Genotyping technologies for genetic research
The past few years have seen enormous advances in genotyping technology, including chips that accommodate in excess of 1 million SNP assays. In addition, the cost per genotype has been driven down to levels unimagined only a few years ago. These developments have resulted in an explosion of positive...
Uložené v:
| Vydané v: | Annual review of genomics and human genetics Ročník 10; s. 117 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
01.09.2009
|
| Predmet: | |
| ISSN: | 1545-293X, 1545-293X |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The past few years have seen enormous advances in genotyping technology, including chips that accommodate in excess of 1 million SNP assays. In addition, the cost per genotype has been driven down to levels unimagined only a few years ago. These developments have resulted in an explosion of positive whole-genome association studies and the identification of many new genes for common diseases. Here I review high-throughput genotyping platforms as well as other approaches for lower numbers of assays but high sample throughput, which play an important role in genotype validation and study replication. Further, the utility of SNP arrays for detecting structural variation through the development of genotyping algorithms is reviewed and methods for long-range haplotyping are presented. It is anticipated that in the future, sample throughput and cost savings will be increased further through the combination of automation, microfluidics, and nanotechnologies. |
|---|---|
| AbstractList | The past few years have seen enormous advances in genotyping technology, including chips that accommodate in excess of 1 million SNP assays. In addition, the cost per genotype has been driven down to levels unimagined only a few years ago. These developments have resulted in an explosion of positive whole-genome association studies and the identification of many new genes for common diseases. Here I review high-throughput genotyping platforms as well as other approaches for lower numbers of assays but high sample throughput, which play an important role in genotype validation and study replication. Further, the utility of SNP arrays for detecting structural variation through the development of genotyping algorithms is reviewed and methods for long-range haplotyping are presented. It is anticipated that in the future, sample throughput and cost savings will be increased further through the combination of automation, microfluidics, and nanotechnologies.The past few years have seen enormous advances in genotyping technology, including chips that accommodate in excess of 1 million SNP assays. In addition, the cost per genotype has been driven down to levels unimagined only a few years ago. These developments have resulted in an explosion of positive whole-genome association studies and the identification of many new genes for common diseases. Here I review high-throughput genotyping platforms as well as other approaches for lower numbers of assays but high sample throughput, which play an important role in genotype validation and study replication. Further, the utility of SNP arrays for detecting structural variation through the development of genotyping algorithms is reviewed and methods for long-range haplotyping are presented. It is anticipated that in the future, sample throughput and cost savings will be increased further through the combination of automation, microfluidics, and nanotechnologies. The past few years have seen enormous advances in genotyping technology, including chips that accommodate in excess of 1 million SNP assays. In addition, the cost per genotype has been driven down to levels unimagined only a few years ago. These developments have resulted in an explosion of positive whole-genome association studies and the identification of many new genes for common diseases. Here I review high-throughput genotyping platforms as well as other approaches for lower numbers of assays but high sample throughput, which play an important role in genotype validation and study replication. Further, the utility of SNP arrays for detecting structural variation through the development of genotyping algorithms is reviewed and methods for long-range haplotyping are presented. It is anticipated that in the future, sample throughput and cost savings will be increased further through the combination of automation, microfluidics, and nanotechnologies. |
| Author | Ragoussis, Jiannis |
| Author_xml | – sequence: 1 givenname: Jiannis surname: Ragoussis fullname: Ragoussis, Jiannis email: ioannis.ragoussis@well.ox.ac.uk organization: Genomics Laboratory, Wellcome Trust Centre for Human Genetics, Oxford University, Oxford OX3 7BN, United Kingdom. ioannis.ragoussis@well.ox.ac.uk |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19453250$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj8tKxDAYhYOMOBd9BSkIrozmnmYpg47CgBsFdyWNfzuVNhmTVpi3N-AIrs5ZfJzLEs188IDQFSW3lAp1Z72fInzjFnwYMCmZISWmklCqTtCCSiExM_x99s_P0TKlT0JIWQpyhubUCMmZJAt0s8kp42Hf-bYYwe186EPbQSqaEIvcAGPniggJbHS7c3Ta2D7BxVFX6O3x4XX9hLcvm-f1_RZbIdiIVd4CRmvQWmkCNTPgGpOtoY7VTCkqHeF5TG0oN5ZwkxnhuOQcjNMNW6Hr39x9DF8TpLEauuSg762HMKVKacUYMWUGL4_gVA_wUe1jN9h4qP7-sR-CdVbs |
| CitedBy_id | crossref_primary_10_1038_s41576_020_0257_5 crossref_primary_10_1016_j_gene_2018_06_009 crossref_primary_10_1007_s12033_016_9915_4 crossref_primary_10_1007_s11914_017_0342_7 crossref_primary_10_1016_S2095_3119_18_62023_4 crossref_primary_10_1146_annurev_genom_091212_153520 crossref_primary_10_1016_j_tig_2010_03_005 crossref_primary_10_3390_ani10040566 crossref_primary_10_1080_14737159_2023_2224504 crossref_primary_10_1016_j_jia_2023_07_033 crossref_primary_10_1111_j_1467_7652_2012_00712_x crossref_primary_10_3390_cells12010103 crossref_primary_10_4103_0022_3859_186390 crossref_primary_10_1016_j_watbs_2021_11_001 crossref_primary_10_1093_exposome_osae001 crossref_primary_10_1016_j_ab_2013_01_007 crossref_primary_10_1016_j_jbiotec_2011_05_017 crossref_primary_10_1093_bib_bbv058 crossref_primary_10_1093_jxb_ert365 crossref_primary_10_3389_fgene_2019_00034 crossref_primary_10_1016_j_fsi_2019_02_041 crossref_primary_10_1016_j_immuni_2010_09_014 crossref_primary_10_1101_gr_115402_110 crossref_primary_10_1208_s12248_013_9535_x crossref_primary_10_3390_ijms12063966 crossref_primary_10_1038_mp_2012_58 crossref_primary_10_1155_2012_831460 crossref_primary_10_1371_journal_pone_0102544 crossref_primary_10_1111_j_1755_0998_2010_02954_x crossref_primary_10_1002_tpg2_20327 crossref_primary_10_1080_00049158_2011_10676342 crossref_primary_10_1002_smll_201202242 crossref_primary_10_1016_j_ocl_2011_07_011 crossref_primary_10_1038_oby_2010_349 crossref_primary_10_1534_g3_112_004069 crossref_primary_10_3892_br_2014_272 crossref_primary_10_1002_chem_201202621 crossref_primary_10_1007_s10096_019_03515_0 crossref_primary_10_1038_jhg_2010_55 crossref_primary_10_1016_j_ygeno_2011_04_005 crossref_primary_10_1016_j_scitotenv_2018_08_370 crossref_primary_10_1039_C5CC03921E crossref_primary_10_3389_fpls_2021_747886 crossref_primary_10_1002_ece3_70335 crossref_primary_10_1016_j_ijrobp_2010_02_005 crossref_primary_10_1146_annurev_med_091708_162036 crossref_primary_10_1002_cbic_201000287 crossref_primary_10_1002_mco2_315 crossref_primary_10_3390_ijms26167688 crossref_primary_10_1016_j_jacc_2010_06_022 crossref_primary_10_1371_journal_pone_0019206 crossref_primary_10_1111_j_1467_7652_2012_00725_x crossref_primary_10_1128_JCM_01156_15 crossref_primary_10_1586_epr_13_7 crossref_primary_10_1111_j_1600_079X_2010_00773_x crossref_primary_10_1038_mp_2009_141 crossref_primary_10_1038_nrclinonc_2012_48 crossref_primary_10_1111_ene_12981 crossref_primary_10_3390_ijms15057699 crossref_primary_10_1002_etc_403 crossref_primary_10_1186_1471_2164_12_116 crossref_primary_10_1002_chem_201002848 crossref_primary_10_1002_sim_5540 crossref_primary_10_1016_j_sna_2012_07_025 crossref_primary_10_1111_j_1095_8649_2010_02828_x crossref_primary_10_1016_j_snb_2015_01_092 crossref_primary_10_1093_molbev_msq154 crossref_primary_10_1007_s00439_010_0920_6 crossref_primary_10_1016_j_fsi_2025_110533 crossref_primary_10_1007_s00439_011_1118_2 crossref_primary_10_3390_ijms17101714 crossref_primary_10_1016_j_jmoldx_2014_04_004 crossref_primary_10_1016_j_genrep_2019_100367 crossref_primary_10_1016_j_ygeno_2015_12_007 crossref_primary_10_1007_s11032_015_0231_7 crossref_primary_10_1371_journal_pone_0068822 crossref_primary_10_1186_s13059_017_1215_1 crossref_primary_10_1111_j_1755_0998_2010_02891_x crossref_primary_10_1109_TCBB_2012_80 crossref_primary_10_1016_j_fsigen_2014_07_005 crossref_primary_10_1007_s11243_010_9445_z crossref_primary_10_24072_pcjournal_300 crossref_primary_10_1007_s00216_016_9332_3 crossref_primary_10_1146_annurev_publhealth_012809_103532 crossref_primary_10_1109_TITB_2012_2205009 crossref_primary_10_1038_s41551_021_00837_3 crossref_primary_10_1016_j_bios_2013_10_071 crossref_primary_10_1038_nmeth_1443 crossref_primary_10_2217_pgs_13_227 crossref_primary_10_1016_j_gene_2014_03_008 crossref_primary_10_1186_gb_2010_11_9_r92 crossref_primary_10_1007_s00204_024_03795_2 crossref_primary_10_1007_s12355_023_01278_9 crossref_primary_10_1111_j_1095_8649_2012_03265_x crossref_primary_10_3109_1354750X_2014_948069 crossref_primary_10_1186_1471_2164_15_823 crossref_primary_10_1186_s13073_014_0109_z crossref_primary_10_1038_nrcardio_2010_53 crossref_primary_10_4168_aair_2010_2_4_215 crossref_primary_10_1016_j_gene_2014_05_071 crossref_primary_10_12677_AMS_2023_104028 crossref_primary_10_1038_srep40549 crossref_primary_10_1016_j_aquaculture_2022_739201 crossref_primary_10_1016_j_indcrop_2019_04_021 crossref_primary_10_1093_nutrit_nuae015 crossref_primary_10_1111_j_1755_0998_2012_03158_x crossref_primary_10_1128_JCM_00744_11 crossref_primary_10_1016_j_ejmg_2015_12_010 crossref_primary_10_1097_MCG_0b013e3182548df2 crossref_primary_10_1016_j_biotechadv_2011_09_015 crossref_primary_10_1038_jhg_2010_19 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1146/annurev-genom-082908-150116 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| EISSN | 1545-293X |
| ExternalDocumentID | 19453250 |
| Genre | Journal Article Review |
| GroupedDBID | --- -QD -QH 0R~ 1KX 23M 36B 39C 4.4 51A 53G 5FA 5FB 5FC 5FD 5FE 5FF 5FH 5GY 5RE 6J9 70K 70N 70Q 70S 70W 79. 7A. 7B- 8NG AABJL AAGWO AALHT AALUV AAOHI AARJV AAWJP AAYIS ABDBF ABDOG ABGRM ABIPL ABJNI ABKGM ABPPZ ABVYV ABZNY ACAHA ACDVT ACGFS ACJYF ACMXS ACQCJ ACRLM ACSOE ACUHS ADEJD ADHEY ADLON ADNJN ADSVE AEAIQ AEKBM AENEX AEPIK AEWIE AFCZG AFERR AFKDQ AFKEJ AFONB AGNAY AHIXL AHKZM AHVNO AICBU AIDEK AIJFW AJAAW ALAFQ ALMA_UNASSIGNED_HOLDINGS AMTJG AOUBY AQQLW ATAUN B0M B9D B9E B9F B9G B9H B9L B9N BCFVH BJPMW BMYRD CGR CS3 CUY CVF EAP EBC EBD EBS ECM EIF EJD EMB EMK EMOBN EST ESX F-Q F-S F-V F-X F-Y F-Z F5P FIWKU FIXEU FMZAJ FQMFW FT0 FU. FUEKT FXG GJQJI GLOEX GNDDA GOAVI GQXMV H13 HZ~ H~9 IH2 J1V M22 N9A NEJ NPM O9- OK1 P0P RAR RAV RNS SV3 UMF X7N ZGI ZYWBE ~8M 7X8 ACKHT ACQLW RIG |
| ID | FETCH-LOGICAL-a442t-6501e977e77670eb29ecf967091c2b26615c03008b9139a039eb24c3533e9c7f2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 159 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000270313200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-293X |
| IngestDate | Thu Oct 02 20:48:23 EDT 2025 Thu Jan 02 22:14:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a442t-6501e977e77670eb29ecf967091c2b26615c03008b9139a039eb24c3533e9c7f2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 19453250 |
| PQID | 67622098 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_67622098 pubmed_primary_19453250 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-09-00 |
| PublicationDateYYYYMMDD | 2009-09-01 |
| PublicationDate_xml | – month: 09 year: 2009 text: 2009-09-00 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Annual review of genomics and human genetics |
| PublicationTitleAlternate | Annu Rev Genomics Hum Genet |
| PublicationYear | 2009 |
| SSID | ssj0008840 |
| Score | 2.3416643 |
| SecondaryResourceType | review_article |
| Snippet | The past few years have seen enormous advances in genotyping technology, including chips that accommodate in excess of 1 million SNP assays. In addition, the... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 117 |
| SubjectTerms | Animals DNA - analysis Genetic Research Genetic Techniques - economics Genome, Human Genotype Humans Polymorphism, Single Nucleotide |
| Title | Genotyping technologies for genetic research |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/19453250 https://www.proquest.com/docview/67622098 |
| Volume | 10 |
| WOSCitedRecordID | wos000270313200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4VymvhUV7lGQlGLOI8GltCQqiisFB1AClb5NiOykBaaEDqv-euTsSEGFgyJdL54vN99vm-D-AySVScc8OZxmTAolAZpvK8xyxPFPeLWPSsE5tIhkORpnLUgpumF4auVTZr4mKhNhNNZ-TXPYzawJfidvrOSDOKaqu1gMYStEMEMjSnk_SHK1wI1w6JGIFhUkvX4KLmxm0kXhjxoL4xai8lktOYihK_I81Fxhls_c_WbdiskaZ356bGDrRs2YFVpz0578B6v5F624WrB7SwmlPrlFc1Z-24hfYQ0XpoPTU6ejUt0HgPXgb3z_1HVssoMBVFQcUQg3GLMM8ScY-PO2lpdSGJt43rIKcEHWsMdV_kRBGq_FDiO5EOEQhaqZMi2IflclLaQ_BkHmqrhVBCi0jbUHETGBX4kTIxL4zpwnnjkAyHQLUHVdrJ5yxrXNKFA-fTbOrYNDIuozhEIHb057fHsOFqOXTD6wTaBQaoPYUV_VW9zj7OFn8fn8PR0zdGoblS |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genotyping+technologies+for+genetic+research&rft.jtitle=Annual+review+of+genomics+and+human+genetics&rft.au=Ragoussis%2C+Jiannis&rft.date=2009-09-01&rft.issn=1545-293X&rft.eissn=1545-293X&rft.volume=10&rft.spage=117&rft_id=info:doi/10.1146%2Fannurev-genom-082908-150116&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-293X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-293X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-293X&client=summon |