Two-Dimensional Conjugated Metal–Organic Frameworks for Electrocatalysis: Opportunities and Challenges

A highly effective electrocatalyst is the central component of advanced electrochemical energy conversion. Recently, two-dimensional conjugated metal–organic frameworks (2D c-MOFs) have emerged as a class of promising electrocatalysts because of their advantages including 2D layered structure with h...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ACS nano Ročník 16; číslo 2; s. 1759 - 1780
Hlavní autoři: Zhong, Haixia, Wang, Mingchao, Chen, Guangbo, Dong, Renhao, Feng, Xinliang
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Chemical Society 22.02.2022
Témata:
ISSN:1936-0851, 1936-086X, 1936-086X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A highly effective electrocatalyst is the central component of advanced electrochemical energy conversion. Recently, two-dimensional conjugated metal–organic frameworks (2D c-MOFs) have emerged as a class of promising electrocatalysts because of their advantages including 2D layered structure with high in-plane conjugation, intrinsic electrical conductivity, permanent pores, large surface area, chemical stability, and structural diversity. In this Review, we summarize the recent advances of 2D c-MOF electrocatalysts for electrochemical energy conversion. First, we introduce the chemical design principles and synthetic strategies of the reported 2D c-MOFs, as well as the functional design for the electrocatalysis. Subsequently, we present the representative 2D c-MOF electrocatalysts in various electrochemical reactions, such as hydrogen/oxygen evolution, and reduction reactions of oxygen, carbon dioxide, and nitrogen. We highlight the strategies for the structural design and property tuning of 2D c-MOF electrocatalysts to boost the catalytic performance, and we offer our perspectives in regard to the challenges to be overcome.
AbstractList A highly effective electrocatalyst is the central component of advanced electrochemical energy conversion. Recently, two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as a class of promising electrocatalysts because of their advantages including 2D layered structure with high in-plane conjugation, intrinsic electrical conductivity, permanent pores, large surface area, chemical stability, and structural diversity. In this Review, we summarize the recent advances of 2D c-MOF electrocatalysts for electrochemical energy conversion. First, we introduce the chemical design principles and synthetic strategies of the reported 2D c-MOFs, as well as the functional design for the electrocatalysis. Subsequently, we present the representative 2D c-MOF electrocatalysts in various electrochemical reactions, such as hydrogen/oxygen evolution, and reduction reactions of oxygen, carbon dioxide, and nitrogen. We highlight the strategies for the structural design and property tuning of 2D c-MOF electrocatalysts to boost the catalytic performance, and we offer our perspectives in regard to the challenges to be overcome.A highly effective electrocatalyst is the central component of advanced electrochemical energy conversion. Recently, two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as a class of promising electrocatalysts because of their advantages including 2D layered structure with high in-plane conjugation, intrinsic electrical conductivity, permanent pores, large surface area, chemical stability, and structural diversity. In this Review, we summarize the recent advances of 2D c-MOF electrocatalysts for electrochemical energy conversion. First, we introduce the chemical design principles and synthetic strategies of the reported 2D c-MOFs, as well as the functional design for the electrocatalysis. Subsequently, we present the representative 2D c-MOF electrocatalysts in various electrochemical reactions, such as hydrogen/oxygen evolution, and reduction reactions of oxygen, carbon dioxide, and nitrogen. We highlight the strategies for the structural design and property tuning of 2D c-MOF electrocatalysts to boost the catalytic performance, and we offer our perspectives in regard to the challenges to be overcome.
A highly effective electrocatalyst is the central component of advanced electrochemical energy conversion. Recently, two-dimensional conjugated metal–organic frameworks (2D c-MOFs) have emerged as a class of promising electrocatalysts because of their advantages including 2D layered structure with high in-plane conjugation, intrinsic electrical conductivity, permanent pores, large surface area, chemical stability, and structural diversity. In this Review, we summarize the recent advances of 2D c-MOF electrocatalysts for electrochemical energy conversion. First, we introduce the chemical design principles and synthetic strategies of the reported 2D c-MOFs, as well as the functional design for the electrocatalysis. Subsequently, we present the representative 2D c-MOF electrocatalysts in various electrochemical reactions, such as hydrogen/oxygen evolution, and reduction reactions of oxygen, carbon dioxide, and nitrogen. We highlight the strategies for the structural design and property tuning of 2D c-MOF electrocatalysts to boost the catalytic performance, and we offer our perspectives in regard to the challenges to be overcome.
Author Zhong, Haixia
Chen, Guangbo
Wang, Mingchao
Feng, Xinliang
Dong, Renhao
AuthorAffiliation Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry
Max Planck Institute of Microstructure Physics
Shandong University
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering
– name: Shandong University
– name: Max Planck Institute of Microstructure Physics
– name: Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry
Author_xml – sequence: 1
  givenname: Haixia
  orcidid: 0000-0002-2839-0253
  surname: Zhong
  fullname: Zhong, Haixia
  organization: Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry
– sequence: 2
  givenname: Mingchao
  surname: Wang
  fullname: Wang, Mingchao
  organization: Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry
– sequence: 3
  givenname: Guangbo
  surname: Chen
  fullname: Chen, Guangbo
  organization: Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry
– sequence: 4
  givenname: Renhao
  orcidid: 0000-0002-4125-9284
  surname: Dong
  fullname: Dong, Renhao
  email: renhao.dong@tu-dresden.de
  organization: Shandong University
– sequence: 5
  givenname: Xinliang
  orcidid: 0000-0003-3885-2703
  surname: Feng
  fullname: Feng, Xinliang
  email: xinliang.feng@tu-dresden.de
  organization: Max Planck Institute of Microstructure Physics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35049290$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1PwzAQhi0EonzNbCgjEkprJ3GasKFAAQnUpUhs0cW5tC6OXWxHiI3_wD_klxDUwoAE0530Pu8Nz-2TbW00EnLM6JDRiI1AOA3aDJlglCfJFtljeZyGNEsft392zgZk37klpXycjdNdMog5TfIop3tkMXsx4aVsUTtpNKigMHrZzcFjHdyjB_Xx9j61c9BSBBMLLb4Y--SCxtjgSqHw1gjoqVcn3XkwXa2M9Z2WXqILQNdBsQClUM_RHZKdBpTDo808IA-Tq1lxE95Nr2-Li7sQkoT6sKlolVWiyVkWiZjWcYwcIlr1YUqjlLOKN1GOlIkqq3EcI8M6gyxB4EmFsYgPyOn67sqa5w6dL1vpBCoFGk3nyiiNWJqyPGM9erJBu6rFulxZ2YJ9Lb_t9MBoDQhrnLPY_CCMll_-y43_cuO_b_BfDSE9-F6ttyDVP72zda8PyqXpbP8K9yf9CSFLnUY
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_156553
crossref_primary_10_1016_j_watres_2023_119576
crossref_primary_10_1002_adfm_202424018
crossref_primary_10_1002_anie_202413115
crossref_primary_10_1002_smll_202401278
crossref_primary_10_1007_s10853_025_11392_6
crossref_primary_10_1002_anse_202500069
crossref_primary_10_1016_j_ccr_2023_215300
crossref_primary_10_1016_j_renene_2025_122661
crossref_primary_10_1002_adma_202209855
crossref_primary_10_1002_anie_202313591
crossref_primary_10_1007_s12598_025_03385_w
crossref_primary_10_1016_j_jallcom_2022_168084
crossref_primary_10_1002_smll_202412338
crossref_primary_10_1039_D5CC01825K
crossref_primary_10_1002_anie_202214707
crossref_primary_10_1016_j_seppur_2024_131275
crossref_primary_10_1515_nanoph_2023_0383
crossref_primary_10_1039_D3RA07059J
crossref_primary_10_1007_s00604_024_06587_8
crossref_primary_10_1002_ange_202418443
crossref_primary_10_1002_cnma_202300171
crossref_primary_10_1002_smll_202311584
crossref_primary_10_1002_ange_202502425
crossref_primary_10_1002_smll_202207877
crossref_primary_10_1016_j_jcis_2023_12_004
crossref_primary_10_1002_advs_202513012
crossref_primary_10_1002_adfm_202421318
crossref_primary_10_1016_j_ultsonch_2023_106503
crossref_primary_10_1002_anie_202511048
crossref_primary_10_1021_jacs_4c11782
crossref_primary_10_1021_acsami_5c00064
crossref_primary_10_1002_anie_202305828
crossref_primary_10_1016_j_apsusc_2025_164331
crossref_primary_10_1016_j_ccr_2024_216061
crossref_primary_10_3390_ijms232315405
crossref_primary_10_1016_j_jallcom_2022_165939
crossref_primary_10_1016_j_mtnano_2025_100658
crossref_primary_10_1016_j_jcis_2025_137762
crossref_primary_10_1021_jacs_4c06935
crossref_primary_10_1016_j_nanoen_2025_111423
crossref_primary_10_1002_anie_202204967
crossref_primary_10_1007_s11426_022_1448_8
crossref_primary_10_1002_smsc_202400446
crossref_primary_10_1016_j_apcata_2023_119304
crossref_primary_10_1016_j_cej_2024_156021
crossref_primary_10_1016_j_cej_2024_154483
crossref_primary_10_1088_2053_1583_acb784
crossref_primary_10_1002_cctc_202400438
crossref_primary_10_1002_smll_202304808
crossref_primary_10_1002_ange_202413115
crossref_primary_10_1002_ange_202510698
crossref_primary_10_1002_anie_202416178
crossref_primary_10_1021_jacs_2c10823
crossref_primary_10_1039_D3CY01105D
crossref_primary_10_1002_ange_202214707
crossref_primary_10_1016_j_jpowsour_2025_237126
crossref_primary_10_1016_j_jmst_2024_11_081
crossref_primary_10_1021_jacs_2c11597
crossref_primary_10_1002_adfm_202308497
crossref_primary_10_1039_D5SC00463B
crossref_primary_10_1016_j_cclet_2022_107861
crossref_primary_10_1002_anie_202510698
crossref_primary_10_1016_j_chempr_2022_03_027
crossref_primary_10_1039_D5CY00362H
crossref_primary_10_1016_j_ijhydene_2023_04_241
crossref_primary_10_26599_NR_2025_94907439
crossref_primary_10_1016_j_carbon_2023_118571
crossref_primary_10_1002_adfm_202204755
crossref_primary_10_1002_ente_202401049
crossref_primary_10_1016_j_apcatb_2023_122891
crossref_primary_10_1016_j_apcatb_2023_123342
crossref_primary_10_1039_D3NR06549A
crossref_primary_10_1002_adma_202418681
crossref_primary_10_1016_j_ijhydene_2022_12_168
crossref_primary_10_1007_s40843_024_3165_6
crossref_primary_10_1002_anie_202502425
crossref_primary_10_1007_s10853_025_10612_3
crossref_primary_10_1016_j_jpowsour_2025_238145
crossref_primary_10_1016_j_ccr_2025_216834
crossref_primary_10_1021_jacs_3c12866
crossref_primary_10_1007_s10751_024_02207_2
crossref_primary_10_1039_D3NR05348B
crossref_primary_10_1016_j_ces_2023_119460
crossref_primary_10_1002_adfm_202516439
crossref_primary_10_1016_j_ccr_2022_214772
crossref_primary_10_1002_ange_202305828
crossref_primary_10_1002_ange_202511048
crossref_primary_10_1002_aenm_202303442
crossref_primary_10_1016_j_ces_2023_118898
crossref_primary_10_1021_jacs_3c05650
crossref_primary_10_1016_j_jcis_2025_137630
crossref_primary_10_1002_advs_202507212
crossref_primary_10_1016_j_mtcata_2024_100043
crossref_primary_10_3390_polym15112570
crossref_primary_10_1016_j_cej_2023_146822
crossref_primary_10_1016_j_cej_2022_139475
crossref_primary_10_1016_j_ccr_2024_216021
crossref_primary_10_1016_j_commatsci_2025_113836
crossref_primary_10_1002_ange_202204967
crossref_primary_10_1016_j_ccr_2022_214761
crossref_primary_10_1002_sstr_202300293
crossref_primary_10_1002_adsc_202300239
crossref_primary_10_1016_j_jallcom_2023_168792
crossref_primary_10_1002_cssc_202301874
crossref_primary_10_1016_j_jallcom_2024_173516
crossref_primary_10_1039_D3NR00938F
crossref_primary_10_1016_j_ijhydene_2025_150395
crossref_primary_10_3390_ijms24076861
crossref_primary_10_1002_smll_202305548
crossref_primary_10_1016_j_foodchem_2025_142891
crossref_primary_10_1002_ange_202416178
crossref_primary_10_1002_smll_202404808
crossref_primary_10_1016_j_cplett_2023_140889
crossref_primary_10_1016_j_ccst_2025_100523
crossref_primary_10_1002_adfm_202403656
crossref_primary_10_1016_j_jcis_2023_08_074
crossref_primary_10_1002_aenm_202400871
crossref_primary_10_1016_j_ccr_2025_216577
crossref_primary_10_1002_cjoc_202200691
crossref_primary_10_1016_j_snb_2022_131939
crossref_primary_10_1002_sstr_202200109
crossref_primary_10_1016_j_jtice_2024_105356
crossref_primary_10_1016_j_jcis_2023_06_181
crossref_primary_10_1016_j_aca_2023_342091
crossref_primary_10_1002_cctc_202400119
crossref_primary_10_1016_j_apcatb_2022_121590
crossref_primary_10_1002_smll_202207342
crossref_primary_10_1016_j_jcis_2023_07_151
crossref_primary_10_1016_j_jechem_2023_01_021
crossref_primary_10_1039_D3SC00487B
crossref_primary_10_1002_smll_202409097
crossref_primary_10_1016_j_energy_2024_132640
crossref_primary_10_1002_advs_202407984
crossref_primary_10_1002_ange_202422382
crossref_primary_10_1002_anie_202422382
crossref_primary_10_1016_j_mtener_2024_101652
crossref_primary_10_1016_S1872_2067_24_60073_2
crossref_primary_10_1002_ange_202313591
crossref_primary_10_1016_j_cej_2024_153589
crossref_primary_10_1002_adfm_202203224
crossref_primary_10_1016_j_ijhydene_2024_03_301
crossref_primary_10_1002_anie_202418443
crossref_primary_10_1039_D5TA02579F
Cites_doi 10.1021/acs.chemrev.7b00689
10.1021/jacs.5b08212
10.1039/C8SC02049C
10.1002/adma.202004393
10.1038/s41929-019-0246-2
10.1039/C4CC00408F
10.1002/anie.201912642
10.1021/jacs.0c05130
10.1021/acs.chemrev.0c01049
10.1016/j.jcis.2020.05.098
10.1038/s41467-018-04213-9
10.1016/j.nanoen.2018.07.045
10.1021/ja201165c
10.1002/anie.201800269
10.1002/smll.201804845
10.1038/s41565-020-00823-x
10.1021/acsami.1c01727
10.1002/adma.202004243
10.1021/acsami.0c05094
10.1039/D0TA10870G
10.1016/j.jcis.2019.08.005
10.1016/j.ccr.2017.09.001
10.1021/acs.chemrev.9b00220
10.1002/adma.201803291
10.1021/ja507619d
10.1002/chem.201705530
10.1038/s41560-020-0667-9
10.1021/jacs.8b07921
10.1021/jacs.6b09889
10.1002/advs.202000012
10.1002/anie.201910879
10.1002/advs.201802235
10.1016/j.chempr.2018.10.007
10.1039/C9CS00594C
10.1038/s41467-019-12510-0
10.1021/jacs.6b12630
10.1021/ja312380b
10.1038/ncomms8408
10.1016/j.ccr.2020.213435
10.1002/chem.202001792
10.1039/C5CS00670H
10.1021/acsami.7b07410
10.1038/ncomms4242
10.1038/s41563-019-0591-1
10.1021/jacs.8b06666
10.1016/j.pmatsci.2017.09.001
10.1021/jacs.8b06407
10.1002/adfm.202002664
10.1038/s41560-019-0402-6
10.1039/C5CS00414D
10.1002/anie.201704911
10.1021/jacs.0c09000
10.1038/nenergy.2017.111
10.1002/anie.201709558
10.1016/j.chempr.2017.09.009
10.1038/s41560-018-0296-8
10.1021/acs.jpcc.1c03418
10.1002/anie.202103398
10.1021/acs.chemrev.9b00248
10.1021/acscatal.7b02647
10.1002/chem.201900045
10.1038/ncomms10942
10.1002/anie.201909096
10.1016/j.mtnano.2020.100105
10.1038/s42004-021-00449-7
10.1039/C9TA02169H
10.1038/s41560-018-0308-8
10.1021/acs.chemrev.8b00056
10.1002/anie.201910309
10.1021/acs.langmuir.0c01128
10.1007/s12274-020-2733-9
10.1016/j.joule.2017.08.008
10.1002/cey2.45
10.1016/j.apcatb.2020.119295
10.1002/adma.201804257
10.1039/C7SC02688A
10.1039/C9CS00607A
10.1021/acscatal.8b04566
10.1039/C9TA10644H
10.1038/s41467-019-11267-w
10.1039/D0SC05889K
10.1002/aenm.201802052
10.1002/anie.202105966
10.1002/anie.201707568
10.1039/D0CS01160F
10.1016/j.ultsonch.2020.105179
10.1021/acscentsci.0c01488
10.1039/C4CS00484A
10.1021/jacs.1c01466
10.1002/adfm.201702067
10.1021/cm301194a
10.1002/cssc.201600693
10.1002/adma.201907818
10.1002/anie.202016129
10.1021/jacs.9b09298
10.1002/anie.201914395
10.1002/aenm.201803536
10.1002/adfm.202170323
10.1021/ja5116937
10.1038/nature19060
10.1021/ja510442p
10.1126/science.1230444
10.1038/s41467-020-15141-y
10.1002/chem.201605337
10.1002/cplu.201500206
10.1038/s41560-021-00881-y
10.1002/ange.202104564
10.1039/D0SC01408G
10.1002/aenm.201600458
10.1039/C8CC08156E
10.1002/smll.201805232
10.1021/jacs.7b07234
10.1002/anie.201506048
10.1002/aenm.201703614
10.1016/j.cattod.2016.05.008
10.1002/adma.202007733
10.1038/s41563-018-0033-5
10.1002/anie.201802521
10.1021/ja407115p
10.1038/s41467-020-16847-9
10.1039/c2ee22989g
10.1021/acsami.7b15969
10.1016/j.electacta.2020.135638
10.1002/anie.201914647
10.1021/jacs.5b02688
10.1039/D1TA01970H
10.1038/s41557-020-0473-9
10.1007/s12274-020-2874-x
10.1021/jacs.1c00666
10.1002/anie.202012971
10.1038/s41467-018-05141-4
10.1038/s41563-020-00847-7
10.1038/s41563-018-0189-z
10.1039/C6SC05080H
10.1016/j.ccr.2021.214119
10.1021/acssuschemeng.9b01131
10.1021/acsomega.9b03295
10.1038/s41565-019-0367-4
10.1021/jacs.5b09600
10.1021/jacs.0c07041
10.1021/acs.chemrev.7b00582
10.1039/D0TA03457F
10.1002/smtd.202000396
10.1002/adma.201800528
10.1021/acscatal.5b01767
10.1038/s41560-019-0450-y
10.1021/ja502765n
10.1038/s41467-020-14565-w
10.1039/C7TA07978H
10.1021/acs.chemrev.9b00766
10.1021/acsami.7b14523
10.1002/anie.201907002
10.1021/acsami.0c09323
10.1002/adma.201908398
10.1016/j.jcis.2018.09.066
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.1c10544
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 1780
ExternalDocumentID 35049290
10_1021_acsnano_1c10544
e72422234
Genre Journal Article
GroupedDBID -
23M
4.4
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
BAANH
CITATION
CUPRZ
ED~
JG~
NPM
7X8
ID FETCH-LOGICAL-a440t-fb0b8bcf9182c30d33e5a20b440602651b5f29e01cb8de73e1ed8a84ea54be3c3
IEDL.DBID ACS
ISICitedReferencesCount 179
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000746453200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 10:45:25 EDT 2025
Thu Jan 02 22:54:39 EST 2025
Sat Nov 29 05:41:43 EST 2025
Tue Nov 18 22:37:54 EST 2025
Thu Feb 24 03:10:33 EST 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Electrochemical energy conversion
oxygen reduction/evolution
hydrogen evolution reaction
catalytic reaction mechanism
intrinsic electrical conductivity
carbon dioxide/nitrogen reduction
electrocatalysis
two-dimensional conjugated metal−organic framework
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a440t-fb0b8bcf9182c30d33e5a20b440602651b5f29e01cb8de73e1ed8a84ea54be3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2839-0253
0000-0003-3885-2703
0000-0002-4125-9284
OpenAccessLink https://tud.qucosa.de/id/qucosa%3A93958
PMID 35049290
PQID 2621661981
PQPubID 23479
PageCount 22
ParticipantIDs proquest_miscellaneous_2621661981
pubmed_primary_35049290
crossref_primary_10_1021_acsnano_1c10544
crossref_citationtrail_10_1021_acsnano_1c10544
acs_journals_10_1021_acsnano_1c10544
PublicationCentury 2000
PublicationDate 2022-02-22
PublicationDateYYYYMMDD 2022-02-22
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref128/cit128
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
ref136/cit136
ref137/cit137
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref28/cit28
ref132/cit132
ref91/cit91
ref148/cit148
ref55/cit55
ref144/cit144
ref12/cit12
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref140/cit140
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref152/cit152
ref153/cit153
ref154/cit154
ref27/cit27
ref150/cit150
ref63/cit63
ref151/cit151
ref56/cit56
ref92/cit92
ref155/cit155
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref147/cit147
ref143/cit143
ref53/cit53
ref145/cit145
ref21/cit21
ref149/cit149
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref138/cit138
ref79/cit79
ref139/cit139
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref134/cit134
ref135/cit135
ref40/cit40
ref68/cit68
ref94/cit94
ref130/cit130
ref131/cit131
ref146/cit146
ref26/cit26
ref142/cit142
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref2/cit2
  doi: 10.1021/acs.chemrev.7b00689
– ident: ref23/cit23
  doi: 10.1021/jacs.5b08212
– ident: ref140/cit140
  doi: 10.1039/C8SC02049C
– ident: ref98/cit98
  doi: 10.1002/adma.202004393
– ident: ref8/cit8
  doi: 10.1038/s41929-019-0246-2
– ident: ref61/cit61
  doi: 10.1039/C4CC00408F
– ident: ref86/cit86
  doi: 10.1002/anie.201912642
– ident: ref4/cit4
  doi: 10.1021/jacs.0c05130
– ident: ref50/cit50
  doi: 10.1021/acs.chemrev.0c01049
– ident: ref102/cit102
  doi: 10.1016/j.jcis.2020.05.098
– ident: ref124/cit124
  doi: 10.1038/s41467-018-04213-9
– ident: ref25/cit25
  doi: 10.1016/j.nanoen.2018.07.045
– ident: ref27/cit27
  doi: 10.1021/ja201165c
– ident: ref40/cit40
  doi: 10.1002/anie.201800269
– ident: ref83/cit83
  doi: 10.1002/smll.201804845
– ident: ref155/cit155
  doi: 10.1038/s41565-020-00823-x
– ident: ref131/cit131
  doi: 10.1021/acsami.1c01727
– ident: ref112/cit112
  doi: 10.1002/adma.202004243
– ident: ref149/cit149
  doi: 10.1021/acsami.0c05094
– ident: ref134/cit134
  doi: 10.1039/D0TA10870G
– ident: ref44/cit44
  doi: 10.1016/j.jcis.2019.08.005
– ident: ref34/cit34
  doi: 10.1016/j.ccr.2017.09.001
– ident: ref120/cit120
  doi: 10.1021/acs.chemrev.9b00220
– ident: ref21/cit21
  doi: 10.1002/adma.201803291
– ident: ref78/cit78
  doi: 10.1021/ja507619d
– ident: ref63/cit63
  doi: 10.1002/chem.201705530
– ident: ref7/cit7
  doi: 10.1038/s41560-020-0667-9
– ident: ref71/cit71
  doi: 10.1021/jacs.8b07921
– ident: ref91/cit91
  doi: 10.1021/jacs.6b09889
– ident: ref129/cit129
  doi: 10.1002/advs.202000012
– ident: ref139/cit139
  doi: 10.1002/anie.201910879
– ident: ref60/cit60
  doi: 10.1002/advs.201802235
– ident: ref152/cit152
  doi: 10.1016/j.chempr.2018.10.007
– ident: ref58/cit58
  doi: 10.1039/C9CS00594C
– ident: ref105/cit105
  doi: 10.1038/s41467-019-12510-0
– ident: ref70/cit70
  doi: 10.1021/jacs.6b12630
– ident: ref67/cit67
  doi: 10.1021/ja312380b
– ident: ref73/cit73
  doi: 10.1038/ncomms8408
– ident: ref29/cit29
  doi: 10.1016/j.ccr.2020.213435
– ident: ref62/cit62
  doi: 10.1002/chem.202001792
– ident: ref116/cit116
  doi: 10.1039/C5CS00670H
– ident: ref136/cit136
  doi: 10.1021/acsami.7b07410
– ident: ref144/cit144
  doi: 10.1038/ncomms4242
– ident: ref3/cit3
  doi: 10.1038/s41563-019-0591-1
– ident: ref69/cit69
  doi: 10.1021/jacs.8b06666
– ident: ref109/cit109
  doi: 10.1016/j.pmatsci.2017.09.001
– ident: ref24/cit24
  doi: 10.1021/jacs.8b06407
– ident: ref26/cit26
  doi: 10.1002/adfm.202002664
– ident: ref15/cit15
  doi: 10.1038/s41560-019-0402-6
– ident: ref117/cit117
  doi: 10.1039/C5CS00414D
– ident: ref19/cit19
  doi: 10.1002/anie.201704911
– ident: ref68/cit68
  doi: 10.1021/jacs.0c09000
– ident: ref9/cit9
  doi: 10.1038/nenergy.2017.111
– ident: ref82/cit82
  doi: 10.1002/anie.201709558
– ident: ref125/cit125
  doi: 10.1016/j.chempr.2017.09.009
– ident: ref13/cit13
  doi: 10.1038/s41560-018-0296-8
– ident: ref77/cit77
  doi: 10.1021/acs.jpcc.1c03418
– ident: ref103/cit103
  doi: 10.1002/anie.202103398
– ident: ref111/cit111
  doi: 10.1021/acs.chemrev.9b00248
– ident: ref141/cit141
  doi: 10.1021/acscatal.7b02647
– ident: ref154/cit154
  doi: 10.1002/chem.201900045
– ident: ref53/cit53
  doi: 10.1038/ncomms10942
– ident: ref95/cit95
  doi: 10.1002/anie.201909096
– ident: ref49/cit49
  doi: 10.1016/j.mtnano.2020.100105
– ident: ref151/cit151
  doi: 10.1038/s42004-021-00449-7
– ident: ref106/cit106
  doi: 10.1039/C9TA02169H
– ident: ref12/cit12
  doi: 10.1038/s41560-018-0308-8
– ident: ref80/cit80
  doi: 10.1021/acs.chemrev.8b00056
– ident: ref41/cit41
  doi: 10.1002/anie.201910309
– ident: ref133/cit133
  doi: 10.1021/acs.langmuir.0c01128
– ident: ref148/cit148
  doi: 10.1007/s12274-020-2733-9
– ident: ref35/cit35
  doi: 10.1016/j.joule.2017.08.008
– ident: ref48/cit48
  doi: 10.1002/cey2.45
– ident: ref100/cit100
  doi: 10.1016/j.apcatb.2020.119295
– ident: ref121/cit121
  doi: 10.1002/adma.201804257
– ident: ref130/cit130
  doi: 10.1039/C7SC02688A
– ident: ref113/cit113
  doi: 10.1039/C9CS00607A
– ident: ref110/cit110
  doi: 10.1021/acscatal.8b04566
– ident: ref101/cit101
  doi: 10.1039/C9TA10644H
– ident: ref75/cit75
  doi: 10.1038/s41467-019-11267-w
– ident: ref47/cit47
  doi: 10.1039/D0SC05889K
– ident: ref94/cit94
  doi: 10.1002/aenm.201802052
– ident: ref147/cit147
  doi: 10.1002/anie.202105966
– ident: ref46/cit46
  doi: 10.1002/anie.201707568
– ident: ref5/cit5
  doi: 10.1039/D0CS01160F
– ident: ref138/cit138
  doi: 10.1016/j.ultsonch.2020.105179
– ident: ref90/cit90
  doi: 10.1021/acscentsci.0c01488
– ident: ref119/cit119
  doi: 10.1039/C4CS00484A
– ident: ref146/cit146
  doi: 10.1021/jacs.1c01466
– ident: ref107/cit107
  doi: 10.1002/adfm.201702067
– ident: ref59/cit59
  doi: 10.1021/cm301194a
– ident: ref31/cit31
  doi: 10.1002/cssc.201600693
– ident: ref1/cit1
  doi: 10.1002/adma.201907818
– ident: ref143/cit143
  doi: 10.1002/anie.202016129
– ident: ref28/cit28
  doi: 10.1021/jacs.9b09298
– ident: ref89/cit89
  doi: 10.1002/anie.201914395
– ident: ref145/cit145
  doi: 10.1002/aenm.201803536
– ident: ref45/cit45
  doi: 10.1002/adfm.202170323
– ident: ref51/cit51
  doi: 10.1021/ja5116937
– ident: ref17/cit17
  doi: 10.1038/nature19060
– ident: ref108/cit108
  doi: 10.1021/ja510442p
– ident: ref20/cit20
  doi: 10.1126/science.1230444
– ident: ref55/cit55
  doi: 10.1038/s41467-020-15141-y
– ident: ref128/cit128
  doi: 10.1002/chem.201605337
– ident: ref64/cit64
  doi: 10.1002/cplu.201500206
– ident: ref85/cit85
  doi: 10.1038/s41560-021-00881-y
– ident: ref142/cit142
  doi: 10.1002/ange.202104564
– ident: ref81/cit81
  doi: 10.1039/D0SC01408G
– ident: ref115/cit115
  doi: 10.1002/aenm.201600458
– ident: ref132/cit132
  doi: 10.1039/C8CC08156E
– ident: ref137/cit137
  doi: 10.1002/smll.201805232
– ident: ref66/cit66
  doi: 10.1021/jacs.7b07234
– ident: ref52/cit52
  doi: 10.1002/anie.201506048
– ident: ref122/cit122
  doi: 10.1002/aenm.201703614
– ident: ref126/cit126
  doi: 10.1016/j.cattod.2016.05.008
– ident: ref150/cit150
  doi: 10.1002/adma.202007733
– ident: ref36/cit36
  doi: 10.1038/s41563-018-0033-5
– ident: ref92/cit92
  doi: 10.1002/anie.201802521
– ident: ref114/cit114
  doi: 10.1021/ja407115p
– ident: ref16/cit16
  doi: 10.1038/s41467-020-16847-9
– ident: ref33/cit33
  doi: 10.1039/c2ee22989g
– ident: ref127/cit127
  doi: 10.1021/acsami.7b15969
– ident: ref153/cit153
  doi: 10.1016/j.electacta.2020.135638
– ident: ref11/cit11
  doi: 10.1002/anie.201914647
– ident: ref30/cit30
  doi: 10.1021/jacs.5b02688
– ident: ref104/cit104
  doi: 10.1039/D1TA01970H
– ident: ref18/cit18
  doi: 10.1038/s41557-020-0473-9
– ident: ref72/cit72
  doi: 10.1007/s12274-020-2874-x
– ident: ref88/cit88
  doi: 10.1021/jacs.1c00666
– ident: ref84/cit84
  doi: 10.1002/anie.202012971
– ident: ref74/cit74
  doi: 10.1038/s41467-018-05141-4
– ident: ref79/cit79
  doi: 10.1038/s41563-020-00847-7
– ident: ref76/cit76
  doi: 10.1038/s41563-018-0189-z
– ident: ref87/cit87
  doi: 10.1039/C6SC05080H
– ident: ref57/cit57
  doi: 10.1016/j.ccr.2021.214119
– ident: ref43/cit43
  doi: 10.1021/acssuschemeng.9b01131
– ident: ref37/cit37
  doi: 10.1021/acsomega.9b03295
– ident: ref14/cit14
  doi: 10.1038/s41565-019-0367-4
– ident: ref65/cit65
  doi: 10.1021/jacs.5b09600
– ident: ref99/cit99
  doi: 10.1021/jacs.0c07041
– ident: ref22/cit22
  doi: 10.1021/acs.chemrev.7b00582
– ident: ref39/cit39
  doi: 10.1039/D0TA03457F
– ident: ref42/cit42
  doi: 10.1002/smtd.202000396
– ident: ref6/cit6
  doi: 10.1002/adma.201800528
– ident: ref32/cit32
  doi: 10.1021/acscatal.5b01767
– ident: ref10/cit10
  doi: 10.1038/s41560-019-0450-y
– ident: ref93/cit93
  doi: 10.1021/ja502765n
– ident: ref118/cit118
  doi: 10.1038/s41467-020-14565-w
– ident: ref54/cit54
  doi: 10.1039/C7TA07978H
– ident: ref56/cit56
  doi: 10.1021/acs.chemrev.9b00766
– ident: ref96/cit96
  doi: 10.1021/acsami.7b14523
– ident: ref97/cit97
  doi: 10.1002/anie.201907002
– ident: ref135/cit135
  doi: 10.1021/acsami.0c09323
– ident: ref123/cit123
  doi: 10.1002/adma.201908398
– ident: ref38/cit38
  doi: 10.1016/j.jcis.2018.09.066
SSID ssj0057876
Score 2.6832051
SecondaryResourceType review_article
Snippet A highly effective electrocatalyst is the central component of advanced electrochemical energy conversion. Recently, two-dimensional conjugated metal–organic...
A highly effective electrocatalyst is the central component of advanced electrochemical energy conversion. Recently, two-dimensional conjugated metal-organic...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1759
Title Two-Dimensional Conjugated Metal–Organic Frameworks for Electrocatalysis: Opportunities and Challenges
URI http://dx.doi.org/10.1021/acsnano.1c10544
https://www.ncbi.nlm.nih.gov/pubmed/35049290
https://www.proquest.com/docview/2621661981
Volume 16
WOSCitedRecordID wos000746453200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1936-086X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057876
  issn: 1936-0851
  databaseCode: ACS
  dateStart: 20070801
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB61Ww7tAQqUskArI-2BS7bxTxKb2yrsqpe2SGylvUW246itkLPabODKO_CGPAl2fhYoWqk9xx45M7bn84z9DcAIF7GOw0QEJvbRKqpEoEQRBZhKgY1yPqdgTbGJ5PKSLxbi8x-y6PsZfILPpK6stOUYawcFGNuFPeJArr-9N0m_9Juun3dxm0B2B2SHIjYsPv8J8G5IV_-6oS3YsvExs2ePGN0hPO2AJJq0ln8OO8a-gIO_6AVfws38exl88vT9LfUGSkt7V_u4WY4ujEPdv378bN9iajTrL2lVyMFYNG2r4zTBHc9Z8hFdLT1Sr23DwIqkzVHa12GpjuB6Np2n50FXWSGQjIXroFCh4koXwp0uNA1zSk0kSajcR1-SKsIqKogwIdaK5yahBpucS86MjJgyVNNXMLClNa8BefygcG6EwoqFTHMnwcEYt4VyHSfaDGHkdJR1K6PKmqQ3wVmnuKxT3BDGvT0y3bGT-yIZX7d3-LDpsGyJObY3fd8bOHOLx2dEpDVlXWUkJtiNVXA8hOPW8hthNHKHJyLCNw_7gbewT_zLCP_anbyDwXpVmxN4or-tb6vVKewmC37aTNnfmSvoQw
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD7aBWnbw8ZtrGOAkfrASzo7dtKYt6lrVURbkChS36LYcQQIOVXTbq_7D_uH-yU7zqWApkrsNYmPHPs457NPzvcBtFkW6pB2pWdCd1rFlfSUzAKP8UQyozDmZKIUm-hOJtFsJr9uAW1qYbATBVoqyiT-H3YBdo7XbGLzDtOICITYht0Ag6vTLLjofWu-vc79wiqPjPtkBBNrMp8HBlw00sW_0WgDxCxDzeDo8Z18Coc1rCQXlR88gy1jn8PBX2SDL-DH9Dr3Lh2Zf0XEQXq5_bVyp2gpGRvE4Hc3t1VlpiaD5petgiCoJf1KK6c86nEMJh_Jl7nD7Stb8rGSxKak16iyFC_h-6A_7Q29WmfBS4SgSy9TVEVKZxL3GprTlHMTJD5VeNMJVAVMBZkvDWVaRanpcsNMGiWRMEkglOGaH8OOza05AeLQhGKpkYopQYWO0AKCGvygRjrsatOCNo5RXK-TIi5T4D6L64GL64FrQaeZlljXXOVOMuP35gYf1g3mFU3H5kffN_Mc41Jy-ZHEmnxVxH7oM-yrjFgLXlUOsDbGA9xK-ZKe_t8LvIO94XQ8ikefJp9fw77vaiZcHbx_BjvLxcq8gSf6avmzWLwt_fceY2fvwQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IXrw_VifETx4qTZN2m28yeqiqKuggrfSpCkqki52V6_-B_-hv8RJH4siC-K1bYY0mXS-ZDrfB7BL00AFblM4OrCnVUwKR4rUdyiLBdUSY07KC7GJZqcT3t-L66oozNbCYCdytJQXSXy7qrtJWjEM0AO8bmKT7VOFqIDzURj3MZxb3YKj1k39_bUuGJS5ZNwrI6AYEPr8MmAjksp_RqQhMLMIN-3Z_3V0DmYqeEmOSn-YhxFtFmD6G-ngIjzcvmXOsSX1Lwk5SCszT317mpaQS41Y_PP9o6zQVKRd_7qVEwS35KTUzCmOfCyTySG56lr83jcFLyuJTUJatTpLvgR37ZPb1qlT6S04Meduz0mlK0OpUoF7DsXchDHtx54r8aYVqvKp9FNPaJcqGSa6yTTVSRiHXMc-l5optgxjJjN6FYhFFZImWkgquctViBYQ3OCHNVRBU-kG7OIYRdV6yaMiFe7RqBq4qBq4BuzXUxOpirPcSmc8D2-wN2jQLek6hj-6U891hEvK5klio7N-HnmBR7GvIqQNWCmdYGCM-bil8oS79rcX2IbJ6-N2dHHWOV-HKc-WTthyeG8Dxnovfb0JE-q195i_bBUu_AUQA_I7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Dimensional+Conjugated+Metal%E2%80%93Organic+Frameworks+for+Electrocatalysis%3A+Opportunities+and+Challenges&rft.jtitle=ACS+nano&rft.au=Zhong%2C+Haixia&rft.au=Wang%2C+Mingchao&rft.au=Chen%2C+Guangbo&rft.au=Dong%2C+Renhao&rft.date=2022-02-22&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=16&rft.issue=2&rft.spage=1759&rft.epage=1780&rft_id=info:doi/10.1021%2Facsnano.1c10544&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsnano_1c10544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon