end-page: 797
  ident: B37
  article-title: Function of mitochondrial Stat3 in cellular respiration
  publication-title: Science
  doi: 10.1126/science.1164551
– volume: 10
  start-page: 12588
  year: 2020
  ident: B20
  article-title: Penicillin-binding proteins regulate multiple steps in the polarized cell division process of Chlamydia
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-69397-x
– volume: 577
  start-page: 187
  year: 2004
  end-page: 192
  ident: B52
  article-title: Tyrosine dephosphorylation of STAT3 in SARS coronavirus-infected Vero E6 cells
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2004.10.005
– volume: 25
  start-page: 141
  year: 2017
  end-page: 152
  ident: B65
  article-title: Chlamydial plasmid-dependent pathogenicity
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2016.09.006
– volume: 13
  start-page: 649
  year: 2011
  end-page: 662
  ident: B42
  article-title: Chlamydia persistence—a tool to dissect chlamydia-host interactions
  publication-title: Microbes Infect
  doi: 10.1016/j.micinf.2011.03.004
– volume: 6
  start-page: 1579
  year: 2014
  end-page: 1596
  ident: B35
  article-title: STAT3 activities and energy metabolism: dangerous liaisons
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers6031579
– volume: 216
  start-page: 1071
  year: 2017
  end-page: 1089
  ident: B21
  article-title: Chlamydia preserves the mitochondrial network necessary for replication via microRNA-dependent inhibition of fission
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201608063
– volume: 2
  start-page: 627
  year: 2000
  end-page: 637
  ident: B29
  article-title: Host cell-derived sphingolipids are required for the intracellular growth of Chlamydia trachomatis
  publication-title: Cell Microbiol
  doi: 10.1046/j.1462-5822.2000.00077.x
– volume: 7
  start-page: 1
  year: 2018
  ident: B47
  article-title: Intra- and intercellular quality control mechanisms of mitochondria
  publication-title: Cells
  doi: 10.3390/cells7010001
– volume: 19
  start-page: 2708
  year: 2018
  ident: B38
  article-title: Protein tyrosine phosphatases as potential regulators of STAT3 signaling
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19092708
– volume: 10
  start-page: 217
  year: 2012
  end-page: 225
  ident: B36
  article-title: From tissue invasion to glucose metabolism: the many aspects of signal transducer and activator of transcription 3 pro-oncogenic activities
  publication-title: Horm Mol Biol Clin Invest
  doi: 10.1515/hmbci-2012-0006
– volume: 82
  start-page: 5327
  year: 2014
  end-page: 5335
  ident: B67
  article-title: Plasmid-encoded Pgp3 is a major virulence factor for Chlamydia muridarum to induce hydrosalpinx in mice
  publication-title: Infect Immun
  doi: 10.1128/IAI.02576-14
– volume: 54
  start-page: 79
  year: 2004
  end-page: 85
  ident: B3
  article-title: Pre-exposure of infected human endometrial epithelial cells to penicillin in vitro renders Chlamydia trachomatis refractory to azithromycin
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkh283
– volume: 112
  start-page: 95
  year: 2018
  end-page: 101
  ident: B10
  article-title: Interferon-γ interferes with host cell metabolism during intracellular Chlamydia trachomatis infection
  publication-title: Cytokine
  doi: 10.1016/j.cyto.2018.05.039
– volume: 55
  start-page: 778
  year: 1999
  end-page: 792
  ident: B55
  article-title: Role of glutamine in human carbohydrate metabolism in kidney and other tissues
  publication-title: Kidney Int
  doi: 10.1046/j.1523-1755.1999.055003778.x
– volume: 8
  start-page: 5456
  year: 2018
  ident: B57
  article-title: Protein-bound NAD(P)H lifetime is sensitive to multiple fates of glucose carbon
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-23691-x
– volume: 4
  start-page: 44
  year: 2014
  ident: B7
  article-title: Commonly prescribed β-lactam antibiotics induce C. trachomatis persistence/stress in culture at physiologically relevant concentrations
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2014.00044
– volume: 12
  start-page: 366
  year: 2011
  ident: B70
  article-title: MetaboLab—advanced NMR data processing and analysis for metabolomics
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-366
– volume: 30
  start-page: 923
  year: 2014
  end-page: 930
  ident: B72
  article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 17
  start-page: 38
  year: 2014
  end-page: 45
  ident: B32
  article-title: Exploitation of host lipids by bacteria
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2013.11.003
– volume: 76
  start-page: 3415
  year: 2008
  end-page: 3428
  ident: B66
  article-title: The chlamydial plasmid-encoded protein pgp3 is secreted into the cytosol of Chlamydia-infected cells
  publication-title: Infect Immun
  doi: 10.1128/IAI.01377-07
– volume: 6
  start-page: 29297
  year: 2016
  ident: B50
  article-title: STAT3 represses nitric oxide synthesis in human macrophages upon Mycobacterium tuberculosis infection
  publication-title: Sci Rep
  doi: 10.1038/srep29297
– volume: 4
  start-page: 2236
  year: 2013
  ident: B62
  article-title: Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells
  publication-title: Nat Commun
  doi: 10.1038/ncomms3236
– volume: 5
  start-page: 87
  year: 2002
  end-page: 91
  ident: B44
  article-title: T cell responses to Chlamydia trachomatis
  publication-title: Curr Opin Microbiol
  doi: 10.1016/s1369-5274(02)00291-6
– volume: 1
  start-page: 468
  year: 2014
  end-page: 475
  ident: B49
  article-title: Helicobacter pylori-induced STAT3 activation and signalling network in gastric cancer
  publication-title: Oncoscience
  doi: 10.18632/oncoscience.62
– volume: 60
  start-page: 1308
  year: 2015
  end-page: 1316
  ident: B16
  article-title: US outpatient antibiotic prescribing variation according to geography, patient population, and provider specialty in 2011
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/civ076
– volume: 4
  year: 2009
  ident: B13
  article-title: Penicillin induced persistence in Chlamydia trachomatis: high quality time lapse video analysis of the developmental cycle
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0007723
– volume: 321
  start-page: 828
  year: 2004
  end-page: 834
  ident: B48
  article-title: STAT3 activation in macrophages following infection with Salmonella
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2004.07.039
– volume: 147
  start-page: 3135
  year: 2001
  end-page: 3140
  ident: B23
  article-title: Substrate-specific diffusion of select dicarboxylates through Chlamydia trachomatis PorB
  publication-title: Microbiology (Reading)
  doi: 10.1099/00221287-147-11-3135
– volume: 290
  start-page: 22163
  year: 2015
  end-page: 22173
  ident: B27
  article-title: Chlamydia trachomatis scavenges host fatty acids for phospholipid synthesis via an acyl-acyl carrier protein synthetase
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M115.671008
– volume: 10
  start-page: 1796
  year: 2019
  ident: B33
  article-title: The Stat3-Fam3a axis promotes muscle stem cell myogenic lineage progression by inducing mitochondrial respiration
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09746-1
– volume: 7
  year: 2011
  ident: B30
  article-title: Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002198
– volume: 5
  start-page: 1390
  year: 2020
  end-page: 1402
  ident: B24
  article-title: Reprogramming of host glutamine metabolism during Chlamydia trachomatis infection and its key role in peptidoglycan synthesis
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-020-0762-5
– volume: 145
  start-page: 201
  year: 2000
  end-page: 208
  ident: B69
  article-title: NMRLAB—advanced NMR data processing in matlab
  publication-title: J Magn Reson
  doi: 10.1006/jmre.2000.2071
– volume: 289
  start-page: 22365
  year: 2014
  end-page: 22376
  ident: B28
  article-title: Type II fatty acid synthesis is essential for the replication of Chlamydia trachomatis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.584185
– volume: 7
  year: 2011
  ident: B31
  article-title: The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002092
– volume: 72
  start-page: 3709
  year: 2012
  end-page: 3714
  ident: B25
  article-title: ATP-citrate lyase: a key player in cancer metabolism
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-4112
– volume: 109
  start-page: 19781
  year: 2012
  end-page: 19785
  ident: B2
  article-title: Developmental stage-specific metabolic and transcriptional activity of Chlamydia trachomatis in an axenic medium
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1212831109
– volume: 4
  start-page: 71
  year: 2014
  ident: B5
  article-title: Morphologic and molecular evaluation of Chlamydia trachomatis growth in human endocervix reveals distinct growth patterns
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2014.00071
– volume: 14
  start-page: 1177
  year: 2012
  end-page: 1185
  ident: B6
  article-title: Chlamydia muridarum enters a viable but non-infectious state in amoxicillin-treated BALB/c mice
  publication-title: Microbes Infect
  doi: 10.1016/j.micinf.2012.07.017
– volume: 171
  start-page: 151
  year: 1982
  end-page: 159
  ident: B12
  article-title: Ultrastructural effect of penicillin and cycloheximide on Chlamydia trachomatis strain HAR-13
  publication-title: Med Microbiol Immunol
  doi: 10.1007/BF02123623
SSID ssj0000331830
Score 2.3346748
Snippet The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis ....
Infection with the obligate intracellular bacterium is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date,...
Infection with the obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. Since no vaccine...
The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis....
ABSTRACT Infection with the obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. Since...
SourceID doaj
pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Anti-Bacterial Agents - pharmacology
Antimicrobial agents
Bacterial infections
beta-lactams
beta-Lactams - pharmacology
Chlamydia
Chlamydia Infections - drug therapy
Chlamydia Infections - microbiology
Chlamydia trachomatis
Chlamydia trachomatis - drug effects
Chlamydia trachomatis - genetics
Chlamydia trachomatis - metabolism
citrate
Cytokines
Electron transport
Fatty acids
Fatty Acids - metabolism
HeLa Cells
Humans
Intracellular
Lipids
Metabolism
Metabolites
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Penicillin
Persistent infection
Phospholipids
Phosphorylation
Proteins
Research Article
Respiration
Sexually transmitted diseases
STAT3
Stat3 protein
STAT3 Transcription Factor - genetics
STAT3 Transcription Factor - metabolism
STD
Tricarboxylic acid cycle
β-Lactam antibiotics
γ-Interferon
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELbQCiQuiH8CBRmBOGHq2EkcH7cVKw6lQqhIvUX-VSM12Wo3rbpPwnvwIDwTYzu77CIqLlzjUWR7Ptufk5lvEHqrS145KzkRNPekAIZApFeOcKDPUgeBreTpI3F8XJ-eyi9bpb5CTFiSB04Tt597ltuiApruaeEpbC2wm3LDPKNKlzF7nAHr2bpMxT2YB6zStagmq_e7g3b-Icq7kKALOlHLju2cRVGy_288889wya3zZ3Yf3RuJI56mDj9At1z_EN1JpSRXj9D3r6moPEwznnsMtA5_hsUKm1tvF_CQzNQwrPDUtBZPr9slBrKarNwAODhvDQYunoK1OjjOwksOzwAuKwAQhg6FoiohEwKnxEZ8so5Qx-FTLv75gxwpM6gOT_uh7dqo7wTQfoy-zT6eHH4iY9EFouBmOBAtvKsMy3VpSuaosBYohRC6qsGHuYM5l-CE2glfWO-toNoJYJVMGWUroSV_gib9vHfPEBZSC2lyYACiKBQvlXIlLZwtfbhESZ6hN8ELzbhqlk28kLC6Cb5qoq8almfo_dpJjRl1y0P5jPObzN9tzC-SYMdNhgfB4xujoLMdHwD6mhF9zb_Ql6G9NV5-DwMYMYsZyFWGXm-aYdmGfzGqd_PLZQPMU1QiyO9n6GmC16YnnIsaaKnMkNgB3k5Xd1v69ixKg9dUwhHEn_-Psb1Ad1kI4AkJmHQPTYbFpXuJbpsrwNriVVxvvwAYIzDS
  priority: 102
  providerName: Directory of Open Access Journals
Title Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of Chlamydia trachomatis during Treatment with β-Lactam Antimicrobials
URI https://www.ncbi.nlm.nih.gov/pubmed/33785629
https://journals.asm.org/doi/10.1128/mBio.00023-21
https://www.proquest.com/docview/3262235826
https://www.proquest.com/docview/2507670662
https://pubmed.ncbi.nlm.nih.gov/PMC8092193
https://doaj.org/article/1f21d46625f04f0eb17183c2f20ab571
Volume 12
WOSCitedRecordID wos000643634500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journals
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331830
  issn: 2150-7511
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331830
  issn: 2150-7511
  databaseCode: M7P
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331830
  issn: 2150-7511
  databaseCode: BENPR
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331830
  issn: 2150-7511
  databaseCode: 8C1
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2150-7511
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331830
  issn: 2150-7511
  databaseCode: PIMPY
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLZYBxI3_MMKozICcYW3xPlxfIW6ahVIW1VNQypXkRPbLNKSbG2G6JPwHjwIz8Q5TtpRxLjh1rEiO-fz8eeT4-8Q8iaLgthoGTDh-ZaFwBCYtMqwAOizzFBgq7X0kZhMktlMTruA26JLq1z5ROeodZ1jjHwfaAZ31zrj9xeXDKtG4d_VroTGFtn2uRfiwkxG_jrG4gWIWAyzcCA2DLy0XMls8mS_zIp6zwm-MFQK7alFyTd2Jyfi_zfm-WcC5W870vj-_87lAbnXcVE6bMHzkNwy1SNyp61OuXxMvp-0derBcrS2FJgiPYb1D_6y0nNoZGPVNEs6zAtNh9-KBQX-2_YyDUDrvMgp0Ps2_6uEHRJfMjoDBC4BkxRmhHVa8HIFbe9K0tNV0jvF6DD9-YMdqbxRJR1WTVEWTjIKVssT8ml8eDr6wLo6DkzBYbNhmbAmzrmfRXnEjSe0BpYiRBYnAAvfqCySnskSI2yordXCy4wAospVrnQsMhk8Jb2qrswOoUJmQuY-kAoRhiqIlDKRFxodWTyXyaBPXqMZ024hLlJ3xuFJWsLHS52xU-73ybuVldO8k0LHihznN3V_u-5-0WqA3NTxACGz7oTS3a6hnn9JO0-Q-pb7Oozh3Gm90MLEfaAHQc4t9-BLCHjJ7go019O4RkyfvFo_Bk-Av3dUZeqrRQpkVsQCFf375FmLz_VIgkAkwHRln4gN5G4MdfNJVZw5tfHEk7CrBc__PawX5C7HbB-8rentkl4zvzIvye38K6BoPiBbYpYM3OIckO2Dw8n0ZOCiHwPMtZ1C2_Tj8fTzL8L-R3I
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqBUQvvCkLBYx4nDBNnIfjA0LLwqpVtyuEFqm34Dh2G6lJym4K7C_hX3Dgh_CbmMljyyLKrQeuyShynHl848x8Q8iTJPBCk0qPCce1zAeEwKRVhnkAn2WCBFvNlx6LySTa35fv1sj3rhcGyyo7n1g76rTUeEa-BTCD122d4avjTwynRuHf1W6ERqMWu2bxBVK2-cudN_B9n3I-ejsdbrN2qgBTkPpULBHWhJq7SaADbhyRphAzhUjCCBbpGpUE0jFJZIT1U2tT4SRGAGziSqs0FAmSL4HLv4BMdpjsRUN3eabjeGgheKzDAUgxiAqyo_Xk0VaeZOWLmmCGITNpT81zvhIN66EBf0O6fxZs_hYBR1f_t727Rq60WJsOGuO4TtZMcYNcaqZvLm6Sb-_NQTu8jJaWAhKme-DfIB4U6QwuspGqqgUd6Cylg6_ZnAK-b6RMBaZzlGkK6UtT35YDAsCHDA_BwhZgcxR2EOfQYPMIbXpB6bQr6qd4-k1__mBjpSuV00FRZXlWU2KBN7hFPpzLrtwmvaIszB1ChUyE1C6AJuH7yguUMoHjmzSwmHdKr08eo9rEraOZx3UOx6M4h82La-WKudsnzzutinVL9Y4TR47OEn-2FD9uOE7OEnyNKroUQmry-kI5O4hbTxe7lrupH0JebR3fwou7AH88zS13YCcEPGSzU9LT1zjV0D55tLwNng5_X6nClCfzGMC6CAVOLOiTjcYelivxPBEBkpd9IlYsZWWpq3eK7LBmU48cCVHbu_vvZT0kl7ene-N4vDPZvUfWOVY2YWeqs0l61ezE3CcX9WfQqNmD2iVQ8vG87egXr9Wheg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+the+Mitochondrion-Fatty+Acid+Axis+for+the+Metabolic+Reprogramming+of+Chlamydia+trachomatis+during+Treatment+with+%CE%B2-Lactam+Antimicrobials&rft.jtitle=mBio&rft.au=Shima%2C+Kensuke&rft.au=Kaufhold%2C+Inga&rft.au=Eder%2C+Thomas&rft.au=K%C3%A4ding%2C+Nadja&rft.date=2021-03-30&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=12&rft.issue=2&rft_id=info:doi/10.1128%2FmBio.00023-21&rft.externalDocID=mBio00023-21
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon