Self-Powered Temperature Sensor with Seebeck Effect Transduction for Photothermal-Thermoelectric Coupled Immunoassay

A self-powered temperature sensor based on Seebeck effect transduction was designed for photothermal-thermoelectric coupled immunoassay of α-fetoprotein (AFP). In this system, glucose oxidase (GOx)-conjugated detection antibody was first captured onto the microplate by target-induced sandwich-type i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) Jg. 92; H. 3; S. 2809
Hauptverfasser: Huang, Lingting, Chen, Jialun, Yu, Zhonghua, Tang, Dianping
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 04.02.2020
Schlagworte:
ISSN:1520-6882, 1520-6882
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A self-powered temperature sensor based on Seebeck effect transduction was designed for photothermal-thermoelectric coupled immunoassay of α-fetoprotein (AFP). In this system, glucose oxidase (GOx)-conjugated detection antibody was first captured onto the microplate by target-induced sandwich-type immunoreaction. Thereafter, the as-generated hydrogen peroxide via the GOx-glucose system oxidized 3,3',5,5'-tetrametylbenzidine (TMB) into photothermal product oxidized TMB (ox-TMB). Under near-infrared (NIR) laser irradiation, the temperature change of ox-TMB was read out in an electrical signal by the flexible thermoelectric module in a 3D-printed integrated detection device. Under optimal conditions, the photothermal-thermoelectric coupled immunoassay exhibited a limit of detection of 0.39 ng mL AFP over a dynamic linear range from 0.5 to 60 ng mL . Impressively, such a strategy presented herein offers tremendous potentials for applying many other high-efficiency thermoelectric materials in ultrasensitive biosensors.
AbstractList A self-powered temperature sensor based on Seebeck effect transduction was designed for photothermal-thermoelectric coupled immunoassay of α-fetoprotein (AFP). In this system, glucose oxidase (GOx)-conjugated detection antibody was first captured onto the microplate by target-induced sandwich-type immunoreaction. Thereafter, the as-generated hydrogen peroxide via the GOx-glucose system oxidized 3,3',5,5'-tetrametylbenzidine (TMB) into photothermal product oxidized TMB (ox-TMB). Under near-infrared (NIR) laser irradiation, the temperature change of ox-TMB was read out in an electrical signal by the flexible thermoelectric module in a 3D-printed integrated detection device. Under optimal conditions, the photothermal-thermoelectric coupled immunoassay exhibited a limit of detection of 0.39 ng mL-1 AFP over a dynamic linear range from 0.5 to 60 ng mL-1. Impressively, such a strategy presented herein offers tremendous potentials for applying many other high-efficiency thermoelectric materials in ultrasensitive biosensors.A self-powered temperature sensor based on Seebeck effect transduction was designed for photothermal-thermoelectric coupled immunoassay of α-fetoprotein (AFP). In this system, glucose oxidase (GOx)-conjugated detection antibody was first captured onto the microplate by target-induced sandwich-type immunoreaction. Thereafter, the as-generated hydrogen peroxide via the GOx-glucose system oxidized 3,3',5,5'-tetrametylbenzidine (TMB) into photothermal product oxidized TMB (ox-TMB). Under near-infrared (NIR) laser irradiation, the temperature change of ox-TMB was read out in an electrical signal by the flexible thermoelectric module in a 3D-printed integrated detection device. Under optimal conditions, the photothermal-thermoelectric coupled immunoassay exhibited a limit of detection of 0.39 ng mL-1 AFP over a dynamic linear range from 0.5 to 60 ng mL-1. Impressively, such a strategy presented herein offers tremendous potentials for applying many other high-efficiency thermoelectric materials in ultrasensitive biosensors.
A self-powered temperature sensor based on Seebeck effect transduction was designed for photothermal-thermoelectric coupled immunoassay of α-fetoprotein (AFP). In this system, glucose oxidase (GOx)-conjugated detection antibody was first captured onto the microplate by target-induced sandwich-type immunoreaction. Thereafter, the as-generated hydrogen peroxide via the GOx-glucose system oxidized 3,3',5,5'-tetrametylbenzidine (TMB) into photothermal product oxidized TMB (ox-TMB). Under near-infrared (NIR) laser irradiation, the temperature change of ox-TMB was read out in an electrical signal by the flexible thermoelectric module in a 3D-printed integrated detection device. Under optimal conditions, the photothermal-thermoelectric coupled immunoassay exhibited a limit of detection of 0.39 ng mL AFP over a dynamic linear range from 0.5 to 60 ng mL . Impressively, such a strategy presented herein offers tremendous potentials for applying many other high-efficiency thermoelectric materials in ultrasensitive biosensors.
Author Huang, Lingting
Chen, Jialun
Yu, Zhonghua
Tang, Dianping
Author_xml – sequence: 1
  givenname: Lingting
  surname: Huang
  fullname: Huang, Lingting
  organization: Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education and Fujian Province, Department of Chemistry , Fuzhou University , Fuzhou 350108 , People's Republic of China
– sequence: 2
  givenname: Jialun
  surname: Chen
  fullname: Chen, Jialun
  organization: Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education and Fujian Province, Department of Chemistry , Fuzhou University , Fuzhou 350108 , People's Republic of China
– sequence: 3
  givenname: Zhonghua
  surname: Yu
  fullname: Yu, Zhonghua
  organization: Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education and Fujian Province, Department of Chemistry , Fuzhou University , Fuzhou 350108 , People's Republic of China
– sequence: 4
  givenname: Dianping
  orcidid: 0000-0002-0134-3983
  surname: Tang
  fullname: Tang, Dianping
  organization: Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education and Fujian Province, Department of Chemistry , Fuzhou University , Fuzhou 350108 , People's Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31939295$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxDAURoOMOA_9ByJduumYpK9kKcP4gAEHpq7LTXNLq21Tk5Rh_r0VR3B1vsXhW5wlmfWmR0JuGV0zytkDlG4NPbRljd1aKppwJi7IgiWchqkQfPZvz8nSuQ9KGaMsvSLziMlIcpksiD9gW4V7c0SLOsixG9CCHy0GB-ydscGx8fW0UWH5GWyrCksf5BZ6p8fSN6YPqkna18YbX6PtoA3zHxpsJ9M2ZbAx49BO369dN_YGnIPTNbmsoHV4c-aKvD9t881LuHt7ft087kKI49SHigmtBGZxBbHWEnSqSsVSVFXKAURFNYLQTNAEOJdMch5lqdQZ06BknAm-Ive_v4M1XyM6X3SNK7FtoUczuoJHkZyi8JhO6t1ZHVWHuhhs04E9FX-l-DeELHJz
CitedBy_id crossref_primary_10_1016_j_aca_2021_339054
crossref_primary_10_1016_j_compscitech_2024_110552
crossref_primary_10_1002_adma_202002640
crossref_primary_10_4155_ppa_2022_0046
crossref_primary_10_1016_j_arabjc_2021_103103
crossref_primary_10_1038_s41598_021_92020_6
crossref_primary_10_1111_jfpe_13946
crossref_primary_10_1039_D5NR01099C
crossref_primary_10_1016_j_trac_2024_117897
crossref_primary_10_1038_s41598_020_72494_6
crossref_primary_10_1007_s00604_020_04546_7
crossref_primary_10_1016_j_microc_2022_107755
crossref_primary_10_1016_j_mtchem_2020_100274
crossref_primary_10_1088_1367_2630_ac2e82
crossref_primary_10_1016_j_ab_2023_115370
crossref_primary_10_1007_s00604_025_07016_0
crossref_primary_10_1007_s10965_025_04494_x
crossref_primary_10_3390_biomimetics7040175
crossref_primary_10_1016_j_surfin_2023_103196
crossref_primary_10_1002_aisy_202400547
crossref_primary_10_1016_j_ab_2023_115224
crossref_primary_10_1007_s10470_022_02114_y
crossref_primary_10_1016_j_aca_2022_340424
crossref_primary_10_1109_JPHOT_2021_3075900
crossref_primary_10_1038_s41378_020_00236_9
crossref_primary_10_1002_smll_202405019
crossref_primary_10_1002_admt_202400968
crossref_primary_10_1021_acsaenm_5c00306
crossref_primary_10_1002_bab_2081
crossref_primary_10_1016_j_nanoen_2023_108611
crossref_primary_10_1016_j_apmt_2025_102665
crossref_primary_10_1371_journal_pone_0296398
crossref_primary_10_1016_j_talanta_2023_124876
crossref_primary_10_1007_s00216_020_02995_w
crossref_primary_10_1016_j_trac_2025_118471
crossref_primary_10_3390_s24196458
crossref_primary_10_1016_j_nanoen_2024_110045
crossref_primary_10_1021_acsaelm_5c00635
crossref_primary_10_1080_10408363_2021_1997898
crossref_primary_10_1016_j_cja_2022_04_005
crossref_primary_10_1002_adfm_202417205
crossref_primary_10_1002_admi_202400873
crossref_primary_10_1016_j_snb_2024_136264
crossref_primary_10_1016_j_bios_2020_112341
crossref_primary_10_1016_j_aca_2021_338680
crossref_primary_10_1016_j_ccr_2025_216957
crossref_primary_10_3390_molecules27196732
crossref_primary_10_1016_j_microc_2022_107723
crossref_primary_10_1109_JSEN_2023_3334868
crossref_primary_10_1016_j_microc_2023_109073
crossref_primary_10_1007_s40820_020_00469_3
crossref_primary_10_1016_j_bios_2020_112879
crossref_primary_10_1007_s00604_020_04277_9
crossref_primary_10_32604_biocell_2022_020570
crossref_primary_10_1063_5_0201860
crossref_primary_10_1016_j_trac_2024_118027
crossref_primary_10_1016_j_snb_2024_136056
crossref_primary_10_1002_cmdc_202200142
crossref_primary_10_1016_j_snb_2022_133222
crossref_primary_10_1016_j_snb_2022_132362
crossref_primary_10_1016_j_jallcom_2022_165066
crossref_primary_10_1016_j_jelechem_2021_115032
crossref_primary_10_2217_nnm_2020_0353
crossref_primary_10_1002_bio_4747
crossref_primary_10_1016_j_ccr_2021_214149
crossref_primary_10_1371_journal_pone_0321385
crossref_primary_10_1007_s00604_020_04687_9
crossref_primary_10_1016_j_snb_2020_129249
crossref_primary_10_3390_foods10102402
crossref_primary_10_1155_2021_7109383
crossref_primary_10_1111_1750_3841_17077
crossref_primary_10_1016_j_bios_2020_112646
crossref_primary_10_1002_bab_2092
crossref_primary_10_3390_bios12100830
crossref_primary_10_1016_j_electacta_2024_144094
crossref_primary_10_1016_j_bios_2020_112880
crossref_primary_10_1088_2057_1976_aba7ca
crossref_primary_10_1016_j_snb_2021_131059
crossref_primary_10_1007_s11274_025_04409_4
crossref_primary_10_1002_adfm_202212317
crossref_primary_10_1016_j_eurpolymj_2023_112367
crossref_primary_10_1088_1742_6596_2463_1_012015
crossref_primary_10_1016_j_aca_2023_341279
crossref_primary_10_1016_j_ijbiomac_2020_10_245
crossref_primary_10_1038_s41598_021_02022_7
crossref_primary_10_1007_s00216_020_02824_0
crossref_primary_10_1016_j_foodchem_2022_134883
crossref_primary_10_1016_j_aca_2020_08_026
crossref_primary_10_3390_coatings13010083
crossref_primary_10_1002_elan_202100212
crossref_primary_10_1002_elan_202100575
crossref_primary_10_1016_j_aca_2025_344101
crossref_primary_10_1016_j_snb_2024_137160
crossref_primary_10_1109_TNANO_2021_3072312
crossref_primary_10_1002_fsn3_2367
crossref_primary_10_1016_j_nanoen_2025_110805
crossref_primary_10_1016_j_jechem_2025_09_014
crossref_primary_10_1088_1361_6528_ac1f53
crossref_primary_10_3390_mi12101138
crossref_primary_10_1016_j_jallcom_2022_165949
crossref_primary_10_1016_j_bios_2022_114751
crossref_primary_10_1038_s41598_024_79581_y
crossref_primary_10_1007_s00449_020_02472_9
crossref_primary_10_1080_14328917_2022_2140784
crossref_primary_10_1016_j_microc_2023_109401
crossref_primary_10_1016_j_ccr_2023_215171
crossref_primary_10_1007_s13534_021_00208_6
crossref_primary_10_1016_j_cej_2023_141740
crossref_primary_10_1016_j_apsusc_2023_158212
crossref_primary_10_1016_j_rser_2025_116068
crossref_primary_10_1080_1061186X_2021_1894435
crossref_primary_10_1039_D4QM00213J
crossref_primary_10_1016_j_jelechem_2022_117035
crossref_primary_10_1016_j_microc_2024_111751
crossref_primary_10_1016_j_microc_2024_112043
crossref_primary_10_1016_j_talanta_2022_124052
crossref_primary_10_1039_D1NR00244A
crossref_primary_10_1016_j_talanta_2023_124458
crossref_primary_10_1016_j_talanta_2021_123001
crossref_primary_10_1002_admt_202301958
crossref_primary_10_1016_j_microc_2025_114291
crossref_primary_10_1016_j_bios_2025_117224
crossref_primary_10_1186_s11671_020_03428_4
crossref_primary_10_1002_flm2_12
crossref_primary_10_1109_JSEN_2021_3134677
crossref_primary_10_1016_j_foodres_2024_115532
crossref_primary_10_1016_j_microc_2022_108237
crossref_primary_10_1016_j_snb_2022_132841
crossref_primary_10_1007_s13233_021_9067_7
crossref_primary_10_1016_j_snb_2023_134885
crossref_primary_10_1016_j_nanoen_2024_109477
crossref_primary_10_1016_j_snb_2024_136643
crossref_primary_10_1016_j_aca_2025_343973
crossref_primary_10_1016_j_aca_2022_340383
crossref_primary_10_1021_acs_inorgchem_4c05083
crossref_primary_10_1002_ente_202100915
crossref_primary_10_1007_s00604_020_04466_6
crossref_primary_10_1016_j_trac_2021_116342
crossref_primary_10_1002_adsr_202300013
crossref_primary_10_1016_j_bios_2020_112855
crossref_primary_10_1016_j_jhazmat_2024_133871
crossref_primary_10_1016_j_bios_2020_112730
crossref_primary_10_1016_j_aca_2021_338215
crossref_primary_10_1111_jam_15233
crossref_primary_10_1016_j_ijbiomac_2020_03_093
crossref_primary_10_2174_0115734110282381240910183313
crossref_primary_10_1016_j_bios_2023_115267
crossref_primary_10_1039_D2AN00809B
crossref_primary_10_1016_j_fochx_2025_102322
crossref_primary_10_1002_adfm_202403562
crossref_primary_10_1016_j_talanta_2022_124058
crossref_primary_10_1002_bab_2224
crossref_primary_10_1016_j_bioelechem_2022_108096
crossref_primary_10_1016_j_aca_2025_344041
crossref_primary_10_1016_j_vacuum_2023_112386
crossref_primary_10_1016_j_trac_2024_117801
crossref_primary_10_1007_s13762_022_04280_y
crossref_primary_10_1016_j_jfca_2023_105472
crossref_primary_10_1002_open_202400252
crossref_primary_10_1007_s40820_020_00533_y
crossref_primary_10_1016_j_snb_2023_134430
crossref_primary_10_1002_admi_202201659
crossref_primary_10_1016_j_aca_2021_338283
crossref_primary_10_1016_j_aca_2022_339774
crossref_primary_10_1016_j_bios_2022_113975
crossref_primary_10_1002_elan_202100275
crossref_primary_10_1038_s41598_022_10765_0
crossref_primary_10_1016_j_jallcom_2025_183839
crossref_primary_10_1002_adfm_202406110
crossref_primary_10_1007_s10973_024_13677_5
crossref_primary_10_1016_j_mcp_2025_102034
crossref_primary_10_1016_j_aca_2021_339363
crossref_primary_10_1039_D4SD00058G
crossref_primary_10_1002_adma_202005940
crossref_primary_10_1016_j_apmt_2024_102451
crossref_primary_10_1016_j_talanta_2021_122995
crossref_primary_10_1007_s00216_020_03067_9
crossref_primary_10_1038_s41598_020_78829_7
crossref_primary_10_1016_j_bios_2022_114932
crossref_primary_10_1002_bio_4900
crossref_primary_10_1080_10826076_2021_1968896
crossref_primary_10_1002_elan_202060563
crossref_primary_10_1109_TNB_2021_3112534
crossref_primary_10_1016_j_cej_2025_159929
crossref_primary_10_1016_j_snb_2022_132089
crossref_primary_10_1021_acsomega_5c05652
crossref_primary_10_1002_anse_202100014
crossref_primary_10_1007_s00604_022_05350_1
crossref_primary_10_1016_j_snb_2021_130494
crossref_primary_10_1016_j_bios_2020_112493
crossref_primary_10_1080_10408347_2023_2197062
crossref_primary_10_1002_smll_202202564
crossref_primary_10_1002_adfm_202509853
crossref_primary_10_1016_j_talanta_2023_124951
crossref_primary_10_1080_14737159_2022_2117615
crossref_primary_10_1007_s00604_023_05941_6
crossref_primary_10_1016_j_sna_2025_116653
crossref_primary_10_1016_j_snb_2023_134428
crossref_primary_10_1021_acs_analchem_5c01314
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.analchem.9b05218
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
ExternalDocumentID 31939295
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
.K2
23M
4.4
53G
55A
5GY
5RE
5VS
6J9
7~N
85S
AABXI
AAHBH
ABHFT
ABHMW
ABJNI
ABMVS
ABOCM
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACKOT
ACNCT
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CGR
CS3
CUPRZ
CUY
CVF
D0L
EBS
ECM
ED~
EIF
F5P
GGK
GNL
IH9
IHE
JG~
KZ1
LMP
NPM
P2P
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X6Y
XSW
YIN
YZZ
ZCA
~02
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a446t-b18db8e74fa4dd9ad6bcb16ebf62aa8f0dea8d1805a22919223769d71dab94782
IEDL.DBID 7X8
ISICitedReferencesCount 286
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000511509400061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-6882
IngestDate Thu Jul 10 23:51:10 EDT 2025
Wed Feb 19 02:29:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a446t-b18db8e74fa4dd9ad6bcb16ebf62aa8f0dea8d1805a22919223769d71dab94782
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0134-3983
PMID 31939295
PQID 2339001240
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2339001240
pubmed_primary_31939295
PublicationCentury 2000
PublicationDate 2020-02-04
PublicationDateYYYYMMDD 2020-02-04
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal Chem
PublicationYear 2020
SSID ssj0011016
Score 2.6833878
Snippet A self-powered temperature sensor based on Seebeck effect transduction was designed for photothermal-thermoelectric coupled immunoassay of α-fetoprotein (AFP)....
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2809
SubjectTerms alpha-Fetoproteins - analysis
Biosensing Techniques - instrumentation
Electrochemical Techniques - instrumentation
Immunoassay - instrumentation
Photochemical Processes
Temperature
Title Self-Powered Temperature Sensor with Seebeck Effect Transduction for Photothermal-Thermoelectric Coupled Immunoassay
URI https://www.ncbi.nlm.nih.gov/pubmed/31939295
https://www.proquest.com/docview/2339001240
Volume 92
WOSCitedRecordID wos000511509400061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UCurBR33VFyt4TU3SzWNPIsWioCXQCr2V3ewGi222Nqngv3cmD-pFELwkuWQJs5vZ79uZ-YaQGyfxgiBOXItxJi2mY_CDGEKMvUAzARuurQp1_eeg3w9HIx5VB25ZlVZZ-8TCUSsT4xn5rdsBdg7elNl38w8Lu0ZhdLVqobFOGh2AMpjSFYxWUQRkpoVeKlIkgJJ16Zzr3Io4awuYKrDMrM0llrCGv4PMYrPp7f33M_fJbgUz6X25Lg7Imk6bZKtbd3drkp0fQoSHJB_oaWJF2DFNKzrUgKVLrWU6AJprFhSPa-EZ5-KdlorHtNjmVKk-SwH70ujN5EVB10xMrSHeTdllZxLTrlnOpzD2E9ajGEDs4uuIvPYeht1Hq-rHYAkgjbklnVDJUAcsEUwpLpQvY-n4Wia-K0SY2EqLUDmh7QnX5QAdMeOGq8BRQnIGUOSYbKQm1aeE-hxzV5n0kwAIum_DED4XGtgmrB0tvBa5rs07BsNgEEOk2iyz8crALXJSztF4XgpzjMGdINzzzv7w9jnZdpE6YwI2uyCNBP52fUk24898ki2uioUE13708g0jidWU
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Powered+Temperature+Sensor+with+Seebeck+Effect+Transduction+for+Photothermal-Thermoelectric+Coupled+Immunoassay&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Huang%2C+Lingting&rft.au=Chen%2C+Jialun&rft.au=Yu%2C+Zhonghua&rft.au=Tang%2C+Dianping&rft.date=2020-02-04&rft.issn=1520-6882&rft.eissn=1520-6882&rft.volume=92&rft.issue=3&rft.spage=2809&rft_id=info:doi/10.1021%2Facs.analchem.9b05218&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6882&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6882&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6882&client=summon