Comb polymers prepared by ATRP from hydroxypropyl cellulose
Hydroxypropyl cellulose (HPC) was used as a core molecule for controlled grafting of monomers by ATRP, the aim being to produce densely grafted comb polymers. HPC was either allowed to react with an ATRP initiator or the first generation initiator-functionalized 2,2-bis(methylol)propionic acid dendr...
Uložené v:
| Vydané v: | Biomacromolecules Ročník 8; číslo 4; s. 1138 - 1148 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
WASHINGTON
Amer Chemical Soc
01.04.2007
|
| Predmet: | |
| ISSN: | 1525-7797, 1526-4602 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Hydroxypropyl cellulose (HPC) was used as a core molecule for controlled grafting of monomers by ATRP, the aim being to produce densely grafted comb polymers. HPC was either allowed to react with an ATRP initiator or the first generation initiator-functionalized 2,2-bis(methylol)propionic acid dendron to create macroinitiators having high degrees of functionality. The macroinitiators were then "grafted from" using ATRP of methyl methacrylate (MMA) or hexadecyl methacrylate. Block copolymers were obtained by chain extending PMMA-grafted HPCs via the ATRP of tert-butyl acrylate. Subsequent selective acidolysis of the tert-butyl ester moieties was performed to form a block of poly(acrylic acid) resulting in amphiphilic block copolymer grafts. The graft copolymers were characterized by H-1 NMR and FT-IR spectroscopies, DSC, TGA, rheological measurements, DLS, and tapping mode AFM on samples spin coated upon mica. It was found that the comb (co)polymers were in the nanometer size range and that the dendronization had an interesting effect on the rheological properties. |
|---|---|
| Bibliografia: | Medline NIH RePORTER ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1525-7797 1526-4602 |
| DOI: | 10.1021/bm061043w |