Comparative study of transient hydraulic tomography with varying parameterizations and zonations: Laboratory sandbox investigation
•THT is necessary in accurately estimating both K and Ss heterogeneities.•Geostatistics-based inverse models performs the best when there are abundant data.•With limited data, zonation-based models perform close to geostatistics-based ones.•Incorporation of accurate geological information improves T...
Uložené v:
| Vydané v: | Journal of hydrology (Amsterdam) Ročník 554; s. 758 - 779 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.11.2017
|
| Predmet: | |
| ISSN: | 0022-1694, 1879-2707 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •THT is necessary in accurately estimating both K and Ss heterogeneities.•Geostatistics-based inverse models performs the best when there are abundant data.•With limited data, zonation-based models perform close to geostatistics-based ones.•Incorporation of accurate geological information improves THT results.
Transient hydraulic tomography (THT) is a robust method of aquifer characterization to estimate the spatial distributions (or tomograms) of both hydraulic conductivity (K) and specific storage (Ss). However, the highly-parameterized nature of the geostatistical inversion approach renders it computationally intensive for large-scale investigations. In addition, geostatistics-based THT may produce overly smooth tomograms when head data used to constrain the inversion is limited. Therefore, alternative model conceptualizations for THT need to be examined. To investigate this, we simultaneously calibrated different groundwater models with varying parameterizations and zonations using two cases of different pumping and monitoring data densities from a laboratory sandbox. Specifically, one effective parameter model, four geology-based zonation models with varying accuracy and resolution, and five geostatistical models with different prior information are calibrated. Model performance is quantitatively assessed by examining the calibration and validation results. Our study reveals that highly parameterized geostatistical models perform the best among the models compared, while the zonation model with excellent knowledge of stratigraphy also yields comparable results. When few pumping tests with sparse monitoring intervals are available, the incorporation of accurate or simplified geological information into geostatistical models reveals more details in heterogeneity and yields more robust validation results. However, results deteriorate when inaccurate geological information are incorporated. Finally, our study reveals that transient inversions are necessary to obtain reliable K and Ss estimates for making accurate predictions of transient drawdown events. |
|---|---|
| AbstractList | •THT is necessary in accurately estimating both K and Ss heterogeneities.•Geostatistics-based inverse models performs the best when there are abundant data.•With limited data, zonation-based models perform close to geostatistics-based ones.•Incorporation of accurate geological information improves THT results.
Transient hydraulic tomography (THT) is a robust method of aquifer characterization to estimate the spatial distributions (or tomograms) of both hydraulic conductivity (K) and specific storage (Ss). However, the highly-parameterized nature of the geostatistical inversion approach renders it computationally intensive for large-scale investigations. In addition, geostatistics-based THT may produce overly smooth tomograms when head data used to constrain the inversion is limited. Therefore, alternative model conceptualizations for THT need to be examined. To investigate this, we simultaneously calibrated different groundwater models with varying parameterizations and zonations using two cases of different pumping and monitoring data densities from a laboratory sandbox. Specifically, one effective parameter model, four geology-based zonation models with varying accuracy and resolution, and five geostatistical models with different prior information are calibrated. Model performance is quantitatively assessed by examining the calibration and validation results. Our study reveals that highly parameterized geostatistical models perform the best among the models compared, while the zonation model with excellent knowledge of stratigraphy also yields comparable results. When few pumping tests with sparse monitoring intervals are available, the incorporation of accurate or simplified geological information into geostatistical models reveals more details in heterogeneity and yields more robust validation results. However, results deteriorate when inaccurate geological information are incorporated. Finally, our study reveals that transient inversions are necessary to obtain reliable K and Ss estimates for making accurate predictions of transient drawdown events. Transient hydraulic tomography (THT) is a robust method of aquifer characterization to estimate the spatial distributions (or tomograms) of both hydraulic conductivity (K) and specific storage (Ss). However, the highly-parameterized nature of the geostatistical inversion approach renders it computationally intensive for large-scale investigations. In addition, geostatistics-based THT may produce overly smooth tomograms when head data used to constrain the inversion is limited. Therefore, alternative model conceptualizations for THT need to be examined. To investigate this, we simultaneously calibrated different groundwater models with varying parameterizations and zonations using two cases of different pumping and monitoring data densities from a laboratory sandbox. Specifically, one effective parameter model, four geology-based zonation models with varying accuracy and resolution, and five geostatistical models with different prior information are calibrated. Model performance is quantitatively assessed by examining the calibration and validation results. Our study reveals that highly parameterized geostatistical models perform the best among the models compared, while the zonation model with excellent knowledge of stratigraphy also yields comparable results. When few pumping tests with sparse monitoring intervals are available, the incorporation of accurate or simplified geological information into geostatistical models reveals more details in heterogeneity and yields more robust validation results. However, results deteriorate when inaccurate geological information are incorporated. Finally, our study reveals that transient inversions are necessary to obtain reliable K and Ss estimates for making accurate predictions of transient drawdown events. |
| Author | Berg, Steven J. Illman, Walter A. Zhao, Zhanfeng Luo, Ning |
| Author_xml | – sequence: 1 givenname: Ning surname: Luo fullname: Luo, Ning email: nluo1222@gmail.com organization: Department of Earth and Environment Sciences, University of Waterloo, Waterloo, ON N2L3G1, Canada – sequence: 2 givenname: Zhanfeng orcidid: 0000-0003-1489-1038 surname: Zhao fullname: Zhao, Zhanfeng organization: Department of Earth and Environment Sciences, University of Waterloo, Waterloo, ON N2L3G1, Canada – sequence: 3 givenname: Walter A. surname: Illman fullname: Illman, Walter A. organization: Department of Earth and Environment Sciences, University of Waterloo, Waterloo, ON N2L3G1, Canada – sequence: 4 givenname: Steven J. surname: Berg fullname: Berg, Steven J. organization: Department of Earth and Environment Sciences, University of Waterloo, Waterloo, ON N2L3G1, Canada |
| BookMark | eNqFkU9PwyAchomZiZv6EUw4emkFykarB2MW_yVLvOiZUKAbSwsT6LQ7-sllzpMXuRDC-7w_8jABI-usBuACoxwjPLta5-vVoLxrc4Iwy1GVIzo9AmNcsiojDLERGCNESIZnFT0BkxDWKK2ioGPwNXfdRngRzVbDEHs1QNfA6IUNRtsI98Wib42E0XVu6cVmNcAPE1dwK_xg7BLu6U5H7c0utTgboLAK7pw9nK7hQtQuDXB-gCFd1e4TGrvVIZrlT-QMHDeiDfr8dz8Fbw_3r_OnbPHy-Dy_W2SCUhwzxmStFFJENIpWtSxlTRslCaNEMVTQGRGyZDWWjVBNiQpdYEamWNZElFRVrDgFl4fejXfvfZrPOxOkblthtesDJ8nJDFdFWaXozSEqvQvB64ZLE38em8yYlmPE9-b5mv-a53vzHFU8mU_09A-98aZLuv7lbg-cTha2RnseZPoEqZXxWkaunPmn4RuU4qkv |
| CitedBy_id | crossref_primary_10_1016_j_jhydrol_2022_128124 crossref_primary_10_1016_j_jhydrol_2022_127655 crossref_primary_10_3390_w17060861 crossref_primary_10_1016_j_enggeo_2020_105967 crossref_primary_10_1016_j_jhydrol_2022_127971 crossref_primary_10_1016_j_jhydrol_2022_128785 crossref_primary_10_1016_j_scitotenv_2024_171041 crossref_primary_10_1111_gwat_13476 crossref_primary_10_1016_j_advwatres_2021_103960 crossref_primary_10_1029_2022WR033831 crossref_primary_10_3390_geosciences10070276 crossref_primary_10_1029_2022WR034034 crossref_primary_10_1029_2025GL116820 crossref_primary_10_1016_j_jece_2021_106873 crossref_primary_10_1016_j_jhydrol_2025_133174 crossref_primary_10_1111_gwat_13348 crossref_primary_10_1016_j_jhydrol_2022_127911 crossref_primary_10_1016_j_jhydrol_2020_125137 crossref_primary_10_1016_j_jhydrol_2020_125874 crossref_primary_10_1016_j_jhydrol_2021_126700 crossref_primary_10_1016_j_jhydrol_2023_130061 crossref_primary_10_3390_w15091661 crossref_primary_10_1016_j_jhydrol_2020_125438 crossref_primary_10_3390_w15132401 crossref_primary_10_1016_j_jhydrol_2022_128673 crossref_primary_10_1029_2020WR028331 crossref_primary_10_1016_j_jhydrol_2019_03_089 crossref_primary_10_1016_j_jhydrol_2023_129247 crossref_primary_10_1002_hyp_14299 crossref_primary_10_3390_geosciences10110462 crossref_primary_10_1016_j_jhydrol_2018_02_024 crossref_primary_10_1016_j_jhydrol_2019_02_044 crossref_primary_10_1111_gwat_12842 crossref_primary_10_1007_s10040_021_02320_4 crossref_primary_10_1016_j_enggeo_2024_107692 crossref_primary_10_1029_2023WR035191 |
| Cites_doi | 10.1029/2004WR003790 10.1029/2001WR000338 10.1002/2015WR016910 10.1016/j.jhydrol.2016.12.004 10.1029/2011WR010616 10.1002/2014WR016552 10.1029/2001WR001176 10.1093/gji/ggu001 10.1111/j.1745-6584.2007.00374.x 10.1111/j.1745-6584.2012.00914.x 10.1111/j.1745-6584.2008.00541.x 10.1029/2011WR011704 10.1029/2007WR006715 10.1029/2010WR009262 10.1111/gwat.12421 10.1029/2010WR009635 10.1029/2010WR010367 10.1029/2004WR003717 10.1016/j.jhydrol.2015.07.047 10.1029/2006WR005287 10.1029/2009WR007745 10.1029/2011WR010429 10.1016/j.jhydrol.2007.05.011 10.1029/2006WR004932 10.1029/2008WR007180 10.1016/j.jhydrol.2011.08.031 10.1016/j.jhydrol.2015.06.013 10.1111/gwat.12159 10.1111/j.1745-6584.2011.00859.x 10.1029/2000WR900114 10.1002/wrcr.20519 10.1029/2003WR002262 10.1016/j.advwatres.2015.04.001 10.1016/j.jhydrol.2016.02.041 10.1029/2006WR005144 10.1016/j.jhydrol.2016.08.061 10.1002/2014WR016402 10.1016/j.advwatres.2013.10.002 10.1029/2005WR004309 10.1016/j.jhydrol.2012.08.044 10.1002/wrcr.20181 10.1111/j.1745-6584.1993.tb00597.x 10.1002/wrcr.20129 10.1029/95WR01945 |
| ContentType | Journal Article |
| Copyright | 2017 |
| Copyright_xml | – notice: 2017 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jhydrol.2017.09.045 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1879-2707 |
| EndPage | 779 |
| ExternalDocumentID | 10_1016_j_jhydrol_2017_09_045 S0022169417306492 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-a441t-77cbdd0d2afd49bc8cb4fdc2742d703462ac87b1cfadf803e317251cb2a84d973 |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000415769600056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Sun Sep 28 07:31:13 EDT 2025 Sat Nov 29 04:33:44 EST 2025 Tue Nov 18 21:04:15 EST 2025 Fri Feb 23 02:27:01 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hydraulic tomography Model calibration and validation Aquifer heterogeneity Model comparison Geological information Transient analysis Inverse modeling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a441t-77cbdd0d2afd49bc8cb4fdc2742d703462ac87b1cfadf803e317251cb2a84d973 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1489-1038 |
| OpenAccessLink | https://hdl.handle.net/10012/12653 |
| PQID | 2000619389 |
| PQPubID | 24069 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_2000619389 crossref_citationtrail_10_1016_j_jhydrol_2017_09_045 crossref_primary_10_1016_j_jhydrol_2017_09_045 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2017_09_045 |
| PublicationCentury | 2000 |
| PublicationDate | November 2017 2017-11-00 20171101 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: November 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Illman, Liu, Craig (b0095) 2007; 341 Zhao, Illman, Yeh, Berg, Mao (b0200) 2015; 51 Cardiff, Barrash, Kitanidis, Malama, Revil, Straface, Rizzo (b0060) 2009; 47 Liu, Yeh, Gardiner (b0140) 2002; 38 ARANZ Geo Limited, 2015. Leapfrog Hydro 2.2.3. 3D Geological Modeling Software. Illman, Craig, Liu (b0100) 2008; 46 Xiang, Yeh, Lee, Hsu, Wen (b0175) 2009; 45 Zhu, Yeh (b0225) 2006; 42 Yeh, Liu (b0185) 2000; 36 Cardiff, Barrash, Kitanidis (b0075) 2013; 49 Liu, Illman, Craig, Zhu, Yeh (b0145) 2007; 43 Hu, Brauchler, Herold, Bayer (b0090) 2011; 409 Berg, Illman (b0025) 2013; 51 Berg, Illman (b0030) 2015; 53 Zhao, Illman (b0210) 2017; 544 Mao, Yeh, Wan, Wen, Lu, Lee, Hsu (b0150) 2013; 49 Bohling, Zhan, Butler, Zheng (b0035) 2002; 38 Cardiff, Barrash (b0065) 2011; 47 Brauchler, Hu, Dietrich, Sauter (b0050) 2011; 47 Jiménez, Brauchler, Bayer (b0125) 2013; 62 Illman, Berg, Zhao (b0120) 2015; 51 Zhu, Yeh (b0220) 2005; 41 Paradis, Gloaguen, Lefebvre, Giroux (b0155) 2016; 536 Berg, Illman (b0010) 2011; 47 Jiménez, Brauchler, Hu, Hu, Schmidt, Ptak, Bayer (b0130) 2015; 51 Illman, Berg, Yeh (b0115) 2012; 50 Berg, Illman (b0015) 2011; 47 Kitanidis (b0135) 1995; 31 Brauchler, Liedl, Dietrich (b0045) 2003; 39 Straface, Yeh, Zhu, Troisi, Lee (b0165) 2007; 43 Illman, Zhu, Craig, Yin (b0110) 2010; 46 Yeh, Srivastava, Guzman, Harter (b0180) 1993; 31 Schöniger, Illman, Wöhling, Nowak (b0160) 2015; 531 Zha, Yeh, Illman, Tanaka, Bruines, Onoe, Saegusa, Mao, Takeuchi, Wen (b0195) 2016; 54 Berg, Illman (b0020) 2012; 470–471 Ahmed, Zhou, Jardani, Revil, Dupont (b0005) 2015; 82 Wu, Yeh, Zhu, Lee, Hsu, Chen, Sancho (b0170) 2005; 41 Zhou, Revil, Karaoulis, Hale, Doetsch, Cuttler (b0215) 2014; 197 Cardiff, Barrash, Kitanidis (b0070) 2012; 48 Brauchler, Hu, Hu, Jiménez, Bayer, Dietrich, Ptak (b0055) 2013; 49 (b0085) 2005 Bohling, Butler, Zhan, Knoll (b0040) 2007; 43 Illman, Liu, Takeuchi, Yeh, Ando, Saegusa (b0105) 2009; 45 Zha, Yeh, Illman, Tanaka, Bruines, Onoe, Saegusa (b0190) 2015; 531 Zhao, Illman, Berg (b0205) 2016; 542 Castagna, Becker, Bellin (b0080) 2011; 47 10.1016/j.jhydrol.2017.09.045_b9000 Berg (10.1016/j.jhydrol.2017.09.045_b0015) 2011; 47 Brauchler (10.1016/j.jhydrol.2017.09.045_b0050) 2011; 47 Jiménez (10.1016/j.jhydrol.2017.09.045_b0130) 2015; 51 Zhao (10.1016/j.jhydrol.2017.09.045_b0210) 2017; 544 Zhu (10.1016/j.jhydrol.2017.09.045_b0225) 2006; 42 Cardiff (10.1016/j.jhydrol.2017.09.045_b0060) 2009; 47 Kitanidis (10.1016/j.jhydrol.2017.09.045_b0135) 1995; 31 Zhao (10.1016/j.jhydrol.2017.09.045_b0205) 2016; 542 Paradis (10.1016/j.jhydrol.2017.09.045_b0155) 2016; 536 Straface (10.1016/j.jhydrol.2017.09.045_b0165) 2007; 43 Wu (10.1016/j.jhydrol.2017.09.045_b0170) 2005; 41 Zha (10.1016/j.jhydrol.2017.09.045_b0195) 2016; 54 (10.1016/j.jhydrol.2017.09.045_b0085) 2005 Cardiff (10.1016/j.jhydrol.2017.09.045_b0070) 2012; 48 Xiang (10.1016/j.jhydrol.2017.09.045_b0175) 2009; 45 Berg (10.1016/j.jhydrol.2017.09.045_b0025) 2013; 51 Cardiff (10.1016/j.jhydrol.2017.09.045_b0075) 2013; 49 Schöniger (10.1016/j.jhydrol.2017.09.045_b0160) 2015; 531 Bohling (10.1016/j.jhydrol.2017.09.045_b0035) 2002; 38 Berg (10.1016/j.jhydrol.2017.09.045_b0010) 2011; 47 Liu (10.1016/j.jhydrol.2017.09.045_b0140) 2002; 38 Zha (10.1016/j.jhydrol.2017.09.045_b0190) 2015; 531 Jiménez (10.1016/j.jhydrol.2017.09.045_b0125) 2013; 62 Bohling (10.1016/j.jhydrol.2017.09.045_b0040) 2007; 43 Berg (10.1016/j.jhydrol.2017.09.045_b0030) 2015; 53 Illman (10.1016/j.jhydrol.2017.09.045_b0100) 2008; 46 Illman (10.1016/j.jhydrol.2017.09.045_b0110) 2010; 46 Mao (10.1016/j.jhydrol.2017.09.045_b0150) 2013; 49 Yeh (10.1016/j.jhydrol.2017.09.045_b0185) 2000; 36 Illman (10.1016/j.jhydrol.2017.09.045_b0105) 2009; 45 Cardiff (10.1016/j.jhydrol.2017.09.045_b0065) 2011; 47 Liu (10.1016/j.jhydrol.2017.09.045_b0145) 2007; 43 Ahmed (10.1016/j.jhydrol.2017.09.045_b0005) 2015; 82 Illman (10.1016/j.jhydrol.2017.09.045_b0095) 2007; 341 Yeh (10.1016/j.jhydrol.2017.09.045_b0180) 1993; 31 Berg (10.1016/j.jhydrol.2017.09.045_b0020) 2012; 470–471 Hu (10.1016/j.jhydrol.2017.09.045_b0090) 2011; 409 Illman (10.1016/j.jhydrol.2017.09.045_b0115) 2012; 50 Zhao (10.1016/j.jhydrol.2017.09.045_b0200) 2015; 51 Zhou (10.1016/j.jhydrol.2017.09.045_b0215) 2014; 197 Illman (10.1016/j.jhydrol.2017.09.045_b0120) 2015; 51 Brauchler (10.1016/j.jhydrol.2017.09.045_b0055) 2013; 49 Brauchler (10.1016/j.jhydrol.2017.09.045_b0045) 2003; 39 Castagna (10.1016/j.jhydrol.2017.09.045_b0080) 2011; 47 Zhu (10.1016/j.jhydrol.2017.09.045_b0220) 2005; 41 |
| References_xml | – volume: 43 year: 2007 ident: b0145 article-title: Laboratory sandbox validation of transient hydraulic tomography publication-title: Water Resour. Res. – volume: 47 year: 2011 ident: b0065 article-title: 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response publication-title: Water Resour. Res. – volume: 43 year: 2007 ident: b0165 article-title: Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy publication-title: Water Resour. Res. – volume: 38 year: 2002 ident: b0035 article-title: Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities publication-title: Water Resour. Res. – volume: 47 year: 2011 ident: b0015 article-title: Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system publication-title: Water Resour. Res. – volume: 48 year: 2012 ident: b0070 article-title: A field proof-of-concept of aquifer imaging using 3-D transient hydraulic tomography with modular, temporarily-emplaced equipment publication-title: Water Resour. Res. – volume: 49 start-page: 7311 year: 2013 end-page: 7326 ident: b0075 article-title: Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities publication-title: Water Resour. Res. – volume: 51 start-page: 29 year: 2013 end-page: 40 ident: b0025 article-title: Field study of subsurface heterogeneity with steady-state hydraulic tomography publication-title: Ground Water – volume: 47 start-page: 259 year: 2009 end-page: 270 ident: b0060 article-title: A potential-based inversion of unconfined steady-state hydraulic tomography publication-title: Ground Water – volume: 53 start-page: 71 year: 2015 end-page: 89 ident: b0030 article-title: Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site publication-title: Ground Water – volume: 46 year: 2010 ident: b0110 article-title: Comparison of aquifer characterization approaches through steady state groundwater model validation: a controlled laboratory sandbox study publication-title: Water Resour. Res. – volume: 531 start-page: 96 year: 2015 end-page: 110 ident: b0160 article-title: Finding the right balance between groundwater model complexity and experimental effort via Bayesian model selection publication-title: J. Hydrol. – volume: 45 year: 2009 ident: b0175 article-title: A simultaneous successive linear estimator and a guide for hydraulic tomography analysis publication-title: Water Resour. Res. – volume: 47 year: 2011 ident: b0080 article-title: Joint estimation of transmissivity and storativity in a bedrock fracture publication-title: Water Resour. Res. – volume: 544 start-page: 640 year: 2017 end-page: 657 ident: b0210 article-title: On the importance of geological data for three-dimensional steady-state hydraulic tomography analysis at a highly heterogeneous aquifer-aquitard system publication-title: J. Hydrol. – volume: 62 start-page: 59 year: 2013 end-page: 70 ident: b0125 article-title: A new sequential procedure for hydraulic tomographic inversion publication-title: Adv. water Resour. – volume: 341 start-page: 222 year: 2007 end-page: 234 ident: b0095 article-title: Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic conductivity tomograms publication-title: J. Hydrol. – volume: 45 year: 2009 ident: b0105 article-title: Hydraulic tomography in fractured granite: Mizunami Underground Research site, Japan publication-title: Water Resour. Res. – volume: 43 year: 2007 ident: b0040 article-title: A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities publication-title: Water Resour. Res. – volume: 542 start-page: 156 year: 2016 end-page: 171 ident: b0205 article-title: On the importance of geological data for hydraulic tomography analysis: laboratory sandbox study publication-title: J. Hydrol. – volume: 197 start-page: 292 year: 2014 end-page: 309 ident: b0215 article-title: Image-guided inversion of electrical resistivity data publication-title: Geophys. J. Int. – volume: 39 year: 2003 ident: b0045 article-title: A travel time based hydraulic tomographic approach publication-title: Water Resour. Res. – volume: 409 start-page: 350 year: 2011 end-page: 362 ident: b0090 article-title: Hydraulic tomography analog outcrop study: Combining travel time and steady shape inversion publication-title: J. Hydrol. – volume: 531 start-page: 17 year: 2015 end-page: 30 ident: b0190 article-title: What does hydraulic tomography tell us about fractured geological media? A field study and synthetic experiments publication-title: J. Hydrol. – volume: 49 year: 2013 ident: b0055 article-title: Rapid field application of hydraulic tomography for resolving aquifer heterogeneity in unconsolidated sediments publication-title: Water Resour. Res. – volume: 51 start-page: 4137 year: 2015 end-page: 4155 ident: b0200 article-title: Validation of hydraulic tomography in an unconfined aquifer: A controlled sandbox study publication-title: Water Resour. Res. – volume: 31 start-page: 634 year: 1993 end-page: 644 ident: b0180 article-title: A numerical model for water flow and chemical transport in variably saturated porous media publication-title: Ground Water – volume: 49 start-page: 1782 year: 2013 end-page: 1796 ident: b0150 article-title: Joint interpretation of sequential pumping tests in unconfined aquifers publication-title: Water Resour. Res. – volume: 536 start-page: 61 year: 2016 end-page: 73 ident: b0155 article-title: A field proof-of-concept of tomographic slug tests in an anisotropic littoral aquifer publication-title: J. Hydrol. – volume: 47 year: 2011 ident: b0010 article-title: Capturing aquifer heterogeneity: Comparison of approaches through controlled sandbox experiments publication-title: Water Resour. Res. – volume: 36 start-page: 2095 year: 2000 end-page: 2105 ident: b0185 article-title: Hydraulic tomography: Development of a new aquifer test method publication-title: Water Resour. Res. – volume: 470–471 start-page: 172 year: 2012 end-page: 183 ident: b0020 article-title: Improved predictions of saturated and unsaturated zone drawdowns in a heterogeneous unconfined aquifer via transient hydraulic tomography: Laboratory sandbox experiments publication-title: J. Hydrol. – volume: 50 start-page: 421 year: 2012 end-page: 431 ident: b0115 article-title: Comparison of approaches for predicting solute transport: sandbox experiments publication-title: Ground Water – volume: 31 start-page: 2411 year: 1995 end-page: 2419 ident: b0135 article-title: Quasi-Linear Geostatistical Theory for Inversing publication-title: Water Resour. Res. – volume: 42 year: 2006 ident: b0225 article-title: Analysis of hydraulic tomography using temporal moments of drawdown recovery data publication-title: Water Resour. Res. – volume: 82 start-page: 83 year: 2015 end-page: 97 ident: b0005 article-title: Image-guided inversion in steady-state hydraulic tomography publication-title: Adv. Water Resour. – volume: 38 year: 2002 ident: b0140 article-title: Effectiveness of hydraulic tomography: Sandbox experiments publication-title: Water Resour. Res. – year: 2005 ident: b0085 publication-title: PEST Model-Independent Parameter Estimation User Manual – volume: 41 year: 2005 ident: b0170 article-title: Traditional analysis of aquifer tests: Comparing apples to oranges? publication-title: Water Resour. Res. – volume: 47 year: 2011 ident: b0050 article-title: A field assessment of high-resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography publication-title: Water Resour. Res. – volume: 54 start-page: 793 year: 2016 end-page: 804 ident: b0195 article-title: An Application of Hydraulic Tomography to a Large-Scale Fractured Granite Site, Mizunami publication-title: Japan. Ground Water – reference: ARANZ Geo Limited, 2015. Leapfrog Hydro 2.2.3. 3D Geological Modeling Software. – volume: 46 start-page: 120 year: 2008 end-page: 132 ident: b0100 article-title: Practical issues in imaging hydraulic conductivity through hydraulic tomography publication-title: Ground Water – volume: 51 start-page: 3219 year: 2015 end-page: 3237 ident: b0120 article-title: Should hydraulic tomography data be interpreted using geostatistical inverse modeling? A laboratory sandbox investigation publication-title: Water Resour. Res. – volume: 41 year: 2005 ident: b0220 article-title: Characterization of aquifer heterogeneity using transient hydraulic tomography publication-title: Water Resour. Res. – volume: 51 start-page: 5504 year: 2015 end-page: 5520 ident: b0130 article-title: Prediction of solute transport in a heterogeneous aquifer utilizing hydraulic conductivity and specific storage tomograms publication-title: Water Resour. Res. – volume: 41 issue: 7 year: 2005 ident: 10.1016/j.jhydrol.2017.09.045_b0220 article-title: Characterization of aquifer heterogeneity using transient hydraulic tomography publication-title: Water Resour. Res. doi: 10.1029/2004WR003790 – volume: 38 issue: 4 year: 2002 ident: 10.1016/j.jhydrol.2017.09.045_b0140 article-title: Effectiveness of hydraulic tomography: Sandbox experiments publication-title: Water Resour. Res. doi: 10.1029/2001WR000338 – volume: 51 start-page: 4137 issue: 6 year: 2015 ident: 10.1016/j.jhydrol.2017.09.045_b0200 article-title: Validation of hydraulic tomography in an unconfined aquifer: A controlled sandbox study publication-title: Water Resour. Res. doi: 10.1002/2015WR016910 – volume: 544 start-page: 640 year: 2017 ident: 10.1016/j.jhydrol.2017.09.045_b0210 article-title: On the importance of geological data for three-dimensional steady-state hydraulic tomography analysis at a highly heterogeneous aquifer-aquitard system publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.12.004 – volume: 47 issue: 10 year: 2011 ident: 10.1016/j.jhydrol.2017.09.045_b0015 article-title: Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system publication-title: Water Resour. Res. doi: 10.1029/2011WR010616 – volume: 51 start-page: 3219 issue: 5 year: 2015 ident: 10.1016/j.jhydrol.2017.09.045_b0120 article-title: Should hydraulic tomography data be interpreted using geostatistical inverse modeling? A laboratory sandbox investigation publication-title: Water Resour. Res. doi: 10.1002/2014WR016552 – volume: 38 issue: 12 year: 2002 ident: 10.1016/j.jhydrol.2017.09.045_b0035 article-title: Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities publication-title: Water Resour. Res. doi: 10.1029/2001WR001176 – volume: 197 start-page: 292 issue: 1 year: 2014 ident: 10.1016/j.jhydrol.2017.09.045_b0215 article-title: Image-guided inversion of electrical resistivity data publication-title: Geophys. J. Int. doi: 10.1093/gji/ggu001 – volume: 46 start-page: 120 issue: 1 year: 2008 ident: 10.1016/j.jhydrol.2017.09.045_b0100 article-title: Practical issues in imaging hydraulic conductivity through hydraulic tomography publication-title: Ground Water doi: 10.1111/j.1745-6584.2007.00374.x – volume: 51 start-page: 29 issue: 1 year: 2013 ident: 10.1016/j.jhydrol.2017.09.045_b0025 article-title: Field study of subsurface heterogeneity with steady-state hydraulic tomography publication-title: Ground Water doi: 10.1111/j.1745-6584.2012.00914.x – volume: 47 start-page: 259 issue: 2 year: 2009 ident: 10.1016/j.jhydrol.2017.09.045_b0060 article-title: A potential-based inversion of unconfined steady-state hydraulic tomography publication-title: Ground Water doi: 10.1111/j.1745-6584.2008.00541.x – volume: 48 issue: 5 year: 2012 ident: 10.1016/j.jhydrol.2017.09.045_b0070 article-title: A field proof-of-concept of aquifer imaging using 3-D transient hydraulic tomography with modular, temporarily-emplaced equipment publication-title: Water Resour. Res. doi: 10.1029/2011WR011704 – volume: 45 issue: 1 year: 2009 ident: 10.1016/j.jhydrol.2017.09.045_b0105 article-title: Hydraulic tomography in fractured granite: Mizunami Underground Research site, Japan publication-title: Water Resour. Res. doi: 10.1029/2007WR006715 – volume: 47 issue: 9 year: 2011 ident: 10.1016/j.jhydrol.2017.09.045_b0080 article-title: Joint estimation of transmissivity and storativity in a bedrock fracture publication-title: Water Resour. Res. doi: 10.1029/2010WR009262 – volume: 54 start-page: 793 issue: 6 year: 2016 ident: 10.1016/j.jhydrol.2017.09.045_b0195 article-title: An Application of Hydraulic Tomography to a Large-Scale Fractured Granite Site, Mizunami publication-title: Japan. Ground Water doi: 10.1111/gwat.12421 – volume: 47 issue: 3 year: 2011 ident: 10.1016/j.jhydrol.2017.09.045_b0050 article-title: A field assessment of high-resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography publication-title: Water Resour. Res. doi: 10.1029/2010WR009635 – volume: 47 issue: 12 year: 2011 ident: 10.1016/j.jhydrol.2017.09.045_b0065 article-title: 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response publication-title: Water Resour. Res. doi: 10.1029/2010WR010367 – volume: 41 issue: 9 year: 2005 ident: 10.1016/j.jhydrol.2017.09.045_b0170 article-title: Traditional analysis of aquifer tests: Comparing apples to oranges? publication-title: Water Resour. Res. doi: 10.1029/2004WR003717 – volume: 531 start-page: 96 year: 2015 ident: 10.1016/j.jhydrol.2017.09.045_b0160 article-title: Finding the right balance between groundwater model complexity and experimental effort via Bayesian model selection publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.07.047 – volume: 43 issue: 7 year: 2007 ident: 10.1016/j.jhydrol.2017.09.045_b0165 article-title: Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy publication-title: Water Resour. Res. doi: 10.1029/2006WR005287 – ident: 10.1016/j.jhydrol.2017.09.045_b9000 – volume: 46 issue: 4 year: 2010 ident: 10.1016/j.jhydrol.2017.09.045_b0110 article-title: Comparison of aquifer characterization approaches through steady state groundwater model validation: a controlled laboratory sandbox study publication-title: Water Resour. Res. doi: 10.1029/2009WR007745 – volume: 47 issue: 9 year: 2011 ident: 10.1016/j.jhydrol.2017.09.045_b0010 article-title: Capturing aquifer heterogeneity: Comparison of approaches through controlled sandbox experiments publication-title: Water Resour. Res. doi: 10.1029/2011WR010429 – volume: 341 start-page: 222 issue: 3–4 year: 2007 ident: 10.1016/j.jhydrol.2017.09.045_b0095 article-title: Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic conductivity tomograms publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.05.011 – volume: 43 issue: 5 year: 2007 ident: 10.1016/j.jhydrol.2017.09.045_b0040 article-title: A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities publication-title: Water Resour. Res. doi: 10.1029/2006WR004932 – volume: 45 issue: 2 year: 2009 ident: 10.1016/j.jhydrol.2017.09.045_b0175 article-title: A simultaneous successive linear estimator and a guide for hydraulic tomography analysis publication-title: Water Resour. Res. doi: 10.1029/2008WR007180 – volume: 409 start-page: 350 issue: 1 year: 2011 ident: 10.1016/j.jhydrol.2017.09.045_b0090 article-title: Hydraulic tomography analog outcrop study: Combining travel time and steady shape inversion publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.08.031 – volume: 531 start-page: 17 issue: Part 1 year: 2015 ident: 10.1016/j.jhydrol.2017.09.045_b0190 article-title: What does hydraulic tomography tell us about fractured geological media? A field study and synthetic experiments publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.06.013 – volume: 53 start-page: 71 issue: 1 year: 2015 ident: 10.1016/j.jhydrol.2017.09.045_b0030 article-title: Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site publication-title: Ground Water doi: 10.1111/gwat.12159 – volume: 50 start-page: 421 issue: 3 year: 2012 ident: 10.1016/j.jhydrol.2017.09.045_b0115 article-title: Comparison of approaches for predicting solute transport: sandbox experiments publication-title: Ground Water doi: 10.1111/j.1745-6584.2011.00859.x – volume: 36 start-page: 2095 issue: 8 year: 2000 ident: 10.1016/j.jhydrol.2017.09.045_b0185 article-title: Hydraulic tomography: Development of a new aquifer test method publication-title: Water Resour. Res. doi: 10.1029/2000WR900114 – volume: 49 start-page: 7311 issue: 11 year: 2013 ident: 10.1016/j.jhydrol.2017.09.045_b0075 article-title: Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities publication-title: Water Resour. Res. doi: 10.1002/wrcr.20519 – volume: 39 issue: 12 year: 2003 ident: 10.1016/j.jhydrol.2017.09.045_b0045 article-title: A travel time based hydraulic tomographic approach publication-title: Water Resour. Res. doi: 10.1029/2003WR002262 – volume: 82 start-page: 83 year: 2015 ident: 10.1016/j.jhydrol.2017.09.045_b0005 article-title: Image-guided inversion in steady-state hydraulic tomography publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2015.04.001 – volume: 536 start-page: 61 year: 2016 ident: 10.1016/j.jhydrol.2017.09.045_b0155 article-title: A field proof-of-concept of tomographic slug tests in an anisotropic littoral aquifer publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.02.041 – volume: 43 issue: 5 year: 2007 ident: 10.1016/j.jhydrol.2017.09.045_b0145 article-title: Laboratory sandbox validation of transient hydraulic tomography publication-title: Water Resour. Res. doi: 10.1029/2006WR005144 – volume: 542 start-page: 156 year: 2016 ident: 10.1016/j.jhydrol.2017.09.045_b0205 article-title: On the importance of geological data for hydraulic tomography analysis: laboratory sandbox study publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.08.061 – volume: 51 start-page: 5504 issue: 7 year: 2015 ident: 10.1016/j.jhydrol.2017.09.045_b0130 article-title: Prediction of solute transport in a heterogeneous aquifer utilizing hydraulic conductivity and specific storage tomograms publication-title: Water Resour. Res. doi: 10.1002/2014WR016402 – volume: 62 start-page: 59 year: 2013 ident: 10.1016/j.jhydrol.2017.09.045_b0125 article-title: A new sequential procedure for hydraulic tomographic inversion publication-title: Adv. water Resour. doi: 10.1016/j.advwatres.2013.10.002 – volume: 42 issue: 2 year: 2006 ident: 10.1016/j.jhydrol.2017.09.045_b0225 article-title: Analysis of hydraulic tomography using temporal moments of drawdown recovery data publication-title: Water Resour. Res. doi: 10.1029/2005WR004309 – volume: 470–471 start-page: 172 year: 2012 ident: 10.1016/j.jhydrol.2017.09.045_b0020 article-title: Improved predictions of saturated and unsaturated zone drawdowns in a heterogeneous unconfined aquifer via transient hydraulic tomography: Laboratory sandbox experiments publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.08.044 – volume: 49 issue: 4 year: 2013 ident: 10.1016/j.jhydrol.2017.09.045_b0055 article-title: Rapid field application of hydraulic tomography for resolving aquifer heterogeneity in unconsolidated sediments publication-title: Water Resour. Res. doi: 10.1002/wrcr.20181 – year: 2005 ident: 10.1016/j.jhydrol.2017.09.045_b0085 – volume: 31 start-page: 634 issue: 4 year: 1993 ident: 10.1016/j.jhydrol.2017.09.045_b0180 article-title: A numerical model for water flow and chemical transport in variably saturated porous media publication-title: Ground Water doi: 10.1111/j.1745-6584.1993.tb00597.x – volume: 49 start-page: 1782 issue: 4 year: 2013 ident: 10.1016/j.jhydrol.2017.09.045_b0150 article-title: Joint interpretation of sequential pumping tests in unconfined aquifers publication-title: Water Resour. Res. doi: 10.1002/wrcr.20129 – volume: 31 start-page: 2411 issue: 10 year: 1995 ident: 10.1016/j.jhydrol.2017.09.045_b0135 article-title: Quasi-Linear Geostatistical Theory for Inversing publication-title: Water Resour. Res. doi: 10.1029/95WR01945 |
| SSID | ssj0000334 |
| Score | 2.417269 |
| Snippet | •THT is necessary in accurately estimating both K and Ss heterogeneities.•Geostatistics-based inverse models performs the best when there are abundant... Transient hydraulic tomography (THT) is a robust method of aquifer characterization to estimate the spatial distributions (or tomograms) of both hydraulic... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 758 |
| SubjectTerms | Aquifer heterogeneity aquifers drawdown Geological information geostatistics hydraulic conductivity Hydraulic tomography hydrologic models Inverse modeling Model calibration and validation Model comparison model validation monitoring prediction stratigraphy tomography Transient analysis |
| Title | Comparative study of transient hydraulic tomography with varying parameterizations and zonations: Laboratory sandbox investigation |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2017.09.045 https://www.proquest.com/docview/2000619389 |
| Volume | 554 |
| WOSCitedRecordID | wos000415769600056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWFgkuiKcoLxmJ2ypLHk4cc1tVBVpVFYci9hb5FdHVblLtS0uP_WX8NMaPJNsuUHrgEkWO7Dzmi2c8nvkGoXepjpKUhSpQUZYFJI14IMooCTINi4NQ50xk0haboCcn-WjEvvR6P5tcmNWEVlW-XrPz_ypqaANhm9TZW4i7HRQa4ByEDkcQOxz_SfD7G3ze84YyemFUkkl97H__oWZ8aaitF_XU81U7b-yKz2zOk-k9NVEyTYqm3WC4qJ3f0IbQHTvomP35OVwU9bp_1hF2eElvm7zm3o7zCeza4dRwNCgDyNYZcbysHTy9PnUebdtmPNul7toPJxPvvP1md_z7w0HrWvAha65iW_9osOnaAHUZta6NLtUgylwV5Ga6TlOyMeFSR_zudTd1hWm21ILzUIwHY_eeJqKPWnpbR2V5lYb7mnpsgxabeLhx4YcpzDBFyAoY5g7ajWnKYF7dHR4ejI46ayBJSMNYb16lyyJ7_9vn-ZN9dM1SsObP6UP0wAsRDx3eHqGerh6je5-0R9ATdLmBO2xxh-sSt7jDLe5whztscIc97vAW7jBAC7e4-4A71GGPOnwFdU_R148Hp_ufA1_gI-BghS9gZSeFUqGKeakIEzKXgpRKmugBBZqIZDGXORWRLLkq89D46ynY41LEPCeK0eQZ2qnqSj9HWDORkkizVDNJYmpqsMGHp0lUxqHgabyHSPNZC-nZ700RlknxV7HuoUHb7dzRv9zUIW9kVngb1tmmBWDxpq5vGxkXMMebjTte6Xo5L2w6Hay0cvbits_zEt3v_qxXaGcxW-rX6K5cLc7mszcerL8AmXvVzQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+study+of+transient+hydraulic+tomography+with+varying+parameterizations+and+zonations%3A+Laboratory+sandbox+investigation&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Luo%2C+Ning&rft.au=Zhao%2C+Zhanfeng&rft.au=Illman%2C+Walter+A.&rft.au=Berg%2C+Steven+J.&rft.date=2017-11-01&rft.issn=0022-1694&rft.volume=554&rft.spage=758&rft.epage=779&rft_id=info:doi/10.1016%2Fj.jhydrol.2017.09.045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2017_09_045 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |