Two-Dimensional Conjugated Metal–Organic Frameworks for Electrocatalysis: Opportunities and Challenges
A highly effective electrocatalyst is the central component of advanced electrochemical energy conversion. Recently, two-dimensional conjugated metal–organic frameworks (2D c-MOFs) have emerged as a class of promising electrocatalysts because of their advantages including 2D layered structure with h...
Uloženo v:
| Vydáno v: | ACS nano Ročník 16; číslo 2; s. 1759 - 1780 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
American Chemical Society
22.02.2022
|
| Témata: | |
| ISSN: | 1936-0851, 1936-086X, 1936-086X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A highly effective electrocatalyst is the central component of advanced electrochemical energy conversion. Recently, two-dimensional conjugated metal–organic frameworks (2D c-MOFs) have emerged as a class of promising electrocatalysts because of their advantages including 2D layered structure with high in-plane conjugation, intrinsic electrical conductivity, permanent pores, large surface area, chemical stability, and structural diversity. In this Review, we summarize the recent advances of 2D c-MOF electrocatalysts for electrochemical energy conversion. First, we introduce the chemical design principles and synthetic strategies of the reported 2D c-MOFs, as well as the functional design for the electrocatalysis. Subsequently, we present the representative 2D c-MOF electrocatalysts in various electrochemical reactions, such as hydrogen/oxygen evolution, and reduction reactions of oxygen, carbon dioxide, and nitrogen. We highlight the strategies for the structural design and property tuning of 2D c-MOF electrocatalysts to boost the catalytic performance, and we offer our perspectives in regard to the challenges to be overcome. |
|---|---|
| AbstractList | A highly effective electrocatalyst is the central component of advanced electrochemical energy conversion. Recently, two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as a class of promising electrocatalysts because of their advantages including 2D layered structure with high in-plane conjugation, intrinsic electrical conductivity, permanent pores, large surface area, chemical stability, and structural diversity. In this Review, we summarize the recent advances of 2D c-MOF electrocatalysts for electrochemical energy conversion. First, we introduce the chemical design principles and synthetic strategies of the reported 2D c-MOFs, as well as the functional design for the electrocatalysis. Subsequently, we present the representative 2D c-MOF electrocatalysts in various electrochemical reactions, such as hydrogen/oxygen evolution, and reduction reactions of oxygen, carbon dioxide, and nitrogen. We highlight the strategies for the structural design and property tuning of 2D c-MOF electrocatalysts to boost the catalytic performance, and we offer our perspectives in regard to the challenges to be overcome.A highly effective electrocatalyst is the central component of advanced electrochemical energy conversion. Recently, two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as a class of promising electrocatalysts because of their advantages including 2D layered structure with high in-plane conjugation, intrinsic electrical conductivity, permanent pores, large surface area, chemical stability, and structural diversity. In this Review, we summarize the recent advances of 2D c-MOF electrocatalysts for electrochemical energy conversion. First, we introduce the chemical design principles and synthetic strategies of the reported 2D c-MOFs, as well as the functional design for the electrocatalysis. Subsequently, we present the representative 2D c-MOF electrocatalysts in various electrochemical reactions, such as hydrogen/oxygen evolution, and reduction reactions of oxygen, carbon dioxide, and nitrogen. We highlight the strategies for the structural design and property tuning of 2D c-MOF electrocatalysts to boost the catalytic performance, and we offer our perspectives in regard to the challenges to be overcome. A highly effective electrocatalyst is the central component of advanced electrochemical energy conversion. Recently, two-dimensional conjugated metal–organic frameworks (2D c-MOFs) have emerged as a class of promising electrocatalysts because of their advantages including 2D layered structure with high in-plane conjugation, intrinsic electrical conductivity, permanent pores, large surface area, chemical stability, and structural diversity. In this Review, we summarize the recent advances of 2D c-MOF electrocatalysts for electrochemical energy conversion. First, we introduce the chemical design principles and synthetic strategies of the reported 2D c-MOFs, as well as the functional design for the electrocatalysis. Subsequently, we present the representative 2D c-MOF electrocatalysts in various electrochemical reactions, such as hydrogen/oxygen evolution, and reduction reactions of oxygen, carbon dioxide, and nitrogen. We highlight the strategies for the structural design and property tuning of 2D c-MOF electrocatalysts to boost the catalytic performance, and we offer our perspectives in regard to the challenges to be overcome. |
| Author | Zhong, Haixia Chen, Guangbo Wang, Mingchao Feng, Xinliang Dong, Renhao |
| AuthorAffiliation | Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Max Planck Institute of Microstructure Physics Shandong University Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering |
| AuthorAffiliation_xml | – name: Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering – name: Shandong University – name: Max Planck Institute of Microstructure Physics – name: Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry |
| Author_xml | – sequence: 1 givenname: Haixia orcidid: 0000-0002-2839-0253 surname: Zhong fullname: Zhong, Haixia organization: Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry – sequence: 2 givenname: Mingchao surname: Wang fullname: Wang, Mingchao organization: Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry – sequence: 3 givenname: Guangbo surname: Chen fullname: Chen, Guangbo organization: Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry – sequence: 4 givenname: Renhao orcidid: 0000-0002-4125-9284 surname: Dong fullname: Dong, Renhao email: renhao.dong@tu-dresden.de organization: Shandong University – sequence: 5 givenname: Xinliang orcidid: 0000-0003-3885-2703 surname: Feng fullname: Feng, Xinliang email: xinliang.feng@tu-dresden.de organization: Max Planck Institute of Microstructure Physics |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35049290$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kT1PwzAQhi0EonzNbCgjEkprJ3GasKFAAQnUpUhs0cW5tC6OXWxHiI3_wD_klxDUwoAE0530Pu8Nz-2TbW00EnLM6JDRiI1AOA3aDJlglCfJFtljeZyGNEsft392zgZk37klpXycjdNdMog5TfIop3tkMXsx4aVsUTtpNKigMHrZzcFjHdyjB_Xx9j61c9BSBBMLLb4Y--SCxtjgSqHw1gjoqVcn3XkwXa2M9Z2WXqILQNdBsQClUM_RHZKdBpTDo808IA-Tq1lxE95Nr2-Li7sQkoT6sKlolVWiyVkWiZjWcYwcIlr1YUqjlLOKN1GOlIkqq3EcI8M6gyxB4EmFsYgPyOn67sqa5w6dL1vpBCoFGk3nyiiNWJqyPGM9erJBu6rFulxZ2YJ9Lb_t9MBoDQhrnLPY_CCMll_-y43_cuO_b_BfDSE9-F6ttyDVP72zda8PyqXpbP8K9yf9CSFLnUY |
| CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_156553 crossref_primary_10_1016_j_watres_2023_119576 crossref_primary_10_1002_adfm_202424018 crossref_primary_10_1002_anie_202413115 crossref_primary_10_1002_smll_202401278 crossref_primary_10_1007_s10853_025_11392_6 crossref_primary_10_1002_anse_202500069 crossref_primary_10_1016_j_ccr_2023_215300 crossref_primary_10_1016_j_renene_2025_122661 crossref_primary_10_1002_adma_202209855 crossref_primary_10_1002_anie_202313591 crossref_primary_10_1007_s12598_025_03385_w crossref_primary_10_1016_j_jallcom_2022_168084 crossref_primary_10_1002_smll_202412338 crossref_primary_10_1039_D5CC01825K crossref_primary_10_1002_anie_202214707 crossref_primary_10_1016_j_seppur_2024_131275 crossref_primary_10_1515_nanoph_2023_0383 crossref_primary_10_1039_D3RA07059J crossref_primary_10_1007_s00604_024_06587_8 crossref_primary_10_1002_ange_202418443 crossref_primary_10_1002_cnma_202300171 crossref_primary_10_1002_smll_202311584 crossref_primary_10_1002_ange_202502425 crossref_primary_10_1002_smll_202207877 crossref_primary_10_1016_j_jcis_2023_12_004 crossref_primary_10_1002_advs_202513012 crossref_primary_10_1002_adfm_202421318 crossref_primary_10_1016_j_ultsonch_2023_106503 crossref_primary_10_1002_anie_202511048 crossref_primary_10_1021_jacs_4c11782 crossref_primary_10_1021_acsami_5c00064 crossref_primary_10_1002_anie_202305828 crossref_primary_10_1016_j_apsusc_2025_164331 crossref_primary_10_1016_j_ccr_2024_216061 crossref_primary_10_3390_ijms232315405 crossref_primary_10_1016_j_jallcom_2022_165939 crossref_primary_10_1016_j_mtnano_2025_100658 crossref_primary_10_1016_j_jcis_2025_137762 crossref_primary_10_1021_jacs_4c06935 crossref_primary_10_1016_j_nanoen_2025_111423 crossref_primary_10_1002_anie_202204967 crossref_primary_10_1007_s11426_022_1448_8 crossref_primary_10_1002_smsc_202400446 crossref_primary_10_1016_j_apcata_2023_119304 crossref_primary_10_1016_j_cej_2024_156021 crossref_primary_10_1016_j_cej_2024_154483 crossref_primary_10_1088_2053_1583_acb784 crossref_primary_10_1002_cctc_202400438 crossref_primary_10_1002_smll_202304808 crossref_primary_10_1002_ange_202413115 crossref_primary_10_1002_ange_202510698 crossref_primary_10_1002_anie_202416178 crossref_primary_10_1021_jacs_2c10823 crossref_primary_10_1039_D3CY01105D crossref_primary_10_1002_ange_202214707 crossref_primary_10_1016_j_jpowsour_2025_237126 crossref_primary_10_1016_j_jmst_2024_11_081 crossref_primary_10_1021_jacs_2c11597 crossref_primary_10_1002_adfm_202308497 crossref_primary_10_1039_D5SC00463B crossref_primary_10_1016_j_cclet_2022_107861 crossref_primary_10_1002_anie_202510698 crossref_primary_10_1016_j_chempr_2022_03_027 crossref_primary_10_1039_D5CY00362H crossref_primary_10_1016_j_ijhydene_2023_04_241 crossref_primary_10_26599_NR_2025_94907439 crossref_primary_10_1016_j_carbon_2023_118571 crossref_primary_10_1002_adfm_202204755 crossref_primary_10_1002_ente_202401049 crossref_primary_10_1016_j_apcatb_2023_122891 crossref_primary_10_1016_j_apcatb_2023_123342 crossref_primary_10_1039_D3NR06549A crossref_primary_10_1002_adma_202418681 crossref_primary_10_1016_j_ijhydene_2022_12_168 crossref_primary_10_1007_s40843_024_3165_6 crossref_primary_10_1002_anie_202502425 crossref_primary_10_1007_s10853_025_10612_3 crossref_primary_10_1016_j_jpowsour_2025_238145 crossref_primary_10_1016_j_ccr_2025_216834 crossref_primary_10_1021_jacs_3c12866 crossref_primary_10_1007_s10751_024_02207_2 crossref_primary_10_1039_D3NR05348B crossref_primary_10_1016_j_ces_2023_119460 crossref_primary_10_1002_adfm_202516439 crossref_primary_10_1016_j_ccr_2022_214772 crossref_primary_10_1002_ange_202305828 crossref_primary_10_1002_ange_202511048 crossref_primary_10_1002_aenm_202303442 crossref_primary_10_1016_j_ces_2023_118898 crossref_primary_10_1021_jacs_3c05650 crossref_primary_10_1016_j_jcis_2025_137630 crossref_primary_10_1002_advs_202507212 crossref_primary_10_1016_j_mtcata_2024_100043 crossref_primary_10_3390_polym15112570 crossref_primary_10_1016_j_cej_2023_146822 crossref_primary_10_1016_j_cej_2022_139475 crossref_primary_10_1016_j_ccr_2024_216021 crossref_primary_10_1016_j_commatsci_2025_113836 crossref_primary_10_1002_ange_202204967 crossref_primary_10_1016_j_ccr_2022_214761 crossref_primary_10_1002_sstr_202300293 crossref_primary_10_1002_adsc_202300239 crossref_primary_10_1016_j_jallcom_2023_168792 crossref_primary_10_1002_cssc_202301874 crossref_primary_10_1016_j_jallcom_2024_173516 crossref_primary_10_1039_D3NR00938F crossref_primary_10_1016_j_ijhydene_2025_150395 crossref_primary_10_3390_ijms24076861 crossref_primary_10_1002_smll_202305548 crossref_primary_10_1016_j_foodchem_2025_142891 crossref_primary_10_1002_ange_202416178 crossref_primary_10_1002_smll_202404808 crossref_primary_10_1016_j_cplett_2023_140889 crossref_primary_10_1016_j_ccst_2025_100523 crossref_primary_10_1002_adfm_202403656 crossref_primary_10_1016_j_jcis_2023_08_074 crossref_primary_10_1002_aenm_202400871 crossref_primary_10_1016_j_ccr_2025_216577 crossref_primary_10_1002_cjoc_202200691 crossref_primary_10_1016_j_snb_2022_131939 crossref_primary_10_1002_sstr_202200109 crossref_primary_10_1016_j_jtice_2024_105356 crossref_primary_10_1016_j_jcis_2023_06_181 crossref_primary_10_1016_j_aca_2023_342091 crossref_primary_10_1002_cctc_202400119 crossref_primary_10_1016_j_apcatb_2022_121590 crossref_primary_10_1002_smll_202207342 crossref_primary_10_1016_j_jcis_2023_07_151 crossref_primary_10_1016_j_jechem_2023_01_021 crossref_primary_10_1039_D3SC00487B crossref_primary_10_1002_smll_202409097 crossref_primary_10_1016_j_energy_2024_132640 crossref_primary_10_1002_advs_202407984 crossref_primary_10_1002_ange_202422382 crossref_primary_10_1002_anie_202422382 crossref_primary_10_1016_j_mtener_2024_101652 crossref_primary_10_1016_S1872_2067_24_60073_2 crossref_primary_10_1002_ange_202313591 crossref_primary_10_1016_j_cej_2024_153589 crossref_primary_10_1002_adfm_202203224 crossref_primary_10_1016_j_ijhydene_2024_03_301 crossref_primary_10_1002_anie_202418443 crossref_primary_10_1039_D5TA02579F |
| Cites_doi | 10.1021/acs.chemrev.7b00689 10.1021/jacs.5b08212 10.1039/C8SC02049C 10.1002/adma.202004393 10.1038/s41929-019-0246-2 10.1039/C4CC00408F 10.1002/anie.201912642 10.1021/jacs.0c05130 10.1021/acs.chemrev.0c01049 10.1016/j.jcis.2020.05.098 10.1038/s41467-018-04213-9 10.1016/j.nanoen.2018.07.045 10.1021/ja201165c 10.1002/anie.201800269 10.1002/smll.201804845 10.1038/s41565-020-00823-x 10.1021/acsami.1c01727 10.1002/adma.202004243 10.1021/acsami.0c05094 10.1039/D0TA10870G 10.1016/j.jcis.2019.08.005 10.1016/j.ccr.2017.09.001 10.1021/acs.chemrev.9b00220 10.1002/adma.201803291 10.1021/ja507619d 10.1002/chem.201705530 10.1038/s41560-020-0667-9 10.1021/jacs.8b07921 10.1021/jacs.6b09889 10.1002/advs.202000012 10.1002/anie.201910879 10.1002/advs.201802235 10.1016/j.chempr.2018.10.007 10.1039/C9CS00594C 10.1038/s41467-019-12510-0 10.1021/jacs.6b12630 10.1021/ja312380b 10.1038/ncomms8408 10.1016/j.ccr.2020.213435 10.1002/chem.202001792 10.1039/C5CS00670H 10.1021/acsami.7b07410 10.1038/ncomms4242 10.1038/s41563-019-0591-1 10.1021/jacs.8b06666 10.1016/j.pmatsci.2017.09.001 10.1021/jacs.8b06407 10.1002/adfm.202002664 10.1038/s41560-019-0402-6 10.1039/C5CS00414D 10.1002/anie.201704911 10.1021/jacs.0c09000 10.1038/nenergy.2017.111 10.1002/anie.201709558 10.1016/j.chempr.2017.09.009 10.1038/s41560-018-0296-8 10.1021/acs.jpcc.1c03418 10.1002/anie.202103398 10.1021/acs.chemrev.9b00248 10.1021/acscatal.7b02647 10.1002/chem.201900045 10.1038/ncomms10942 10.1002/anie.201909096 10.1016/j.mtnano.2020.100105 10.1038/s42004-021-00449-7 10.1039/C9TA02169H 10.1038/s41560-018-0308-8 10.1021/acs.chemrev.8b00056 10.1002/anie.201910309 10.1021/acs.langmuir.0c01128 10.1007/s12274-020-2733-9 10.1016/j.joule.2017.08.008 10.1002/cey2.45 10.1016/j.apcatb.2020.119295 10.1002/adma.201804257 10.1039/C7SC02688A 10.1039/C9CS00607A 10.1021/acscatal.8b04566 10.1039/C9TA10644H 10.1038/s41467-019-11267-w 10.1039/D0SC05889K 10.1002/aenm.201802052 10.1002/anie.202105966 10.1002/anie.201707568 10.1039/D0CS01160F 10.1016/j.ultsonch.2020.105179 10.1021/acscentsci.0c01488 10.1039/C4CS00484A 10.1021/jacs.1c01466 10.1002/adfm.201702067 10.1021/cm301194a 10.1002/cssc.201600693 10.1002/adma.201907818 10.1002/anie.202016129 10.1021/jacs.9b09298 10.1002/anie.201914395 10.1002/aenm.201803536 10.1002/adfm.202170323 10.1021/ja5116937 10.1038/nature19060 10.1021/ja510442p 10.1126/science.1230444 10.1038/s41467-020-15141-y 10.1002/chem.201605337 10.1002/cplu.201500206 10.1038/s41560-021-00881-y 10.1002/ange.202104564 10.1039/D0SC01408G 10.1002/aenm.201600458 10.1039/C8CC08156E 10.1002/smll.201805232 10.1021/jacs.7b07234 10.1002/anie.201506048 10.1002/aenm.201703614 10.1016/j.cattod.2016.05.008 10.1002/adma.202007733 10.1038/s41563-018-0033-5 10.1002/anie.201802521 10.1021/ja407115p 10.1038/s41467-020-16847-9 10.1039/c2ee22989g 10.1021/acsami.7b15969 10.1016/j.electacta.2020.135638 10.1002/anie.201914647 10.1021/jacs.5b02688 10.1039/D1TA01970H 10.1038/s41557-020-0473-9 10.1007/s12274-020-2874-x 10.1021/jacs.1c00666 10.1002/anie.202012971 10.1038/s41467-018-05141-4 10.1038/s41563-020-00847-7 10.1038/s41563-018-0189-z 10.1039/C6SC05080H 10.1016/j.ccr.2021.214119 10.1021/acssuschemeng.9b01131 10.1021/acsomega.9b03295 10.1038/s41565-019-0367-4 10.1021/jacs.5b09600 10.1021/jacs.0c07041 10.1021/acs.chemrev.7b00582 10.1039/D0TA03457F 10.1002/smtd.202000396 10.1002/adma.201800528 10.1021/acscatal.5b01767 10.1038/s41560-019-0450-y 10.1021/ja502765n 10.1038/s41467-020-14565-w 10.1039/C7TA07978H 10.1021/acs.chemrev.9b00766 10.1021/acsami.7b14523 10.1002/anie.201907002 10.1021/acsami.0c09323 10.1002/adma.201908398 10.1016/j.jcis.2018.09.066 |
| ContentType | Journal Article |
| Copyright | 2022 American Chemical Society |
| Copyright_xml | – notice: 2022 American Chemical Society |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1021/acsnano.1c10544 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1936-086X |
| EndPage | 1780 |
| ExternalDocumentID | 35049290 10_1021_acsnano_1c10544 e72422234 |
| Genre | Journal Article |
| GroupedDBID | - 23M 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED F5P GGK GNL IH9 IHE JG K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV BAANH CITATION CUPRZ ED~ JG~ NPM 7X8 |
| ID | FETCH-LOGICAL-a440t-fb0b8bcf9182c30d33e5a20b440602651b5f29e01cb8de73e1ed8a84ea54be3c3 |
| IEDL.DBID | ACS |
| ISICitedReferencesCount | 179 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000746453200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1936-0851 1936-086X |
| IngestDate | Fri Jul 11 10:45:25 EDT 2025 Thu Jan 02 22:54:39 EST 2025 Sat Nov 29 05:41:43 EST 2025 Tue Nov 18 22:37:54 EST 2025 Thu Feb 24 03:10:33 EST 2022 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Electrochemical energy conversion oxygen reduction/evolution hydrogen evolution reaction catalytic reaction mechanism intrinsic electrical conductivity carbon dioxide/nitrogen reduction electrocatalysis two-dimensional conjugated metal−organic framework |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a440t-fb0b8bcf9182c30d33e5a20b440602651b5f29e01cb8de73e1ed8a84ea54be3c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-2839-0253 0000-0003-3885-2703 0000-0002-4125-9284 |
| OpenAccessLink | https://tud.qucosa.de/id/qucosa%3A93958 |
| PMID | 35049290 |
| PQID | 2621661981 |
| PQPubID | 23479 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_2621661981 pubmed_primary_35049290 crossref_primary_10_1021_acsnano_1c10544 crossref_citationtrail_10_1021_acsnano_1c10544 acs_journals_10_1021_acsnano_1c10544 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-22 |
| PublicationDateYYYYMMDD | 2022-02-22 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ACS nano |
| PublicationTitleAlternate | ACS Nano |
| PublicationYear | 2022 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref136/cit136 ref137/cit137 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 ref132/cit132 ref91/cit91 ref148/cit148 ref55/cit55 ref144/cit144 ref12/cit12 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref140/cit140 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref152/cit152 ref153/cit153 ref154/cit154 ref27/cit27 ref150/cit150 ref63/cit63 ref151/cit151 ref56/cit56 ref92/cit92 ref155/cit155 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref147/cit147 ref143/cit143 ref53/cit53 ref145/cit145 ref21/cit21 ref149/cit149 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref138/cit138 ref79/cit79 ref139/cit139 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref134/cit134 ref135/cit135 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 ref146/cit146 ref26/cit26 ref142/cit142 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 ref7/cit7 |
| References_xml | – ident: ref2/cit2 doi: 10.1021/acs.chemrev.7b00689 – ident: ref23/cit23 doi: 10.1021/jacs.5b08212 – ident: ref140/cit140 doi: 10.1039/C8SC02049C – ident: ref98/cit98 doi: 10.1002/adma.202004393 – ident: ref8/cit8 doi: 10.1038/s41929-019-0246-2 – ident: ref61/cit61 doi: 10.1039/C4CC00408F – ident: ref86/cit86 doi: 10.1002/anie.201912642 – ident: ref4/cit4 doi: 10.1021/jacs.0c05130 – ident: ref50/cit50 doi: 10.1021/acs.chemrev.0c01049 – ident: ref102/cit102 doi: 10.1016/j.jcis.2020.05.098 – ident: ref124/cit124 doi: 10.1038/s41467-018-04213-9 – ident: ref25/cit25 doi: 10.1016/j.nanoen.2018.07.045 – ident: ref27/cit27 doi: 10.1021/ja201165c – ident: ref40/cit40 doi: 10.1002/anie.201800269 – ident: ref83/cit83 doi: 10.1002/smll.201804845 – ident: ref155/cit155 doi: 10.1038/s41565-020-00823-x – ident: ref131/cit131 doi: 10.1021/acsami.1c01727 – ident: ref112/cit112 doi: 10.1002/adma.202004243 – ident: ref149/cit149 doi: 10.1021/acsami.0c05094 – ident: ref134/cit134 doi: 10.1039/D0TA10870G – ident: ref44/cit44 doi: 10.1016/j.jcis.2019.08.005 – ident: ref34/cit34 doi: 10.1016/j.ccr.2017.09.001 – ident: ref120/cit120 doi: 10.1021/acs.chemrev.9b00220 – ident: ref21/cit21 doi: 10.1002/adma.201803291 – ident: ref78/cit78 doi: 10.1021/ja507619d – ident: ref63/cit63 doi: 10.1002/chem.201705530 – ident: ref7/cit7 doi: 10.1038/s41560-020-0667-9 – ident: ref71/cit71 doi: 10.1021/jacs.8b07921 – ident: ref91/cit91 doi: 10.1021/jacs.6b09889 – ident: ref129/cit129 doi: 10.1002/advs.202000012 – ident: ref139/cit139 doi: 10.1002/anie.201910879 – ident: ref60/cit60 doi: 10.1002/advs.201802235 – ident: ref152/cit152 doi: 10.1016/j.chempr.2018.10.007 – ident: ref58/cit58 doi: 10.1039/C9CS00594C – ident: ref105/cit105 doi: 10.1038/s41467-019-12510-0 – ident: ref70/cit70 doi: 10.1021/jacs.6b12630 – ident: ref67/cit67 doi: 10.1021/ja312380b – ident: ref73/cit73 doi: 10.1038/ncomms8408 – ident: ref29/cit29 doi: 10.1016/j.ccr.2020.213435 – ident: ref62/cit62 doi: 10.1002/chem.202001792 – ident: ref116/cit116 doi: 10.1039/C5CS00670H – ident: ref136/cit136 doi: 10.1021/acsami.7b07410 – ident: ref144/cit144 doi: 10.1038/ncomms4242 – ident: ref3/cit3 doi: 10.1038/s41563-019-0591-1 – ident: ref69/cit69 doi: 10.1021/jacs.8b06666 – ident: ref109/cit109 doi: 10.1016/j.pmatsci.2017.09.001 – ident: ref24/cit24 doi: 10.1021/jacs.8b06407 – ident: ref26/cit26 doi: 10.1002/adfm.202002664 – ident: ref15/cit15 doi: 10.1038/s41560-019-0402-6 – ident: ref117/cit117 doi: 10.1039/C5CS00414D – ident: ref19/cit19 doi: 10.1002/anie.201704911 – ident: ref68/cit68 doi: 10.1021/jacs.0c09000 – ident: ref9/cit9 doi: 10.1038/nenergy.2017.111 – ident: ref82/cit82 doi: 10.1002/anie.201709558 – ident: ref125/cit125 doi: 10.1016/j.chempr.2017.09.009 – ident: ref13/cit13 doi: 10.1038/s41560-018-0296-8 – ident: ref77/cit77 doi: 10.1021/acs.jpcc.1c03418 – ident: ref103/cit103 doi: 10.1002/anie.202103398 – ident: ref111/cit111 doi: 10.1021/acs.chemrev.9b00248 – ident: ref141/cit141 doi: 10.1021/acscatal.7b02647 – ident: ref154/cit154 doi: 10.1002/chem.201900045 – ident: ref53/cit53 doi: 10.1038/ncomms10942 – ident: ref95/cit95 doi: 10.1002/anie.201909096 – ident: ref49/cit49 doi: 10.1016/j.mtnano.2020.100105 – ident: ref151/cit151 doi: 10.1038/s42004-021-00449-7 – ident: ref106/cit106 doi: 10.1039/C9TA02169H – ident: ref12/cit12 doi: 10.1038/s41560-018-0308-8 – ident: ref80/cit80 doi: 10.1021/acs.chemrev.8b00056 – ident: ref41/cit41 doi: 10.1002/anie.201910309 – ident: ref133/cit133 doi: 10.1021/acs.langmuir.0c01128 – ident: ref148/cit148 doi: 10.1007/s12274-020-2733-9 – ident: ref35/cit35 doi: 10.1016/j.joule.2017.08.008 – ident: ref48/cit48 doi: 10.1002/cey2.45 – ident: ref100/cit100 doi: 10.1016/j.apcatb.2020.119295 – ident: ref121/cit121 doi: 10.1002/adma.201804257 – ident: ref130/cit130 doi: 10.1039/C7SC02688A – ident: ref113/cit113 doi: 10.1039/C9CS00607A – ident: ref110/cit110 doi: 10.1021/acscatal.8b04566 – ident: ref101/cit101 doi: 10.1039/C9TA10644H – ident: ref75/cit75 doi: 10.1038/s41467-019-11267-w – ident: ref47/cit47 doi: 10.1039/D0SC05889K – ident: ref94/cit94 doi: 10.1002/aenm.201802052 – ident: ref147/cit147 doi: 10.1002/anie.202105966 – ident: ref46/cit46 doi: 10.1002/anie.201707568 – ident: ref5/cit5 doi: 10.1039/D0CS01160F – ident: ref138/cit138 doi: 10.1016/j.ultsonch.2020.105179 – ident: ref90/cit90 doi: 10.1021/acscentsci.0c01488 – ident: ref119/cit119 doi: 10.1039/C4CS00484A – ident: ref146/cit146 doi: 10.1021/jacs.1c01466 – ident: ref107/cit107 doi: 10.1002/adfm.201702067 – ident: ref59/cit59 doi: 10.1021/cm301194a – ident: ref31/cit31 doi: 10.1002/cssc.201600693 – ident: ref1/cit1 doi: 10.1002/adma.201907818 – ident: ref143/cit143 doi: 10.1002/anie.202016129 – ident: ref28/cit28 doi: 10.1021/jacs.9b09298 – ident: ref89/cit89 doi: 10.1002/anie.201914395 – ident: ref145/cit145 doi: 10.1002/aenm.201803536 – ident: ref45/cit45 doi: 10.1002/adfm.202170323 – ident: ref51/cit51 doi: 10.1021/ja5116937 – ident: ref17/cit17 doi: 10.1038/nature19060 – ident: ref108/cit108 doi: 10.1021/ja510442p – ident: ref20/cit20 doi: 10.1126/science.1230444 – ident: ref55/cit55 doi: 10.1038/s41467-020-15141-y – ident: ref128/cit128 doi: 10.1002/chem.201605337 – ident: ref64/cit64 doi: 10.1002/cplu.201500206 – ident: ref85/cit85 doi: 10.1038/s41560-021-00881-y – ident: ref142/cit142 doi: 10.1002/ange.202104564 – ident: ref81/cit81 doi: 10.1039/D0SC01408G – ident: ref115/cit115 doi: 10.1002/aenm.201600458 – ident: ref132/cit132 doi: 10.1039/C8CC08156E – ident: ref137/cit137 doi: 10.1002/smll.201805232 – ident: ref66/cit66 doi: 10.1021/jacs.7b07234 – ident: ref52/cit52 doi: 10.1002/anie.201506048 – ident: ref122/cit122 doi: 10.1002/aenm.201703614 – ident: ref126/cit126 doi: 10.1016/j.cattod.2016.05.008 – ident: ref150/cit150 doi: 10.1002/adma.202007733 – ident: ref36/cit36 doi: 10.1038/s41563-018-0033-5 – ident: ref92/cit92 doi: 10.1002/anie.201802521 – ident: ref114/cit114 doi: 10.1021/ja407115p – ident: ref16/cit16 doi: 10.1038/s41467-020-16847-9 – ident: ref33/cit33 doi: 10.1039/c2ee22989g – ident: ref127/cit127 doi: 10.1021/acsami.7b15969 – ident: ref153/cit153 doi: 10.1016/j.electacta.2020.135638 – ident: ref11/cit11 doi: 10.1002/anie.201914647 – ident: ref30/cit30 doi: 10.1021/jacs.5b02688 – ident: ref104/cit104 doi: 10.1039/D1TA01970H – ident: ref18/cit18 doi: 10.1038/s41557-020-0473-9 – ident: ref72/cit72 doi: 10.1007/s12274-020-2874-x – ident: ref88/cit88 doi: 10.1021/jacs.1c00666 – ident: ref84/cit84 doi: 10.1002/anie.202012971 – ident: ref74/cit74 doi: 10.1038/s41467-018-05141-4 – ident: ref79/cit79 doi: 10.1038/s41563-020-00847-7 – ident: ref76/cit76 doi: 10.1038/s41563-018-0189-z – ident: ref87/cit87 doi: 10.1039/C6SC05080H – ident: ref57/cit57 doi: 10.1016/j.ccr.2021.214119 – ident: ref43/cit43 doi: 10.1021/acssuschemeng.9b01131 – ident: ref37/cit37 doi: 10.1021/acsomega.9b03295 – ident: ref14/cit14 doi: 10.1038/s41565-019-0367-4 – ident: ref65/cit65 doi: 10.1021/jacs.5b09600 – ident: ref99/cit99 doi: 10.1021/jacs.0c07041 – ident: ref22/cit22 doi: 10.1021/acs.chemrev.7b00582 – ident: ref39/cit39 doi: 10.1039/D0TA03457F – ident: ref42/cit42 doi: 10.1002/smtd.202000396 – ident: ref6/cit6 doi: 10.1002/adma.201800528 – ident: ref32/cit32 doi: 10.1021/acscatal.5b01767 – ident: ref10/cit10 doi: 10.1038/s41560-019-0450-y – ident: ref93/cit93 doi: 10.1021/ja502765n – ident: ref118/cit118 doi: 10.1038/s41467-020-14565-w – ident: ref54/cit54 doi: 10.1039/C7TA07978H – ident: ref56/cit56 doi: 10.1021/acs.chemrev.9b00766 – ident: ref96/cit96 doi: 10.1021/acsami.7b14523 – ident: ref97/cit97 doi: 10.1002/anie.201907002 – ident: ref135/cit135 doi: 10.1021/acsami.0c09323 – ident: ref123/cit123 doi: 10.1002/adma.201908398 – ident: ref38/cit38 doi: 10.1016/j.jcis.2018.09.066 |
| SSID | ssj0057876 |
| Score | 2.6832051 |
| SecondaryResourceType | review_article |
| Snippet | A highly effective electrocatalyst is the central component of advanced electrochemical energy conversion. Recently, two-dimensional conjugated metal–organic... A highly effective electrocatalyst is the central component of advanced electrochemical energy conversion. Recently, two-dimensional conjugated metal-organic... |
| SourceID | proquest pubmed crossref acs |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1759 |
| Title | Two-Dimensional Conjugated Metal–Organic Frameworks for Electrocatalysis: Opportunities and Challenges |
| URI | http://dx.doi.org/10.1021/acsnano.1c10544 https://www.ncbi.nlm.nih.gov/pubmed/35049290 https://www.proquest.com/docview/2621661981 |
| Volume | 16 |
| WOSCitedRecordID | wos000746453200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1936-086X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057876 issn: 1936-0851 databaseCode: ACS dateStart: 20070801 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB61Ww7tAQqUskArI-2BS7bxTxKb2yrsqpe2SGylvUW246itkLPabODKO_CGPAl2fhYoWqk9xx45M7bn84z9DcAIF7GOw0QEJvbRKqpEoEQRBZhKgY1yPqdgTbGJ5PKSLxbi8x-y6PsZfILPpK6stOUYawcFGNuFPeJArr-9N0m_9Juun3dxm0B2B2SHIjYsPv8J8G5IV_-6oS3YsvExs2ePGN0hPO2AJJq0ln8OO8a-gIO_6AVfws38exl88vT9LfUGSkt7V_u4WY4ujEPdv378bN9iajTrL2lVyMFYNG2r4zTBHc9Z8hFdLT1Sr23DwIqkzVHa12GpjuB6Np2n50FXWSGQjIXroFCh4koXwp0uNA1zSk0kSajcR1-SKsIqKogwIdaK5yahBpucS86MjJgyVNNXMLClNa8BefygcG6EwoqFTHMnwcEYt4VyHSfaDGHkdJR1K6PKmqQ3wVmnuKxT3BDGvT0y3bGT-yIZX7d3-LDpsGyJObY3fd8bOHOLx2dEpDVlXWUkJtiNVXA8hOPW8hthNHKHJyLCNw_7gbewT_zLCP_anbyDwXpVmxN4or-tb6vVKewmC37aTNnfmSvoQw |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD7aBWnbw8ZtrGOAkfrASzo7dtKYt6lrVURbkChS36LYcQQIOVXTbq_7D_uH-yU7zqWApkrsNYmPHPs457NPzvcBtFkW6pB2pWdCd1rFlfSUzAKP8UQyozDmZKIUm-hOJtFsJr9uAW1qYbATBVoqyiT-H3YBdo7XbGLzDtOICITYht0Ag6vTLLjofWu-vc79wiqPjPtkBBNrMp8HBlw00sW_0WgDxCxDzeDo8Z18Coc1rCQXlR88gy1jn8PBX2SDL-DH9Dr3Lh2Zf0XEQXq5_bVyp2gpGRvE4Hc3t1VlpiaD5petgiCoJf1KK6c86nEMJh_Jl7nD7Stb8rGSxKak16iyFC_h-6A_7Q29WmfBS4SgSy9TVEVKZxL3GprTlHMTJD5VeNMJVAVMBZkvDWVaRanpcsNMGiWRMEkglOGaH8OOza05AeLQhGKpkYopQYWO0AKCGvygRjrsatOCNo5RXK-TIi5T4D6L64GL64FrQaeZlljXXOVOMuP35gYf1g3mFU3H5kffN_Mc41Jy-ZHEmnxVxH7oM-yrjFgLXlUOsDbGA9xK-ZKe_t8LvIO94XQ8ikefJp9fw77vaiZcHbx_BjvLxcq8gSf6avmzWLwt_fceY2fvwQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IXrw_VifETx4qTZN2m28yeqiqKuggrfSpCkqki52V6_-B_-hv8RJH4siC-K1bYY0mXS-ZDrfB7BL00AFblM4OrCnVUwKR4rUdyiLBdUSY07KC7GJZqcT3t-L66oozNbCYCdytJQXSXy7qrtJWjEM0AO8bmKT7VOFqIDzURj3MZxb3YKj1k39_bUuGJS5ZNwrI6AYEPr8MmAjksp_RqQhMLMIN-3Z_3V0DmYqeEmOSn-YhxFtFmD6G-ngIjzcvmXOsSX1Lwk5SCszT317mpaQS41Y_PP9o6zQVKRd_7qVEwS35KTUzCmOfCyTySG56lr83jcFLyuJTUJatTpLvgR37ZPb1qlT6S04Meduz0mlK0OpUoF7DsXchDHtx54r8aYVqvKp9FNPaJcqGSa6yTTVSRiHXMc-l5optgxjJjN6FYhFFZImWkgquctViBYQ3OCHNVRBU-kG7OIYRdV6yaMiFe7RqBq4qBq4BuzXUxOpirPcSmc8D2-wN2jQLek6hj-6U891hEvK5klio7N-HnmBR7GvIqQNWCmdYGCM-bil8oS79rcX2IbJ6-N2dHHWOV-HKc-WTthyeG8Dxnovfb0JE-q195i_bBUu_AUQA_I7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Dimensional+Conjugated+Metal%E2%80%93Organic+Frameworks+for+Electrocatalysis%3A+Opportunities+and+Challenges&rft.jtitle=ACS+nano&rft.au=Zhong%2C+Haixia&rft.au=Wang%2C+Mingchao&rft.au=Chen%2C+Guangbo&rft.au=Dong%2C+Renhao&rft.date=2022-02-22&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=16&rft.issue=2&rft.spage=1759&rft.epage=1780&rft_id=info:doi/10.1021%2Facsnano.1c10544&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_1c10544 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |