Genotyping technologies for genetic research

The past few years have seen enormous advances in genotyping technology, including chips that accommodate in excess of 1 million SNP assays. In addition, the cost per genotype has been driven down to levels unimagined only a few years ago. These developments have resulted in an explosion of positive...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Annual review of genomics and human genetics Ročník 10; s. 117
Hlavný autor: Ragoussis, Jiannis
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.09.2009
Predmet:
ISSN:1545-293X, 1545-293X
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The past few years have seen enormous advances in genotyping technology, including chips that accommodate in excess of 1 million SNP assays. In addition, the cost per genotype has been driven down to levels unimagined only a few years ago. These developments have resulted in an explosion of positive whole-genome association studies and the identification of many new genes for common diseases. Here I review high-throughput genotyping platforms as well as other approaches for lower numbers of assays but high sample throughput, which play an important role in genotype validation and study replication. Further, the utility of SNP arrays for detecting structural variation through the development of genotyping algorithms is reviewed and methods for long-range haplotyping are presented. It is anticipated that in the future, sample throughput and cost savings will be increased further through the combination of automation, microfluidics, and nanotechnologies.
AbstractList The past few years have seen enormous advances in genotyping technology, including chips that accommodate in excess of 1 million SNP assays. In addition, the cost per genotype has been driven down to levels unimagined only a few years ago. These developments have resulted in an explosion of positive whole-genome association studies and the identification of many new genes for common diseases. Here I review high-throughput genotyping platforms as well as other approaches for lower numbers of assays but high sample throughput, which play an important role in genotype validation and study replication. Further, the utility of SNP arrays for detecting structural variation through the development of genotyping algorithms is reviewed and methods for long-range haplotyping are presented. It is anticipated that in the future, sample throughput and cost savings will be increased further through the combination of automation, microfluidics, and nanotechnologies.The past few years have seen enormous advances in genotyping technology, including chips that accommodate in excess of 1 million SNP assays. In addition, the cost per genotype has been driven down to levels unimagined only a few years ago. These developments have resulted in an explosion of positive whole-genome association studies and the identification of many new genes for common diseases. Here I review high-throughput genotyping platforms as well as other approaches for lower numbers of assays but high sample throughput, which play an important role in genotype validation and study replication. Further, the utility of SNP arrays for detecting structural variation through the development of genotyping algorithms is reviewed and methods for long-range haplotyping are presented. It is anticipated that in the future, sample throughput and cost savings will be increased further through the combination of automation, microfluidics, and nanotechnologies.
The past few years have seen enormous advances in genotyping technology, including chips that accommodate in excess of 1 million SNP assays. In addition, the cost per genotype has been driven down to levels unimagined only a few years ago. These developments have resulted in an explosion of positive whole-genome association studies and the identification of many new genes for common diseases. Here I review high-throughput genotyping platforms as well as other approaches for lower numbers of assays but high sample throughput, which play an important role in genotype validation and study replication. Further, the utility of SNP arrays for detecting structural variation through the development of genotyping algorithms is reviewed and methods for long-range haplotyping are presented. It is anticipated that in the future, sample throughput and cost savings will be increased further through the combination of automation, microfluidics, and nanotechnologies.
Author Ragoussis, Jiannis
Author_xml – sequence: 1
  givenname: Jiannis
  surname: Ragoussis
  fullname: Ragoussis, Jiannis
  email: ioannis.ragoussis@well.ox.ac.uk
  organization: Genomics Laboratory, Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom. ioannis.ragoussis@well.ox.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19453250$$D View this record in MEDLINE/PubMed
BookMark eNpNj8tKxDAYhYOMOBd9BSkIrozmnmYpg47CgBsFdyWNfzuVNhmTVpi3N-AIrs5ZfJzLEs188IDQFSW3lAp1Z72fInzjFnwYMCmZISWmklCqTtCCSiExM_x99s_P0TKlT0JIWQpyhubUCMmZJAt0s8kp42Hf-bYYwe186EPbQSqaEIvcAGPniggJbHS7c3Ta2D7BxVFX6O3x4XX9hLcvm-f1_RZbIdiIVd4CRmvQWmkCNTPgGpOtoY7VTCkqHeF5TG0oN5ZwkxnhuOQcjNMNW6Hr39x9DF8TpLEauuSg762HMKVKacUYMWUGL4_gVA_wUe1jN9h4qP7-sR-CdVbs
CitedBy_id crossref_primary_10_1038_s41576_020_0257_5
crossref_primary_10_1016_j_gene_2018_06_009
crossref_primary_10_1007_s12033_016_9915_4
crossref_primary_10_1007_s11914_017_0342_7
crossref_primary_10_1016_S2095_3119_18_62023_4
crossref_primary_10_1146_annurev_genom_091212_153520
crossref_primary_10_1016_j_tig_2010_03_005
crossref_primary_10_3390_ani10040566
crossref_primary_10_1080_14737159_2023_2224504
crossref_primary_10_1016_j_jia_2023_07_033
crossref_primary_10_1111_j_1467_7652_2012_00712_x
crossref_primary_10_3390_cells12010103
crossref_primary_10_4103_0022_3859_186390
crossref_primary_10_1016_j_watbs_2021_11_001
crossref_primary_10_1093_exposome_osae001
crossref_primary_10_1016_j_ab_2013_01_007
crossref_primary_10_1016_j_jbiotec_2011_05_017
crossref_primary_10_1093_bib_bbv058
crossref_primary_10_1093_jxb_ert365
crossref_primary_10_3389_fgene_2019_00034
crossref_primary_10_1016_j_fsi_2019_02_041
crossref_primary_10_1016_j_immuni_2010_09_014
crossref_primary_10_1101_gr_115402_110
crossref_primary_10_1208_s12248_013_9535_x
crossref_primary_10_3390_ijms12063966
crossref_primary_10_1038_mp_2012_58
crossref_primary_10_1155_2012_831460
crossref_primary_10_1371_journal_pone_0102544
crossref_primary_10_1111_j_1755_0998_2010_02954_x
crossref_primary_10_1002_tpg2_20327
crossref_primary_10_1080_00049158_2011_10676342
crossref_primary_10_1002_smll_201202242
crossref_primary_10_1016_j_ocl_2011_07_011
crossref_primary_10_1038_oby_2010_349
crossref_primary_10_1534_g3_112_004069
crossref_primary_10_3892_br_2014_272
crossref_primary_10_1002_chem_201202621
crossref_primary_10_1007_s10096_019_03515_0
crossref_primary_10_1038_jhg_2010_55
crossref_primary_10_1016_j_ygeno_2011_04_005
crossref_primary_10_1016_j_scitotenv_2018_08_370
crossref_primary_10_1039_C5CC03921E
crossref_primary_10_3389_fpls_2021_747886
crossref_primary_10_1002_ece3_70335
crossref_primary_10_1016_j_ijrobp_2010_02_005
crossref_primary_10_1146_annurev_med_091708_162036
crossref_primary_10_1002_cbic_201000287
crossref_primary_10_1002_mco2_315
crossref_primary_10_3390_ijms26167688
crossref_primary_10_1016_j_jacc_2010_06_022
crossref_primary_10_1371_journal_pone_0019206
crossref_primary_10_1111_j_1467_7652_2012_00725_x
crossref_primary_10_1128_JCM_01156_15
crossref_primary_10_1586_epr_13_7
crossref_primary_10_1111_j_1600_079X_2010_00773_x
crossref_primary_10_1038_mp_2009_141
crossref_primary_10_1038_nrclinonc_2012_48
crossref_primary_10_1111_ene_12981
crossref_primary_10_3390_ijms15057699
crossref_primary_10_1002_etc_403
crossref_primary_10_1186_1471_2164_12_116
crossref_primary_10_1002_chem_201002848
crossref_primary_10_1002_sim_5540
crossref_primary_10_1016_j_sna_2012_07_025
crossref_primary_10_1111_j_1095_8649_2010_02828_x
crossref_primary_10_1016_j_snb_2015_01_092
crossref_primary_10_1093_molbev_msq154
crossref_primary_10_1007_s00439_010_0920_6
crossref_primary_10_1016_j_fsi_2025_110533
crossref_primary_10_1007_s00439_011_1118_2
crossref_primary_10_3390_ijms17101714
crossref_primary_10_1016_j_jmoldx_2014_04_004
crossref_primary_10_1016_j_genrep_2019_100367
crossref_primary_10_1016_j_ygeno_2015_12_007
crossref_primary_10_1007_s11032_015_0231_7
crossref_primary_10_1371_journal_pone_0068822
crossref_primary_10_1186_s13059_017_1215_1
crossref_primary_10_1111_j_1755_0998_2010_02891_x
crossref_primary_10_1109_TCBB_2012_80
crossref_primary_10_1016_j_fsigen_2014_07_005
crossref_primary_10_1007_s11243_010_9445_z
crossref_primary_10_24072_pcjournal_300
crossref_primary_10_1007_s00216_016_9332_3
crossref_primary_10_1146_annurev_publhealth_012809_103532
crossref_primary_10_1109_TITB_2012_2205009
crossref_primary_10_1038_s41551_021_00837_3
crossref_primary_10_1016_j_bios_2013_10_071
crossref_primary_10_1038_nmeth_1443
crossref_primary_10_2217_pgs_13_227
crossref_primary_10_1016_j_gene_2014_03_008
crossref_primary_10_1186_gb_2010_11_9_r92
crossref_primary_10_1007_s00204_024_03795_2
crossref_primary_10_1007_s12355_023_01278_9
crossref_primary_10_1111_j_1095_8649_2012_03265_x
crossref_primary_10_3109_1354750X_2014_948069
crossref_primary_10_1186_1471_2164_15_823
crossref_primary_10_1186_s13073_014_0109_z
crossref_primary_10_1038_nrcardio_2010_53
crossref_primary_10_4168_aair_2010_2_4_215
crossref_primary_10_1016_j_gene_2014_05_071
crossref_primary_10_12677_AMS_2023_104028
crossref_primary_10_1038_srep40549
crossref_primary_10_1016_j_aquaculture_2022_739201
crossref_primary_10_1016_j_indcrop_2019_04_021
crossref_primary_10_1093_nutrit_nuae015
crossref_primary_10_1111_j_1755_0998_2012_03158_x
crossref_primary_10_1128_JCM_00744_11
crossref_primary_10_1016_j_ejmg_2015_12_010
crossref_primary_10_1097_MCG_0b013e3182548df2
crossref_primary_10_1016_j_biotechadv_2011_09_015
crossref_primary_10_1038_jhg_2010_19
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1146/annurev-genom-082908-150116
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1545-293X
ExternalDocumentID 19453250
Genre Journal Article
Review
GroupedDBID ---
-QD
-QH
0R~
1KX
23M
36B
39C
4.4
51A
53G
5FA
5FB
5FC
5FD
5FE
5FF
5FH
5GY
5RE
6J9
70K
70N
70Q
70S
70W
79.
7A.
7B-
8NG
AABJL
AAGWO
AALHT
AALUV
AAOHI
AARJV
AAWJP
AAYIS
ABDBF
ABDOG
ABGRM
ABIPL
ABJNI
ABKGM
ABPPZ
ABVYV
ABZNY
ACAHA
ACDVT
ACGFS
ACJYF
ACMXS
ACQCJ
ACRLM
ACSOE
ACUHS
ADEJD
ADHEY
ADLON
ADNJN
ADSVE
AEAIQ
AEKBM
AENEX
AEPIK
AEWIE
AFCZG
AFERR
AFKDQ
AFKEJ
AFONB
AGNAY
AHIXL
AHKZM
AHVNO
AICBU
AIDEK
AIJFW
AJAAW
ALAFQ
ALMA_UNASSIGNED_HOLDINGS
AMTJG
AOUBY
AQQLW
ATAUN
B0M
B9D
B9E
B9F
B9G
B9H
B9L
B9N
BCFVH
BJPMW
BMYRD
CGR
CS3
CUY
CVF
EAP
EBC
EBD
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
EST
ESX
F-Q
F-S
F-V
F-X
F-Y
F-Z
F5P
FIWKU
FIXEU
FMZAJ
FQMFW
FT0
FU.
FUEKT
FXG
GJQJI
GLOEX
GNDDA
GOAVI
GQXMV
H13
HZ~
H~9
IH2
J1V
M22
N9A
NEJ
NPM
O9-
OK1
P0P
RAR
RAV
RNS
SV3
UMF
X7N
ZGI
ZYWBE
~8M
7X8
ACKHT
ACQLW
RIG
ID FETCH-LOGICAL-a442t-6501e977e77670eb29ecf967091c2b26615c03008b9139a039eb24c3533e9c7f2
IEDL.DBID 7X8
ISICitedReferencesCount 159
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000270313200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-293X
IngestDate Thu Oct 02 20:48:23 EDT 2025
Thu Jan 02 22:14:11 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a442t-6501e977e77670eb29ecf967091c2b26615c03008b9139a039eb24c3533e9c7f2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 19453250
PQID 67622098
PQPubID 23479
ParticipantIDs proquest_miscellaneous_67622098
pubmed_primary_19453250
PublicationCentury 2000
PublicationDate 2009-09-00
PublicationDateYYYYMMDD 2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: 2009-09-00
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Annual review of genomics and human genetics
PublicationTitleAlternate Annu Rev Genomics Hum Genet
PublicationYear 2009
SSID ssj0008840
Score 2.3416643
SecondaryResourceType review_article
Snippet The past few years have seen enormous advances in genotyping technology, including chips that accommodate in excess of 1 million SNP assays. In addition, the...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 117
SubjectTerms Animals
DNA - analysis
Genetic Research
Genetic Techniques - economics
Genome, Human
Genotype
Humans
Polymorphism, Single Nucleotide
Title Genotyping technologies for genetic research
URI https://www.ncbi.nlm.nih.gov/pubmed/19453250
https://www.proquest.com/docview/67622098
Volume 10
WOSCitedRecordID wos000270313200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4VymvhUV7lGQlGLOI8GltCQqiisFB1AClb5NiOykBaaEDqv-euTsSEGFgyJdL54vN99vm-D-AySVScc8OZxmTAolAZpvK8xyxPFPeLWPSsE5tIhkORpnLUgpumF4auVTZr4mKhNhNNZ-TXPYzawJfidvrOSDOKaqu1gMYStEMEMjSnk_SHK1wI1w6JGIFhUkvX4KLmxm0kXhjxoL4xai8lktOYihK_I81Fxhls_c_WbdiskaZ356bGDrRs2YFVpz0578B6v5F624WrB7SwmlPrlFc1Z-24hfYQ0XpoPTU6ejUt0HgPXgb3z_1HVssoMBVFQcUQg3GLMM8ScY-PO2lpdSGJt43rIKcEHWsMdV_kRBGq_FDiO5EOEQhaqZMi2IflclLaQ_BkHmqrhVBCi0jbUHETGBX4kTIxL4zpwnnjkAyHQLUHVdrJ5yxrXNKFA-fTbOrYNDIuozhEIHb057fHsOFqOXTD6wTaBQaoPYUV_VW9zj7OFn8fn8PR0zdGoblS
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genotyping+technologies+for+genetic+research&rft.jtitle=Annual+review+of+genomics+and+human+genetics&rft.au=Ragoussis%2C+Jiannis&rft.date=2009-09-01&rft.issn=1545-293X&rft.eissn=1545-293X&rft.volume=10&rft.spage=117&rft_id=info:doi/10.1146%2Fannurev-genom-082908-150116&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-293X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-293X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-293X&client=summon