Comparative study of transient hydraulic tomography with varying parameterizations and zonations: Laboratory sandbox investigation

•THT is necessary in accurately estimating both K and Ss heterogeneities.•Geostatistics-based inverse models performs the best when there are abundant data.•With limited data, zonation-based models perform close to geostatistics-based ones.•Incorporation of accurate geological information improves T...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of hydrology (Amsterdam) Ročník 554; s. 758 - 779
Hlavní autori: Luo, Ning, Zhao, Zhanfeng, Illman, Walter A., Berg, Steven J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.11.2017
Predmet:
ISSN:0022-1694, 1879-2707
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •THT is necessary in accurately estimating both K and Ss heterogeneities.•Geostatistics-based inverse models performs the best when there are abundant data.•With limited data, zonation-based models perform close to geostatistics-based ones.•Incorporation of accurate geological information improves THT results. Transient hydraulic tomography (THT) is a robust method of aquifer characterization to estimate the spatial distributions (or tomograms) of both hydraulic conductivity (K) and specific storage (Ss). However, the highly-parameterized nature of the geostatistical inversion approach renders it computationally intensive for large-scale investigations. In addition, geostatistics-based THT may produce overly smooth tomograms when head data used to constrain the inversion is limited. Therefore, alternative model conceptualizations for THT need to be examined. To investigate this, we simultaneously calibrated different groundwater models with varying parameterizations and zonations using two cases of different pumping and monitoring data densities from a laboratory sandbox. Specifically, one effective parameter model, four geology-based zonation models with varying accuracy and resolution, and five geostatistical models with different prior information are calibrated. Model performance is quantitatively assessed by examining the calibration and validation results. Our study reveals that highly parameterized geostatistical models perform the best among the models compared, while the zonation model with excellent knowledge of stratigraphy also yields comparable results. When few pumping tests with sparse monitoring intervals are available, the incorporation of accurate or simplified geological information into geostatistical models reveals more details in heterogeneity and yields more robust validation results. However, results deteriorate when inaccurate geological information are incorporated. Finally, our study reveals that transient inversions are necessary to obtain reliable K and Ss estimates for making accurate predictions of transient drawdown events.
AbstractList •THT is necessary in accurately estimating both K and Ss heterogeneities.•Geostatistics-based inverse models performs the best when there are abundant data.•With limited data, zonation-based models perform close to geostatistics-based ones.•Incorporation of accurate geological information improves THT results. Transient hydraulic tomography (THT) is a robust method of aquifer characterization to estimate the spatial distributions (or tomograms) of both hydraulic conductivity (K) and specific storage (Ss). However, the highly-parameterized nature of the geostatistical inversion approach renders it computationally intensive for large-scale investigations. In addition, geostatistics-based THT may produce overly smooth tomograms when head data used to constrain the inversion is limited. Therefore, alternative model conceptualizations for THT need to be examined. To investigate this, we simultaneously calibrated different groundwater models with varying parameterizations and zonations using two cases of different pumping and monitoring data densities from a laboratory sandbox. Specifically, one effective parameter model, four geology-based zonation models with varying accuracy and resolution, and five geostatistical models with different prior information are calibrated. Model performance is quantitatively assessed by examining the calibration and validation results. Our study reveals that highly parameterized geostatistical models perform the best among the models compared, while the zonation model with excellent knowledge of stratigraphy also yields comparable results. When few pumping tests with sparse monitoring intervals are available, the incorporation of accurate or simplified geological information into geostatistical models reveals more details in heterogeneity and yields more robust validation results. However, results deteriorate when inaccurate geological information are incorporated. Finally, our study reveals that transient inversions are necessary to obtain reliable K and Ss estimates for making accurate predictions of transient drawdown events.
Transient hydraulic tomography (THT) is a robust method of aquifer characterization to estimate the spatial distributions (or tomograms) of both hydraulic conductivity (K) and specific storage (Ss). However, the highly-parameterized nature of the geostatistical inversion approach renders it computationally intensive for large-scale investigations. In addition, geostatistics-based THT may produce overly smooth tomograms when head data used to constrain the inversion is limited. Therefore, alternative model conceptualizations for THT need to be examined. To investigate this, we simultaneously calibrated different groundwater models with varying parameterizations and zonations using two cases of different pumping and monitoring data densities from a laboratory sandbox. Specifically, one effective parameter model, four geology-based zonation models with varying accuracy and resolution, and five geostatistical models with different prior information are calibrated. Model performance is quantitatively assessed by examining the calibration and validation results. Our study reveals that highly parameterized geostatistical models perform the best among the models compared, while the zonation model with excellent knowledge of stratigraphy also yields comparable results. When few pumping tests with sparse monitoring intervals are available, the incorporation of accurate or simplified geological information into geostatistical models reveals more details in heterogeneity and yields more robust validation results. However, results deteriorate when inaccurate geological information are incorporated. Finally, our study reveals that transient inversions are necessary to obtain reliable K and Ss estimates for making accurate predictions of transient drawdown events.
Author Berg, Steven J.
Illman, Walter A.
Zhao, Zhanfeng
Luo, Ning
Author_xml – sequence: 1
  givenname: Ning
  surname: Luo
  fullname: Luo, Ning
  email: nluo1222@gmail.com
  organization: Department of Earth and Environment Sciences, University of Waterloo, Waterloo, ON N2L3G1, Canada
– sequence: 2
  givenname: Zhanfeng
  orcidid: 0000-0003-1489-1038
  surname: Zhao
  fullname: Zhao, Zhanfeng
  organization: Department of Earth and Environment Sciences, University of Waterloo, Waterloo, ON N2L3G1, Canada
– sequence: 3
  givenname: Walter A.
  surname: Illman
  fullname: Illman, Walter A.
  organization: Department of Earth and Environment Sciences, University of Waterloo, Waterloo, ON N2L3G1, Canada
– sequence: 4
  givenname: Steven J.
  surname: Berg
  fullname: Berg, Steven J.
  organization: Department of Earth and Environment Sciences, University of Waterloo, Waterloo, ON N2L3G1, Canada
BookMark eNqFkU9PwyAchomZiZv6EUw4emkFykarB2MW_yVLvOiZUKAbSwsT6LQ7-sllzpMXuRDC-7w_8jABI-usBuACoxwjPLta5-vVoLxrc4Iwy1GVIzo9AmNcsiojDLERGCNESIZnFT0BkxDWKK2ioGPwNXfdRngRzVbDEHs1QNfA6IUNRtsI98Wib42E0XVu6cVmNcAPE1dwK_xg7BLu6U5H7c0utTgboLAK7pw9nK7hQtQuDXB-gCFd1e4TGrvVIZrlT-QMHDeiDfr8dz8Fbw_3r_OnbPHy-Dy_W2SCUhwzxmStFFJENIpWtSxlTRslCaNEMVTQGRGyZDWWjVBNiQpdYEamWNZElFRVrDgFl4fejXfvfZrPOxOkblthtesDJ8nJDFdFWaXozSEqvQvB64ZLE38em8yYlmPE9-b5mv-a53vzHFU8mU_09A-98aZLuv7lbg-cTha2RnseZPoEqZXxWkaunPmn4RuU4qkv
CitedBy_id crossref_primary_10_1016_j_jhydrol_2022_128124
crossref_primary_10_1016_j_jhydrol_2022_127655
crossref_primary_10_3390_w17060861
crossref_primary_10_1016_j_enggeo_2020_105967
crossref_primary_10_1016_j_jhydrol_2022_127971
crossref_primary_10_1016_j_jhydrol_2022_128785
crossref_primary_10_1016_j_scitotenv_2024_171041
crossref_primary_10_1111_gwat_13476
crossref_primary_10_1016_j_advwatres_2021_103960
crossref_primary_10_1029_2022WR033831
crossref_primary_10_3390_geosciences10070276
crossref_primary_10_1029_2022WR034034
crossref_primary_10_1029_2025GL116820
crossref_primary_10_1016_j_jece_2021_106873
crossref_primary_10_1016_j_jhydrol_2025_133174
crossref_primary_10_1111_gwat_13348
crossref_primary_10_1016_j_jhydrol_2022_127911
crossref_primary_10_1016_j_jhydrol_2020_125137
crossref_primary_10_1016_j_jhydrol_2020_125874
crossref_primary_10_1016_j_jhydrol_2021_126700
crossref_primary_10_1016_j_jhydrol_2023_130061
crossref_primary_10_3390_w15091661
crossref_primary_10_1016_j_jhydrol_2020_125438
crossref_primary_10_3390_w15132401
crossref_primary_10_1016_j_jhydrol_2022_128673
crossref_primary_10_1029_2020WR028331
crossref_primary_10_1016_j_jhydrol_2019_03_089
crossref_primary_10_1016_j_jhydrol_2023_129247
crossref_primary_10_1002_hyp_14299
crossref_primary_10_3390_geosciences10110462
crossref_primary_10_1016_j_jhydrol_2018_02_024
crossref_primary_10_1016_j_jhydrol_2019_02_044
crossref_primary_10_1111_gwat_12842
crossref_primary_10_1007_s10040_021_02320_4
crossref_primary_10_1016_j_enggeo_2024_107692
crossref_primary_10_1029_2023WR035191
Cites_doi 10.1029/2004WR003790
10.1029/2001WR000338
10.1002/2015WR016910
10.1016/j.jhydrol.2016.12.004
10.1029/2011WR010616
10.1002/2014WR016552
10.1029/2001WR001176
10.1093/gji/ggu001
10.1111/j.1745-6584.2007.00374.x
10.1111/j.1745-6584.2012.00914.x
10.1111/j.1745-6584.2008.00541.x
10.1029/2011WR011704
10.1029/2007WR006715
10.1029/2010WR009262
10.1111/gwat.12421
10.1029/2010WR009635
10.1029/2010WR010367
10.1029/2004WR003717
10.1016/j.jhydrol.2015.07.047
10.1029/2006WR005287
10.1029/2009WR007745
10.1029/2011WR010429
10.1016/j.jhydrol.2007.05.011
10.1029/2006WR004932
10.1029/2008WR007180
10.1016/j.jhydrol.2011.08.031
10.1016/j.jhydrol.2015.06.013
10.1111/gwat.12159
10.1111/j.1745-6584.2011.00859.x
10.1029/2000WR900114
10.1002/wrcr.20519
10.1029/2003WR002262
10.1016/j.advwatres.2015.04.001
10.1016/j.jhydrol.2016.02.041
10.1029/2006WR005144
10.1016/j.jhydrol.2016.08.061
10.1002/2014WR016402
10.1016/j.advwatres.2013.10.002
10.1029/2005WR004309
10.1016/j.jhydrol.2012.08.044
10.1002/wrcr.20181
10.1111/j.1745-6584.1993.tb00597.x
10.1002/wrcr.20129
10.1029/95WR01945
ContentType Journal Article
Copyright 2017
Copyright_xml – notice: 2017
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2017.09.045
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
EndPage 779
ExternalDocumentID 10_1016_j_jhydrol_2017_09_045
S0022169417306492
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-a441t-77cbdd0d2afd49bc8cb4fdc2742d703462ac87b1cfadf803e317251cb2a84d973
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000415769600056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Sun Sep 28 07:31:13 EDT 2025
Sat Nov 29 04:33:44 EST 2025
Tue Nov 18 21:04:15 EST 2025
Fri Feb 23 02:27:01 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hydraulic tomography
Model calibration and validation
Aquifer heterogeneity
Model comparison
Geological information
Transient analysis
Inverse modeling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a441t-77cbdd0d2afd49bc8cb4fdc2742d703462ac87b1cfadf803e317251cb2a84d973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1489-1038
OpenAccessLink https://hdl.handle.net/10012/12653
PQID 2000619389
PQPubID 24069
PageCount 22
ParticipantIDs proquest_miscellaneous_2000619389
crossref_citationtrail_10_1016_j_jhydrol_2017_09_045
crossref_primary_10_1016_j_jhydrol_2017_09_045
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2017_09_045
PublicationCentury 2000
PublicationDate November 2017
2017-11-00
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Illman, Liu, Craig (b0095) 2007; 341
Zhao, Illman, Yeh, Berg, Mao (b0200) 2015; 51
Cardiff, Barrash, Kitanidis, Malama, Revil, Straface, Rizzo (b0060) 2009; 47
Liu, Yeh, Gardiner (b0140) 2002; 38
ARANZ Geo Limited, 2015. Leapfrog Hydro 2.2.3. 3D Geological Modeling Software.
Illman, Craig, Liu (b0100) 2008; 46
Xiang, Yeh, Lee, Hsu, Wen (b0175) 2009; 45
Zhu, Yeh (b0225) 2006; 42
Yeh, Liu (b0185) 2000; 36
Cardiff, Barrash, Kitanidis (b0075) 2013; 49
Liu, Illman, Craig, Zhu, Yeh (b0145) 2007; 43
Hu, Brauchler, Herold, Bayer (b0090) 2011; 409
Berg, Illman (b0025) 2013; 51
Berg, Illman (b0030) 2015; 53
Zhao, Illman (b0210) 2017; 544
Mao, Yeh, Wan, Wen, Lu, Lee, Hsu (b0150) 2013; 49
Bohling, Zhan, Butler, Zheng (b0035) 2002; 38
Cardiff, Barrash (b0065) 2011; 47
Brauchler, Hu, Dietrich, Sauter (b0050) 2011; 47
Jiménez, Brauchler, Bayer (b0125) 2013; 62
Illman, Berg, Zhao (b0120) 2015; 51
Zhu, Yeh (b0220) 2005; 41
Paradis, Gloaguen, Lefebvre, Giroux (b0155) 2016; 536
Berg, Illman (b0010) 2011; 47
Jiménez, Brauchler, Hu, Hu, Schmidt, Ptak, Bayer (b0130) 2015; 51
Illman, Berg, Yeh (b0115) 2012; 50
Berg, Illman (b0015) 2011; 47
Kitanidis (b0135) 1995; 31
Brauchler, Liedl, Dietrich (b0045) 2003; 39
Straface, Yeh, Zhu, Troisi, Lee (b0165) 2007; 43
Illman, Zhu, Craig, Yin (b0110) 2010; 46
Yeh, Srivastava, Guzman, Harter (b0180) 1993; 31
Schöniger, Illman, Wöhling, Nowak (b0160) 2015; 531
Zha, Yeh, Illman, Tanaka, Bruines, Onoe, Saegusa, Mao, Takeuchi, Wen (b0195) 2016; 54
Berg, Illman (b0020) 2012; 470–471
Ahmed, Zhou, Jardani, Revil, Dupont (b0005) 2015; 82
Wu, Yeh, Zhu, Lee, Hsu, Chen, Sancho (b0170) 2005; 41
Zhou, Revil, Karaoulis, Hale, Doetsch, Cuttler (b0215) 2014; 197
Cardiff, Barrash, Kitanidis (b0070) 2012; 48
Brauchler, Hu, Hu, Jiménez, Bayer, Dietrich, Ptak (b0055) 2013; 49
(b0085) 2005
Bohling, Butler, Zhan, Knoll (b0040) 2007; 43
Illman, Liu, Takeuchi, Yeh, Ando, Saegusa (b0105) 2009; 45
Zha, Yeh, Illman, Tanaka, Bruines, Onoe, Saegusa (b0190) 2015; 531
Zhao, Illman, Berg (b0205) 2016; 542
Castagna, Becker, Bellin (b0080) 2011; 47
10.1016/j.jhydrol.2017.09.045_b9000
Berg (10.1016/j.jhydrol.2017.09.045_b0015) 2011; 47
Brauchler (10.1016/j.jhydrol.2017.09.045_b0050) 2011; 47
Jiménez (10.1016/j.jhydrol.2017.09.045_b0130) 2015; 51
Zhao (10.1016/j.jhydrol.2017.09.045_b0210) 2017; 544
Zhu (10.1016/j.jhydrol.2017.09.045_b0225) 2006; 42
Cardiff (10.1016/j.jhydrol.2017.09.045_b0060) 2009; 47
Kitanidis (10.1016/j.jhydrol.2017.09.045_b0135) 1995; 31
Zhao (10.1016/j.jhydrol.2017.09.045_b0205) 2016; 542
Paradis (10.1016/j.jhydrol.2017.09.045_b0155) 2016; 536
Straface (10.1016/j.jhydrol.2017.09.045_b0165) 2007; 43
Wu (10.1016/j.jhydrol.2017.09.045_b0170) 2005; 41
Zha (10.1016/j.jhydrol.2017.09.045_b0195) 2016; 54
(10.1016/j.jhydrol.2017.09.045_b0085) 2005
Cardiff (10.1016/j.jhydrol.2017.09.045_b0070) 2012; 48
Xiang (10.1016/j.jhydrol.2017.09.045_b0175) 2009; 45
Berg (10.1016/j.jhydrol.2017.09.045_b0025) 2013; 51
Cardiff (10.1016/j.jhydrol.2017.09.045_b0075) 2013; 49
Schöniger (10.1016/j.jhydrol.2017.09.045_b0160) 2015; 531
Bohling (10.1016/j.jhydrol.2017.09.045_b0035) 2002; 38
Berg (10.1016/j.jhydrol.2017.09.045_b0010) 2011; 47
Liu (10.1016/j.jhydrol.2017.09.045_b0140) 2002; 38
Zha (10.1016/j.jhydrol.2017.09.045_b0190) 2015; 531
Jiménez (10.1016/j.jhydrol.2017.09.045_b0125) 2013; 62
Bohling (10.1016/j.jhydrol.2017.09.045_b0040) 2007; 43
Berg (10.1016/j.jhydrol.2017.09.045_b0030) 2015; 53
Illman (10.1016/j.jhydrol.2017.09.045_b0100) 2008; 46
Illman (10.1016/j.jhydrol.2017.09.045_b0110) 2010; 46
Mao (10.1016/j.jhydrol.2017.09.045_b0150) 2013; 49
Yeh (10.1016/j.jhydrol.2017.09.045_b0185) 2000; 36
Illman (10.1016/j.jhydrol.2017.09.045_b0105) 2009; 45
Cardiff (10.1016/j.jhydrol.2017.09.045_b0065) 2011; 47
Liu (10.1016/j.jhydrol.2017.09.045_b0145) 2007; 43
Ahmed (10.1016/j.jhydrol.2017.09.045_b0005) 2015; 82
Illman (10.1016/j.jhydrol.2017.09.045_b0095) 2007; 341
Yeh (10.1016/j.jhydrol.2017.09.045_b0180) 1993; 31
Berg (10.1016/j.jhydrol.2017.09.045_b0020) 2012; 470–471
Hu (10.1016/j.jhydrol.2017.09.045_b0090) 2011; 409
Illman (10.1016/j.jhydrol.2017.09.045_b0115) 2012; 50
Zhao (10.1016/j.jhydrol.2017.09.045_b0200) 2015; 51
Zhou (10.1016/j.jhydrol.2017.09.045_b0215) 2014; 197
Illman (10.1016/j.jhydrol.2017.09.045_b0120) 2015; 51
Brauchler (10.1016/j.jhydrol.2017.09.045_b0055) 2013; 49
Brauchler (10.1016/j.jhydrol.2017.09.045_b0045) 2003; 39
Castagna (10.1016/j.jhydrol.2017.09.045_b0080) 2011; 47
Zhu (10.1016/j.jhydrol.2017.09.045_b0220) 2005; 41
References_xml – volume: 43
  year: 2007
  ident: b0145
  article-title: Laboratory sandbox validation of transient hydraulic tomography
  publication-title: Water Resour. Res.
– volume: 47
  year: 2011
  ident: b0065
  article-title: 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response
  publication-title: Water Resour. Res.
– volume: 43
  year: 2007
  ident: b0165
  article-title: Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy
  publication-title: Water Resour. Res.
– volume: 38
  year: 2002
  ident: b0035
  article-title: Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities
  publication-title: Water Resour. Res.
– volume: 47
  year: 2011
  ident: b0015
  article-title: Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system
  publication-title: Water Resour. Res.
– volume: 48
  year: 2012
  ident: b0070
  article-title: A field proof-of-concept of aquifer imaging using 3-D transient hydraulic tomography with modular, temporarily-emplaced equipment
  publication-title: Water Resour. Res.
– volume: 49
  start-page: 7311
  year: 2013
  end-page: 7326
  ident: b0075
  article-title: Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities
  publication-title: Water Resour. Res.
– volume: 51
  start-page: 29
  year: 2013
  end-page: 40
  ident: b0025
  article-title: Field study of subsurface heterogeneity with steady-state hydraulic tomography
  publication-title: Ground Water
– volume: 47
  start-page: 259
  year: 2009
  end-page: 270
  ident: b0060
  article-title: A potential-based inversion of unconfined steady-state hydraulic tomography
  publication-title: Ground Water
– volume: 53
  start-page: 71
  year: 2015
  end-page: 89
  ident: b0030
  article-title: Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site
  publication-title: Ground Water
– volume: 46
  year: 2010
  ident: b0110
  article-title: Comparison of aquifer characterization approaches through steady state groundwater model validation: a controlled laboratory sandbox study
  publication-title: Water Resour. Res.
– volume: 531
  start-page: 96
  year: 2015
  end-page: 110
  ident: b0160
  article-title: Finding the right balance between groundwater model complexity and experimental effort via Bayesian model selection
  publication-title: J. Hydrol.
– volume: 45
  year: 2009
  ident: b0175
  article-title: A simultaneous successive linear estimator and a guide for hydraulic tomography analysis
  publication-title: Water Resour. Res.
– volume: 47
  year: 2011
  ident: b0080
  article-title: Joint estimation of transmissivity and storativity in a bedrock fracture
  publication-title: Water Resour. Res.
– volume: 544
  start-page: 640
  year: 2017
  end-page: 657
  ident: b0210
  article-title: On the importance of geological data for three-dimensional steady-state hydraulic tomography analysis at a highly heterogeneous aquifer-aquitard system
  publication-title: J. Hydrol.
– volume: 62
  start-page: 59
  year: 2013
  end-page: 70
  ident: b0125
  article-title: A new sequential procedure for hydraulic tomographic inversion
  publication-title: Adv. water Resour.
– volume: 341
  start-page: 222
  year: 2007
  end-page: 234
  ident: b0095
  article-title: Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic conductivity tomograms
  publication-title: J. Hydrol.
– volume: 45
  year: 2009
  ident: b0105
  article-title: Hydraulic tomography in fractured granite: Mizunami Underground Research site, Japan
  publication-title: Water Resour. Res.
– volume: 43
  year: 2007
  ident: b0040
  article-title: A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities
  publication-title: Water Resour. Res.
– volume: 542
  start-page: 156
  year: 2016
  end-page: 171
  ident: b0205
  article-title: On the importance of geological data for hydraulic tomography analysis: laboratory sandbox study
  publication-title: J. Hydrol.
– volume: 197
  start-page: 292
  year: 2014
  end-page: 309
  ident: b0215
  article-title: Image-guided inversion of electrical resistivity data
  publication-title: Geophys. J. Int.
– volume: 39
  year: 2003
  ident: b0045
  article-title: A travel time based hydraulic tomographic approach
  publication-title: Water Resour. Res.
– volume: 409
  start-page: 350
  year: 2011
  end-page: 362
  ident: b0090
  article-title: Hydraulic tomography analog outcrop study: Combining travel time and steady shape inversion
  publication-title: J. Hydrol.
– volume: 531
  start-page: 17
  year: 2015
  end-page: 30
  ident: b0190
  article-title: What does hydraulic tomography tell us about fractured geological media? A field study and synthetic experiments
  publication-title: J. Hydrol.
– volume: 49
  year: 2013
  ident: b0055
  article-title: Rapid field application of hydraulic tomography for resolving aquifer heterogeneity in unconsolidated sediments
  publication-title: Water Resour. Res.
– volume: 51
  start-page: 4137
  year: 2015
  end-page: 4155
  ident: b0200
  article-title: Validation of hydraulic tomography in an unconfined aquifer: A controlled sandbox study
  publication-title: Water Resour. Res.
– volume: 31
  start-page: 634
  year: 1993
  end-page: 644
  ident: b0180
  article-title: A numerical model for water flow and chemical transport in variably saturated porous media
  publication-title: Ground Water
– volume: 49
  start-page: 1782
  year: 2013
  end-page: 1796
  ident: b0150
  article-title: Joint interpretation of sequential pumping tests in unconfined aquifers
  publication-title: Water Resour. Res.
– volume: 536
  start-page: 61
  year: 2016
  end-page: 73
  ident: b0155
  article-title: A field proof-of-concept of tomographic slug tests in an anisotropic littoral aquifer
  publication-title: J. Hydrol.
– volume: 47
  year: 2011
  ident: b0010
  article-title: Capturing aquifer heterogeneity: Comparison of approaches through controlled sandbox experiments
  publication-title: Water Resour. Res.
– volume: 36
  start-page: 2095
  year: 2000
  end-page: 2105
  ident: b0185
  article-title: Hydraulic tomography: Development of a new aquifer test method
  publication-title: Water Resour. Res.
– volume: 470–471
  start-page: 172
  year: 2012
  end-page: 183
  ident: b0020
  article-title: Improved predictions of saturated and unsaturated zone drawdowns in a heterogeneous unconfined aquifer via transient hydraulic tomography: Laboratory sandbox experiments
  publication-title: J. Hydrol.
– volume: 50
  start-page: 421
  year: 2012
  end-page: 431
  ident: b0115
  article-title: Comparison of approaches for predicting solute transport: sandbox experiments
  publication-title: Ground Water
– volume: 31
  start-page: 2411
  year: 1995
  end-page: 2419
  ident: b0135
  article-title: Quasi-Linear Geostatistical Theory for Inversing
  publication-title: Water Resour. Res.
– volume: 42
  year: 2006
  ident: b0225
  article-title: Analysis of hydraulic tomography using temporal moments of drawdown recovery data
  publication-title: Water Resour. Res.
– volume: 82
  start-page: 83
  year: 2015
  end-page: 97
  ident: b0005
  article-title: Image-guided inversion in steady-state hydraulic tomography
  publication-title: Adv. Water Resour.
– volume: 38
  year: 2002
  ident: b0140
  article-title: Effectiveness of hydraulic tomography: Sandbox experiments
  publication-title: Water Resour. Res.
– year: 2005
  ident: b0085
  publication-title: PEST Model-Independent Parameter Estimation User Manual
– volume: 41
  year: 2005
  ident: b0170
  article-title: Traditional analysis of aquifer tests: Comparing apples to oranges?
  publication-title: Water Resour. Res.
– volume: 47
  year: 2011
  ident: b0050
  article-title: A field assessment of high-resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography
  publication-title: Water Resour. Res.
– volume: 54
  start-page: 793
  year: 2016
  end-page: 804
  ident: b0195
  article-title: An Application of Hydraulic Tomography to a Large-Scale Fractured Granite Site, Mizunami
  publication-title: Japan. Ground Water
– reference: ARANZ Geo Limited, 2015. Leapfrog Hydro 2.2.3. 3D Geological Modeling Software.
– volume: 46
  start-page: 120
  year: 2008
  end-page: 132
  ident: b0100
  article-title: Practical issues in imaging hydraulic conductivity through hydraulic tomography
  publication-title: Ground Water
– volume: 51
  start-page: 3219
  year: 2015
  end-page: 3237
  ident: b0120
  article-title: Should hydraulic tomography data be interpreted using geostatistical inverse modeling? A laboratory sandbox investigation
  publication-title: Water Resour. Res.
– volume: 41
  year: 2005
  ident: b0220
  article-title: Characterization of aquifer heterogeneity using transient hydraulic tomography
  publication-title: Water Resour. Res.
– volume: 51
  start-page: 5504
  year: 2015
  end-page: 5520
  ident: b0130
  article-title: Prediction of solute transport in a heterogeneous aquifer utilizing hydraulic conductivity and specific storage tomograms
  publication-title: Water Resour. Res.
– volume: 41
  issue: 7
  year: 2005
  ident: 10.1016/j.jhydrol.2017.09.045_b0220
  article-title: Characterization of aquifer heterogeneity using transient hydraulic tomography
  publication-title: Water Resour. Res.
  doi: 10.1029/2004WR003790
– volume: 38
  issue: 4
  year: 2002
  ident: 10.1016/j.jhydrol.2017.09.045_b0140
  article-title: Effectiveness of hydraulic tomography: Sandbox experiments
  publication-title: Water Resour. Res.
  doi: 10.1029/2001WR000338
– volume: 51
  start-page: 4137
  issue: 6
  year: 2015
  ident: 10.1016/j.jhydrol.2017.09.045_b0200
  article-title: Validation of hydraulic tomography in an unconfined aquifer: A controlled sandbox study
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR016910
– volume: 544
  start-page: 640
  year: 2017
  ident: 10.1016/j.jhydrol.2017.09.045_b0210
  article-title: On the importance of geological data for three-dimensional steady-state hydraulic tomography analysis at a highly heterogeneous aquifer-aquitard system
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.12.004
– volume: 47
  issue: 10
  year: 2011
  ident: 10.1016/j.jhydrol.2017.09.045_b0015
  article-title: Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR010616
– volume: 51
  start-page: 3219
  issue: 5
  year: 2015
  ident: 10.1016/j.jhydrol.2017.09.045_b0120
  article-title: Should hydraulic tomography data be interpreted using geostatistical inverse modeling? A laboratory sandbox investigation
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR016552
– volume: 38
  issue: 12
  year: 2002
  ident: 10.1016/j.jhydrol.2017.09.045_b0035
  article-title: Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities
  publication-title: Water Resour. Res.
  doi: 10.1029/2001WR001176
– volume: 197
  start-page: 292
  issue: 1
  year: 2014
  ident: 10.1016/j.jhydrol.2017.09.045_b0215
  article-title: Image-guided inversion of electrical resistivity data
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggu001
– volume: 46
  start-page: 120
  issue: 1
  year: 2008
  ident: 10.1016/j.jhydrol.2017.09.045_b0100
  article-title: Practical issues in imaging hydraulic conductivity through hydraulic tomography
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2007.00374.x
– volume: 51
  start-page: 29
  issue: 1
  year: 2013
  ident: 10.1016/j.jhydrol.2017.09.045_b0025
  article-title: Field study of subsurface heterogeneity with steady-state hydraulic tomography
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2012.00914.x
– volume: 47
  start-page: 259
  issue: 2
  year: 2009
  ident: 10.1016/j.jhydrol.2017.09.045_b0060
  article-title: A potential-based inversion of unconfined steady-state hydraulic tomography
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2008.00541.x
– volume: 48
  issue: 5
  year: 2012
  ident: 10.1016/j.jhydrol.2017.09.045_b0070
  article-title: A field proof-of-concept of aquifer imaging using 3-D transient hydraulic tomography with modular, temporarily-emplaced equipment
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR011704
– volume: 45
  issue: 1
  year: 2009
  ident: 10.1016/j.jhydrol.2017.09.045_b0105
  article-title: Hydraulic tomography in fractured granite: Mizunami Underground Research site, Japan
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006715
– volume: 47
  issue: 9
  year: 2011
  ident: 10.1016/j.jhydrol.2017.09.045_b0080
  article-title: Joint estimation of transmissivity and storativity in a bedrock fracture
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009262
– volume: 54
  start-page: 793
  issue: 6
  year: 2016
  ident: 10.1016/j.jhydrol.2017.09.045_b0195
  article-title: An Application of Hydraulic Tomography to a Large-Scale Fractured Granite Site, Mizunami
  publication-title: Japan. Ground Water
  doi: 10.1111/gwat.12421
– volume: 47
  issue: 3
  year: 2011
  ident: 10.1016/j.jhydrol.2017.09.045_b0050
  article-title: A field assessment of high-resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009635
– volume: 47
  issue: 12
  year: 2011
  ident: 10.1016/j.jhydrol.2017.09.045_b0065
  article-title: 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR010367
– volume: 41
  issue: 9
  year: 2005
  ident: 10.1016/j.jhydrol.2017.09.045_b0170
  article-title: Traditional analysis of aquifer tests: Comparing apples to oranges?
  publication-title: Water Resour. Res.
  doi: 10.1029/2004WR003717
– volume: 531
  start-page: 96
  year: 2015
  ident: 10.1016/j.jhydrol.2017.09.045_b0160
  article-title: Finding the right balance between groundwater model complexity and experimental effort via Bayesian model selection
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.07.047
– volume: 43
  issue: 7
  year: 2007
  ident: 10.1016/j.jhydrol.2017.09.045_b0165
  article-title: Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy
  publication-title: Water Resour. Res.
  doi: 10.1029/2006WR005287
– ident: 10.1016/j.jhydrol.2017.09.045_b9000
– volume: 46
  issue: 4
  year: 2010
  ident: 10.1016/j.jhydrol.2017.09.045_b0110
  article-title: Comparison of aquifer characterization approaches through steady state groundwater model validation: a controlled laboratory sandbox study
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR007745
– volume: 47
  issue: 9
  year: 2011
  ident: 10.1016/j.jhydrol.2017.09.045_b0010
  article-title: Capturing aquifer heterogeneity: Comparison of approaches through controlled sandbox experiments
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR010429
– volume: 341
  start-page: 222
  issue: 3–4
  year: 2007
  ident: 10.1016/j.jhydrol.2017.09.045_b0095
  article-title: Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic conductivity tomograms
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2007.05.011
– volume: 43
  issue: 5
  year: 2007
  ident: 10.1016/j.jhydrol.2017.09.045_b0040
  article-title: A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities
  publication-title: Water Resour. Res.
  doi: 10.1029/2006WR004932
– volume: 45
  issue: 2
  year: 2009
  ident: 10.1016/j.jhydrol.2017.09.045_b0175
  article-title: A simultaneous successive linear estimator and a guide for hydraulic tomography analysis
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR007180
– volume: 409
  start-page: 350
  issue: 1
  year: 2011
  ident: 10.1016/j.jhydrol.2017.09.045_b0090
  article-title: Hydraulic tomography analog outcrop study: Combining travel time and steady shape inversion
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.08.031
– volume: 531
  start-page: 17
  issue: Part 1
  year: 2015
  ident: 10.1016/j.jhydrol.2017.09.045_b0190
  article-title: What does hydraulic tomography tell us about fractured geological media? A field study and synthetic experiments
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.06.013
– volume: 53
  start-page: 71
  issue: 1
  year: 2015
  ident: 10.1016/j.jhydrol.2017.09.045_b0030
  article-title: Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site
  publication-title: Ground Water
  doi: 10.1111/gwat.12159
– volume: 50
  start-page: 421
  issue: 3
  year: 2012
  ident: 10.1016/j.jhydrol.2017.09.045_b0115
  article-title: Comparison of approaches for predicting solute transport: sandbox experiments
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2011.00859.x
– volume: 36
  start-page: 2095
  issue: 8
  year: 2000
  ident: 10.1016/j.jhydrol.2017.09.045_b0185
  article-title: Hydraulic tomography: Development of a new aquifer test method
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900114
– volume: 49
  start-page: 7311
  issue: 11
  year: 2013
  ident: 10.1016/j.jhydrol.2017.09.045_b0075
  article-title: Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20519
– volume: 39
  issue: 12
  year: 2003
  ident: 10.1016/j.jhydrol.2017.09.045_b0045
  article-title: A travel time based hydraulic tomographic approach
  publication-title: Water Resour. Res.
  doi: 10.1029/2003WR002262
– volume: 82
  start-page: 83
  year: 2015
  ident: 10.1016/j.jhydrol.2017.09.045_b0005
  article-title: Image-guided inversion in steady-state hydraulic tomography
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2015.04.001
– volume: 536
  start-page: 61
  year: 2016
  ident: 10.1016/j.jhydrol.2017.09.045_b0155
  article-title: A field proof-of-concept of tomographic slug tests in an anisotropic littoral aquifer
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.02.041
– volume: 43
  issue: 5
  year: 2007
  ident: 10.1016/j.jhydrol.2017.09.045_b0145
  article-title: Laboratory sandbox validation of transient hydraulic tomography
  publication-title: Water Resour. Res.
  doi: 10.1029/2006WR005144
– volume: 542
  start-page: 156
  year: 2016
  ident: 10.1016/j.jhydrol.2017.09.045_b0205
  article-title: On the importance of geological data for hydraulic tomography analysis: laboratory sandbox study
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.08.061
– volume: 51
  start-page: 5504
  issue: 7
  year: 2015
  ident: 10.1016/j.jhydrol.2017.09.045_b0130
  article-title: Prediction of solute transport in a heterogeneous aquifer utilizing hydraulic conductivity and specific storage tomograms
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR016402
– volume: 62
  start-page: 59
  year: 2013
  ident: 10.1016/j.jhydrol.2017.09.045_b0125
  article-title: A new sequential procedure for hydraulic tomographic inversion
  publication-title: Adv. water Resour.
  doi: 10.1016/j.advwatres.2013.10.002
– volume: 42
  issue: 2
  year: 2006
  ident: 10.1016/j.jhydrol.2017.09.045_b0225
  article-title: Analysis of hydraulic tomography using temporal moments of drawdown recovery data
  publication-title: Water Resour. Res.
  doi: 10.1029/2005WR004309
– volume: 470–471
  start-page: 172
  year: 2012
  ident: 10.1016/j.jhydrol.2017.09.045_b0020
  article-title: Improved predictions of saturated and unsaturated zone drawdowns in a heterogeneous unconfined aquifer via transient hydraulic tomography: Laboratory sandbox experiments
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.08.044
– volume: 49
  issue: 4
  year: 2013
  ident: 10.1016/j.jhydrol.2017.09.045_b0055
  article-title: Rapid field application of hydraulic tomography for resolving aquifer heterogeneity in unconsolidated sediments
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20181
– year: 2005
  ident: 10.1016/j.jhydrol.2017.09.045_b0085
– volume: 31
  start-page: 634
  issue: 4
  year: 1993
  ident: 10.1016/j.jhydrol.2017.09.045_b0180
  article-title: A numerical model for water flow and chemical transport in variably saturated porous media
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.1993.tb00597.x
– volume: 49
  start-page: 1782
  issue: 4
  year: 2013
  ident: 10.1016/j.jhydrol.2017.09.045_b0150
  article-title: Joint interpretation of sequential pumping tests in unconfined aquifers
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20129
– volume: 31
  start-page: 2411
  issue: 10
  year: 1995
  ident: 10.1016/j.jhydrol.2017.09.045_b0135
  article-title: Quasi-Linear Geostatistical Theory for Inversing
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR01945
SSID ssj0000334
Score 2.417269
Snippet •THT is necessary in accurately estimating both K and Ss heterogeneities.•Geostatistics-based inverse models performs the best when there are abundant...
Transient hydraulic tomography (THT) is a robust method of aquifer characterization to estimate the spatial distributions (or tomograms) of both hydraulic...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 758
SubjectTerms Aquifer heterogeneity
aquifers
drawdown
Geological information
geostatistics
hydraulic conductivity
Hydraulic tomography
hydrologic models
Inverse modeling
Model calibration and validation
Model comparison
model validation
monitoring
prediction
stratigraphy
tomography
Transient analysis
Title Comparative study of transient hydraulic tomography with varying parameterizations and zonations: Laboratory sandbox investigation
URI https://dx.doi.org/10.1016/j.jhydrol.2017.09.045
https://www.proquest.com/docview/2000619389
Volume 554
WOSCitedRecordID wos000415769600056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWFgkuiKcoLxmJ2ypLHk4cc1tVBVpVFYci9hb5FdHVblLtS0uP_WX8NMaPJNsuUHrgEkWO7Dzmi2c8nvkGoXepjpKUhSpQUZYFJI14IMooCTINi4NQ50xk0haboCcn-WjEvvR6P5tcmNWEVlW-XrPz_ypqaANhm9TZW4i7HRQa4ByEDkcQOxz_SfD7G3ze84YyemFUkkl97H__oWZ8aaitF_XU81U7b-yKz2zOk-k9NVEyTYqm3WC4qJ3f0IbQHTvomP35OVwU9bp_1hF2eElvm7zm3o7zCeza4dRwNCgDyNYZcbysHTy9PnUebdtmPNul7toPJxPvvP1md_z7w0HrWvAha65iW_9osOnaAHUZta6NLtUgylwV5Ga6TlOyMeFSR_zudTd1hWm21ILzUIwHY_eeJqKPWnpbR2V5lYb7mnpsgxabeLhx4YcpzDBFyAoY5g7ajWnKYF7dHR4ejI46ayBJSMNYb16lyyJ7_9vn-ZN9dM1SsObP6UP0wAsRDx3eHqGerh6je5-0R9ATdLmBO2xxh-sSt7jDLe5whztscIc97vAW7jBAC7e4-4A71GGPOnwFdU_R148Hp_ufA1_gI-BghS9gZSeFUqGKeakIEzKXgpRKmugBBZqIZDGXORWRLLkq89D46ynY41LEPCeK0eQZ2qnqSj9HWDORkkizVDNJYmpqsMGHp0lUxqHgabyHSPNZC-nZ700RlknxV7HuoUHb7dzRv9zUIW9kVngb1tmmBWDxpq5vGxkXMMebjTte6Xo5L2w6Hay0cvbits_zEt3v_qxXaGcxW-rX6K5cLc7mszcerL8AmXvVzQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+study+of+transient+hydraulic+tomography+with+varying+parameterizations+and+zonations%3A+Laboratory+sandbox+investigation&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Luo%2C+Ning&rft.au=Zhao%2C+Zhanfeng&rft.au=Illman%2C+Walter+A.&rft.au=Berg%2C+Steven+J.&rft.date=2017-11-01&rft.issn=0022-1694&rft.volume=554&rft.spage=758&rft.epage=779&rft_id=info:doi/10.1016%2Fj.jhydrol.2017.09.045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2017_09_045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon