Projection-Based Clustering through Self-Organization and Swarm Intelligence: Combining Cluster Analysis with the Visualization of High-Dimensional Data
Cluster Analysis; Dimensionality Reduction; Swarm Intelligence; Visualization; Unsupervised Machine Learning; Data Science; Knowledge Discovery; 3D Printing; Self-Organization; Emergence; Game Theory; Advanced Analytics; High-Dimensional Data; Multivariate Data; Analysis of Structured Data
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Format: | E-Book |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer Nature
2018
Springer Open Springer Gabler. in Springer Fachmedien Wiesbaden GmbH Springer Vieweg. in Springer Fachmedien Wiesbaden GmbH Springer |
| Ausgabe: | 1 |
| Schlagworte: | |
| ISBN: | 3658205407, 9783658205409, 3658205393, 9783658205393 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Cluster Analysis; Dimensionality Reduction; Swarm Intelligence; Visualization; Unsupervised Machine Learning; Data Science; Knowledge Discovery; 3D Printing; Self-Organization; Emergence; Game Theory; Advanced Analytics; High-Dimensional Data; Multivariate Data; Analysis of Structured Data |
|---|---|
| AbstractList | Cluster Analysis; Dimensionality Reduction; Swarm Intelligence; Visualization; Unsupervised Machine Learning; Data Science; Knowledge Discovery; 3D Printing; Self-Organization; Emergence; Game Theory; Advanced Analytics; High-Dimensional Data; Multivariate Data; Analysis of Structured Data This open access book covers aspects of unsupervised machine learning used for knowledge discovery in data science and introduces a data-driven approach to cluster analysis, the Databionic swarm (DBS). DBS consists of the 3D landscape visualization and clustering of data. The 3D landscape enables 3D printing of high-dimensional data structures. The clustering and number of clusters or an absence of cluster structure are verified by the 3D landscape at a glance. DBS is the first swarm-based technique that shows emergent properties while exploiting concepts of swarm intelligence, self-organization and the Nash equilibrium concept from game theory. It results in the elimination of a global objective function and the setting of parameters. By downloading the R package DBS can be applied to data drawn from diverse research fields and used even by non-professionals in the field of data mining. This open access book covers aspects of unsupervised machine learning used for knowledge discovery in data science and introduces a data-driven approach to cluster analysis, the Databionic swarm (DBS). DBS consists of the 3D landscape visualization and clustering of data. The 3D landscape enables 3D printing of high-dimensional data structures. The clustering and number of clusters or an absence of cluster structure are verified by the 3D landscape at a glance. DBS is the first swarm-based technique that shows emergent properties while exploiting concepts of swarm intelligence, self-organization and the Nash equilibrium concept from game theory. It results in the elimination of a global objective function and the setting of parameters. By downloading the R package DBS can be applied to data drawn from diverse research fields and used even by non-professionals in the field of data mining. |
| Author | Christoph Thrun, Michael |
| Author_xml | – sequence: 1 fullname: Christoph Thrun, Michael |
| BookMark | eNqNkU1v1DAQhoP4ELRUnBE9-ICEOAQcf8R2JQ7tttBKVRepqFfLScZZt1672Nmtyi_h55L9KPSIfLBm5vE743l3imchBiiKtxX-VGEsPishS1rWXJYEc4ZL9aTYoWO4jsTTx8GL4s10cnGAKlwpKQin-GWxl_M1xusErumr4vf3FK-hHVwM5ZHJ0KGJX-QBkgs9GmYpLvoZugRvy2nqTXC_zApFJnTo8s6kOToLA3jveggtHKBJnDcurN5uZdBhMP4-u4zu3DAbFQFdubww_kEpWnTq-ll57OYQ8pgxHh2bwbwunlvjM-xt793i6uvJj8lpeT79djY5PC8NY0zyErqOtaI2vLKVUEJgK1TLLLcgbCe7itYNZmOp4YZY1tSsYtQq3NQSmo5TS3cLvRFuXONdbKJJnY63EBJkMKmdedckk-51NE4_Zto4162tjFXMaCmV1cwwqyWplGYWAzF2PG0zdni_6RCXkLrklqCbGG-ynh5fjFaMrhIp5Yh93GAm38BdnkU_ZL30sGFH3_86q0b2w4a9TfHnAvKg11gLYUjG65OjSc0IEbT-D5JzpZhakftbEpKHPm6HJJRKSlblL9tfmHE5-ja5-cNW_m1oVYmp1wRrjrGuSM2FJkLQ1cjvHr_votnoU0YFp38ANenlFA |
| ContentType | eBook |
| Copyright | https://creativecommons.org/licenses/by/4.0/legalcode |
| Copyright_xml | – notice: https://creativecommons.org/licenses/by/4.0/legalcode |
| DBID | V1H A7I YSPEL AHRNR BIANM |
| DOI | 10.1007/978-3-658-20540-9 |
| DatabaseName | DOAB: Directory of Open Access Books OAPEN Perlego OverDrive Ebooks Open Research Library (Open Access) |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: V1H name: DOAB: Directory of Open Access Books url: https://directory.doabooks.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Mathematics |
| EISBN | 3658205407 9783658205409 |
| Edition | 1 1st ed. 2018. |
| ExternalDocumentID | oai_biblioboard_com_cf1af94a_889f_4a4f_8219_4f0e2afafacb ODN0010072888 9783658205409 EBC6422736 EBC5599496 2338326 oai_library_oapen_org_20_500_12657_27739 34375 |
| Genre | Electronic books |
| GroupedDBID | 0D6 0DA 38. A7I AABBV AAKKN AALJR AAQKC ABEEZ ABFTD ABPUQ ACBYE ACOUV ADIEE ADOGT ADOJN AEJLV AEKFX AEZAY AGWHU AHRNR AIQUZ ALMA_UNASSIGNED_HOLDINGS ALNDD ANXHU AZZ BBABE BIANM BICGV BJAWL BUBNW CVGDX CZZ EIXGO FOYMO IEZ NQNQZ OEBZI PYIOH SBO TPJZQ V1H YSPEL Z7R Z7X Z81 Z83 Z84 Z85 Z88 |
| ID | FETCH-LOGICAL-a44485-edd4c76a51f179770f79c4f5fe7fd8d136b04f17b5a2f4b64143f90b68ebd53f3 |
| IEDL.DBID | A7I |
| ISBN | 3658205407 9783658205409 3658205393 9783658205393 |
| IngestDate | Tue Dec 02 16:38:02 EST 2025 Fri Jul 04 04:35:15 EDT 2025 Sun Jun 08 03:49:20 EDT 2025 Tue Jun 10 23:42:40 EDT 2025 Fri May 30 23:02:43 EDT 2025 Tue Dec 02 16:07:01 EST 2025 Mon Dec 01 21:19:36 EST 2025 Wed Oct 08 01:16:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCallNum_Ident | Q337.5TK7882.P3QA76. |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a44485-edd4c76a51f179770f79c4f5fe7fd8d136b04f17b5a2f4b64143f90b68ebd53f3 |
| Notes | Electronic reproduction. Dordrecht: Springer Vieweg, 2018. Requires the Libby app or a modern web browser. MODID-eea0d14d732:Springer Open |
| OCLC | OCN: 1019872530 1019872530 1076259214 1231610904 |
| OpenAccessLink | http://library.oapen.org/handle/20.500.12657/27739 |
| PQID | EBC5599496 |
| PageCount | 210 |
| ParticipantIDs | biblioboard_openresearchlibrary_oai_biblioboard_com_cf1af94a_889f_4a4f_8219_4f0e2afafacb overdrive_books_ODN0010072888 askewsholts_vlebooks_9783658205409 proquest_ebookcentral_EBC6422736 proquest_ebookcentral_EBC5599496 perlego_books_2338326 oapen_primary_oai_library_oapen_org_20_500_12657_27739 oapen_doabooks_34375 |
| PublicationCentury | 2000 |
| PublicationDate | 2018 2018-01-09 2018. 2018-01-01T00:00:00Z |
| PublicationDateYYYYMMDD | 2018-01-01 2018-01-09 |
| PublicationDate_xml | – year: 2018 text: 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Wiesbaden |
| PublicationYear | 2018 |
| Publisher | Springer Nature Springer Open Springer Gabler. in Springer Fachmedien Wiesbaden GmbH Springer Vieweg. in Springer Fachmedien Wiesbaden GmbH Springer |
| Publisher_xml | – name: Springer Nature – name: Springer Open – name: Springer Gabler. in Springer Fachmedien Wiesbaden GmbH – name: Springer Vieweg. in Springer Fachmedien Wiesbaden GmbH – name: Springer |
| SSID | ssj0001987063 |
| Score | 2.3448634 |
| Snippet | Cluster Analysis; Dimensionality Reduction; Swarm Intelligence; Visualization; Unsupervised Machine Learning; Data Science; Knowledge Discovery; 3D Printing;... This open access book covers aspects of unsupervised machine learning used for knowledge discovery in data science and introduces a data-driven approach to... |
| SourceID | biblioboard overdrive askewsholts proquest perlego oapen |
| SourceType | Open Access Repository Aggregation Database Publisher |
| SubjectTerms | 3D Printing Advanced Analytics Analysis of Structured Data Cluster Analysis Computer Technology Data Science Dimensionality Reduction Emergence Game Theory High-Dimensional Data Knowledge Discovery Mathematics Mathematics and Science Multivariate Data Nonfiction Self-Organization Swarm Intelligence Unsupervised Machine Learning Visualization |
| SubjectTermsDisplay | Computer Technology. Electronic books. Nonfiction. |
| TableOfContents | 6.1.7 Mean Relative Rank Error (MRRE) and the Co-ranking Matrix -- 6.1.8 Precision and Recall -- 6.1.9 Rescaled Average Agreement Rate (RAAR) -- 6.1.10 Stress and the Shepard Diagram -- 6.1.11 Topographic Product -- 6.1.12 Topographic Function (TF) -- 6.1.13 Trustworthiness and Discontinuity (T& -- D) -- 6.1.14 U-ranking -- 6.1.15 Overall Correlations: Topological Index (TI) and Topological Correlation (TC) -- 6.1.16 Zrehen's Measure -- 6.2 Types of Quality Measures for Assessing Structure Preservation -- 6.2.1 Theoretical Assessment of Quality Measures -- 6.2.2 Practical Assessment of Quality Measures -- 6.3 Introducing the Delaunay Classification Error (DCE) -- 6.3.1 Summary -- 7 Behavior-based Systems in Data Science -- 7.1 Artificial Behavior Based on DataBots -- 7.1.1 Swarm-Organized Projection (SOP) -- 7.2 Swarm Intelligence for Unsupervised Machine Learning -- 7.3 Missing Links: Emergence and Game Theory -- 8 Databionic Swarm (DBS) -- 8.1 Projection with Pswarm -- 8.1.1 Motivation: Game Theory -- 8.1.2 Symmetry Considerations -- 8.1.3 Algorithm -- 8.1.4 Data-driven Annealing Scheme -- 8.1.5 Annealing Interval -- 8.1.6 Convergence -- 8.2 Comparing Pswarm with a Previously Developed Approach -- 8.2.1 Neighborhood Definition -- 8.2.2 Annealing Scheme -- 8.2.3 Swarm Intelligence and Self-Organization -- 8.3 Clustering on a Generalized U*-Matrix -- 9 Experimental Methodology -- 9.1 Data Sets -- 9.1.1 Atom -- 9.1.2 Chainlink -- 9.1.3 EngyTime -- 9.1.4 Golf Ball -- 9.1.5 Hepta -- 9.1.6 Iris -- 9.1.7 Leukemia -- 9.1.8 Lsun3D -- 9.1.9 S-shape -- 9.1.10 Swiss Banknotes -- 9.1.11 Target -- 9.1.12 Tetra -- 9.1.13 Tetragonula -- 9.1.14 Cuboid -- 9.1.15 Two Diamonds -- 9.1.16 Wine -- 9.1.17 Wing Nut -- 9.1.18 World Gross Domestic Product (World GDP) -- 9.2 Parameter Settings -- 9.2.1 Quality Measures (QMs) -- 9.2.2 Projection Methods Intro -- Acknowledgments -- Table of contents -- List of figures -- List of tables -- Zusammenfassung -- Abstract -- 1 Introduction -- 2 Fundamentals -- 2.1 Basic Definitions -- 2.2 Concepts of Graph Theory Applied to Patterns -- 2.3 Overview of Knowledge Discovery -- 2.3.1 Feature Selection -- 2.3.2 Preprocessing -- 2.3.3 Feature Extraction -- 2.3.3.1 Transformations -- 2.3.3.2 Dimensionality Reduction -- 2.3.4 Cluster Analysis -- 2.3.5 An Approach to Knowledge Acquisition -- 3 Approaches to Cluster Analysis -- 3.1 Common Clustering Methods -- 3.2 Structure of Natural Clusters -- 3.2.1 Types of Structures Sought by Clustering Algorithms -- 3.2.2 Quality of Clustering -- 3.2.2.1 Heatmaps -- 3.2.2.2 Silhouette plots -- 3.3 Problems with Clustering Methods -- 4 Methods of Projection -- 4.1 Common Approaches -- 4.1.1 Principal Component Analysis (PCA) -- 4.1.2 Independent Component Analysis (ICA) -- 4.1.3 Non-linear metric multidimensional scaling (MDS) techniques -- 4.1.4 Curvilinear Component Analysis (CCA) -- 4.1.5 t-Distributed Stochastic Neighbor Embedding (t-SNE) -- 4.1.6 Neighborhood Retrieval Visualizer (NeRV) -- 4.2 Emergent Self-Organizing Map (ESOM) -- 4.2.1 Visualizations of SOMs -- 4.2.2 Clustering with ESOM -- 4.3 Types of Projection Methods -- 5 Visualizing the Output Space -- 5.1 Examples -- 5.2 Structure Preservation -- 5.3 Generating a Topographic Map from the Generalized U*-matrix -- 5.3.1 Simplified ESOM -- 5.3.2 U*-Matrix Calculation -- 5.3.3 Topographic Map with Hypsometric Tints -- 5.3.4 Limitations -- 6 Quality Assessments of Visualizations -- 6.1 Common Quality Measures (QMs) -- 6.1.1 Classification Error (CE) -- 6.1.2 C Measure -- 6.1.3 Two Variants of the C Measure: Minimal Path Length and Minimal Wiring -- 6.1.4 Force Approach Error -- 6.1.5 König's Measure -- 6.1.6 Local Continuity Meta-Criterion (LCMC) 9.2.2.1 Swarm-Organized Projection (SOP) -- 9.2.2.2 Pswarm -- 9.2.3 Common clustering algorithms -- 9.3 Gene Ontology (GO) -- 9.3.1 Overrepresentation Analysis (ORA) -- 9.3.2 Filtering via ABC Analysis -- 10 Results on Pre-classified Data Sets -- 10.1 Comparison with Given Classifications -- 10.1.1 Recognition of the Absence of Clusters -- 10.2 Evaluation of Projections Using the Delaunay Classification Error (DCE) -- 10.3 Topographic Maps with Hypsometric Colors -- 11 DBS on Natural Data Sets -- 11.1 Types of Leukemia -- 11.2 World Gross Domestic Product (World GDP) -- 11.3 Tetragonula Bees -- 12 Knowledge Discovery with DBS -- 12.1 Hydrology -- 12.1.1 Knowledge Acquisition and Prediction in the Hydrology Data Set -- 12.2 Pain Genes -- 12.2.1 Prior Knowledge -- 12.2.2 Knowledge Acquisition in Clusters of Pain Genes -- 13 Discussion -- 14 Conclusion -- References -- Appendices -- Supplement A: Evaluation of Common QMs -- Supplement B: Wine Dataset Distance Distribution -- Supplement C: Generalized Umatrix of Pswarm and SOP -- Supplement D: DBS Visualizations of S-shape and uniform Cuboid -- Supplement E: U-Matrix Visualizations of ESOM Projections -- Supplement F: Statistical Tests in Hydrology -- Supplement G: 3D Prints of Generalized Umatrix Visualizations of DBS -- Supplement H: Contingency Table for Tetragonula Bees Clustering -- Index |
| Title | Projection-Based Clustering through Self-Organization and Swarm Intelligence: Combining Cluster Analysis with the Visualization of High-Dimensional Data |
| URI | https://directory.doabooks.org/handle/20.500.12854/34375 http://library.oapen.org/handle/20.500.12657/27739 https://www.perlego.com/book/2338326/projectionbased-clustering-through-selforganization-and-swarm-intelligence-combining-cluster-analysis-with-the-visualization-of-highdimensional-data-pdf https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5599496 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6422736 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783658205409 http://link.overdrive.com/?titleID=10072888&websiteID= https://openresearchlibrary.org/viewer/cf1af94a-889f-4a4f-8219-4f0e2afafacb |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED-6drDlpVvbMW_rEGOvKv4jW9Le1qSlhZEVOkLehCRLLDSLS5K2X6UfdyfZaV0GeygGg33mJPvOp7uT9DuAr9aiD51hWCJZyih6xJIKZiRFe8xLa0yamYiu_4OPx2I6lRdbkD9NXRw1GoP5OJHfgg1gjH5UpgELocIIPue8kC9gp8pzGbT6Oz9_zKvIMHMXyjcUOLjmwSPhLdDOw7XczG52ALMFRQqNJIqe5kCvrtDAoPFZr_DKzMx81pgGBRaKIoWODeBVWF9ZL9Egod987ZYY4jf_WPM4RJ3uPufl3sCOC5sd3sKWW-zB7qbEA-n--D0Y9PAK9-H-os3boCzpMQ5_NRnObwLSAlJJV_GHXLq5p_0tngSbJ5d3evmHnPcAQL8RbM7E-hQbNmQDkUJCehg5OjKZrcK2z45T40lYmEJHoSZBiydCRnqtD2ByevJreEa70g5UMwwIS-rqmlle6TLzaBI4Tz2XlvnSO-5rUWdFZVKGJFPq3DNTMfTrvExNJZypy8IX72B70SzceyA2Y54xJ4M1YbbQmntrvfW-LtGCOZbAl55E1e08TkOv1BOVSGDaE7QKpcs6tKXfndhUAOLuP4MWQVmfaS-ZVkJIr5hmXgkcAxTzqcu1x8OaBPajxFXd6LblghW8TKBqb1-3sCKR_2NbgYIqovJUoW6oqBsq6kYChw_ap1qGP0fjENynPBdCJHDQaWRHzUMaIq8SIBv9VPETdMt_1cnxMODOMfnfRzBQRVe3-vDcbn-E1-hsijZ99Qm218sbdwgv7e16tlp-jj8xnifZ2V_L7keL |
| linkProvider | Open Access Publishing in European Networks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Projection-Based+Clustering+through+Self-Organization+and+Swarm+Intelligence%3A+Combining+Cluster+Analysis+with+the+Visualization+of+High-Dimensional+Data&rft.au=Christoph+Thrun%2C+Michael&rft.date=2018-01-01&rft.pub=Springer+Nature&rft.isbn=9783658205409&rft_id=info:doi/10.1007%2F978-3-658-20540-9&rft.externalDBID=A7I&rft.externalDocID=oai_library_oapen_org_20_500_12657_27739 |
| thumbnail_l | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.perlego.com%2Fbooks%2FRM_Books%2Fopen_research_library_iudilif%2F9783658205393.jpg |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97836582%2F9783658205409.jpg |

