2D acoustic-elastic coupled waveform inversion in the Laplace domain

ABSTRACT Although waveform inversion has been intensively studied in an effort to properly delineate the Earth's structures since the early 1980s, most of the time‐ and frequency‐domain waveform inversion algorithms still have critical limitations in their applications to field data. This may b...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical Prospecting Vol. 58; no. 6; pp. 997 - 1010
Main Authors: Bae, Ho Seuk, Shin, Changsoo, Cha, Young Ho, Choi, Yunseok, Min, Dong-Joo
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01.11.2010
Blackwell
Subjects:
ISSN:0016-8025, 1365-2478
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT Although waveform inversion has been intensively studied in an effort to properly delineate the Earth's structures since the early 1980s, most of the time‐ and frequency‐domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non‐linear objective function and the unreliable low‐frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace‐domain waveform inversion has been proposed. The Laplace‐domain waveform inversion has been known to provide a long‐wavelength velocity model even for field data, which may be because it employs the zero‐frequency component of the damped wavefield and a well‐behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media. We extend the Laplace‐domain waveform inversion algorithm to a 2D acoustic‐elastic coupled medium, which is encountered in marine exploration environments. In 2D acoustic‐elastic coupled media, the Laplace‐domain pressures behave differently from those of 2D acoustic media, although the overall features are similar to each other. The main differences are that the pressure wavefields for acoustic‐elastic coupled media show negative values even for simple geological structures unlike in acoustic media, when the Laplace damping constant is small and the water depth is shallow. The negative values may result from more complicated wave propagation in elastic media and at fluid‐solid interfaces. Our Laplace‐domain waveform inversion algorithm is also based on the finite‐element method and logarithmic wavefields. To compute gradient direction, we apply the back‐propagation technique. Under the assumption that density is fixed, P‐ and S‐wave velocity models are inverted from the pressure data. We applied our inversion algorithm to the SEG/EAGE salt model and the numerical results showed that the Laplace‐domain waveform inversion successfully recovers the long‐wavelength structures of the P‐ and S‐wave velocity models from the noise‐free data. The models inverted by the Laplace‐domain waveform inversion were able to be successfully used as initial models in the subsequent frequency‐domain waveform inversion, which is performed to describe the short‐wavelength structures of the true models.
AbstractList ABSTRACTAlthough waveform inversion has been intensively studied in an effort to properly delineate the Earth's structures since the early 1980s, most of the time- and frequency-domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non-linear objective function and the unreliable low-frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace-domain waveform inversion has been proposed. The Laplace-domain waveform inversion has been known to provide a long-wavelength velocity model even for field data, which may be because it employs the zero-frequency component of the damped wavefield and a well-behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media.
Although waveform inversion has been intensively studied in an effort to properly delineate the Earth's structures since the early 1980s, most of the time‐ and frequency‐domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non‐linear objective function and the unreliable low‐frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace‐domain waveform inversion has been proposed. The Laplace‐domain waveform inversion has been known to provide a long‐wavelength velocity model even for field data, which may be because it employs the zero‐frequency component of the damped wavefield and a well‐behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media. We extend the Laplace‐domain waveform inversion algorithm to a 2D acoustic‐elastic coupled medium, which is encountered in marine exploration environments. In 2D acoustic‐elastic coupled media, the Laplace‐domain pressures behave differently from those of 2D acoustic media, although the overall features are similar to each other. The main differences are that the pressure wavefields for acoustic‐elastic coupled media show negative values even for simple geological structures unlike in acoustic media, when the Laplace damping constant is small and the water depth is shallow. The negative values may result from more complicated wave propagation in elastic media and at fluid‐solid interfaces. Our Laplace‐domain waveform inversion algorithm is also based on the finite‐element method and logarithmic wavefields. To compute gradient direction, we apply the back‐propagation technique. Under the assumption that density is fixed, P‐ and S‐wave velocity models are inverted from the pressure data. We applied our inversion algorithm to the SEG/EAGE salt model and the numerical results showed that the Laplace‐domain waveform inversion successfully recovers the long‐wavelength structures of the P‐ and S‐wave velocity models from the noise‐free data. The models inverted by the Laplace‐domain waveform inversion were able to be successfully used as initial models in the subsequent frequency‐domain waveform inversion, which is performed to describe the short‐wavelength structures of the true models.
ABSTRACT Although waveform inversion has been intensively studied in an effort to properly delineate the Earth's structures since the early 1980s, most of the time‐ and frequency‐domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non‐linear objective function and the unreliable low‐frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace‐domain waveform inversion has been proposed. The Laplace‐domain waveform inversion has been known to provide a long‐wavelength velocity model even for field data, which may be because it employs the zero‐frequency component of the damped wavefield and a well‐behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media. We extend the Laplace‐domain waveform inversion algorithm to a 2D acoustic‐elastic coupled medium, which is encountered in marine exploration environments. In 2D acoustic‐elastic coupled media, the Laplace‐domain pressures behave differently from those of 2D acoustic media, although the overall features are similar to each other. The main differences are that the pressure wavefields for acoustic‐elastic coupled media show negative values even for simple geological structures unlike in acoustic media, when the Laplace damping constant is small and the water depth is shallow. The negative values may result from more complicated wave propagation in elastic media and at fluid‐solid interfaces. Our Laplace‐domain waveform inversion algorithm is also based on the finite‐element method and logarithmic wavefields. To compute gradient direction, we apply the back‐propagation technique. Under the assumption that density is fixed, P‐ and S‐wave velocity models are inverted from the pressure data. We applied our inversion algorithm to the SEG/EAGE salt model and the numerical results showed that the Laplace‐domain waveform inversion successfully recovers the long‐wavelength structures of the P‐ and S‐wave velocity models from the noise‐free data. The models inverted by the Laplace‐domain waveform inversion were able to be successfully used as initial models in the subsequent frequency‐domain waveform inversion, which is performed to describe the short‐wavelength structures of the true models.
Author Shin, Changsoo
Choi, Yunseok
Cha, Young Ho
Bae, Ho Seuk
Min, Dong-Joo
Author_xml – sequence: 1
  givenname: Ho Seuk
  surname: Bae
  fullname: Bae, Ho Seuk
  organization: Department of Energy Systems Engineering, Seoul National University, Seoul 151-742, Korea
– sequence: 2
  givenname: Changsoo
  surname: Shin
  fullname: Shin, Changsoo
  email: css@model.snu.ac.kr
  organization: Department of Energy Systems Engineering, Seoul National University, Seoul 151-742, Korea
– sequence: 3
  givenname: Young Ho
  surname: Cha
  fullname: Cha, Young Ho
  organization: ExxonMobil Upstream Research Company, 3120 Buffalo Speedway, Houston, TX 77098, USA
– sequence: 4
  givenname: Yunseok
  surname: Choi
  fullname: Choi, Yunseok
  organization: Department of Physical Science and Engineering, King Abdullah University of Science and Technology, 4700 Thuwal, 23955-6900, Saudi Arabia
– sequence: 5
  givenname: Dong-Joo
  surname: Min
  fullname: Min, Dong-Joo
  organization: Department of Energy Systems Engineering, Seoul National University, Seoul 151-742, Korea
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23328907$$DView record in Pascal Francis
BookMark eNqNkE1v1DAQhi1UJLYf_yEXxCnL-CuJJYSEWtgiVgVBEb1Zs85EePEmWzttt_8eh632wKm-zHj8vq81zzE76oeeGCs4zHk-b9dzLitdClU3cwF5CtDUZr57wWaHhyM2A-BV2YDQr9hxSmsACVqrGbsQFwW64S6N3pUUcKpFvm8DtcUD3lM3xE3h-3uKyQ997orxNxVL3AZ0VLTDBn1_yl52GBKdPdUT9vPTx-vzy3L5dfH5_MOyRCW1KSWRqknhiq-0Bmfq1ggOHaCTyhjVdASdca0gaju9qrhWqOqKr2TbasNRyhP2Zp-7jcPtHaXRbnxyFAL2lFewjeRcg-A6K18_KTE5DF3E3vlkt9FvMD5aIaVoDNRZ1-x1Lg4pReoOEg524mvXdsJoJ4x24mv_8bW7bH3_n9X5EccMaYzow3MC3u0DHnygx2d_bBffvucm28u93aeRdgc7xj-2qmWt7a-rhYWbxRd1edPYH_Ivk5CkyA
CODEN GPPRAR
CitedBy_id crossref_primary_10_1007_s00024_013_0651_4
crossref_primary_10_1016_j_jappgeo_2018_04_010
crossref_primary_10_1109_TGRS_2023_3236973
crossref_primary_10_1093_jge_gxy017
crossref_primary_10_1016_j_jappgeo_2014_03_013
crossref_primary_10_1016_j_jappgeo_2016_03_028
crossref_primary_10_1111_j_1365_246X_2011_05314_x
crossref_primary_10_1190_geo2022_0408_1
crossref_primary_10_1061__ASCE_AS_1943_5525_0000621
crossref_primary_10_1111_j_1365_246X_2012_05504_x
crossref_primary_10_1007_s11770_023_1009_z
crossref_primary_10_1016_j_jappgeo_2022_104768
crossref_primary_10_1016_j_jappgeo_2022_104734
Cites_doi 10.1190/1.1487129
10.1190/1.1815890
10.1111/j.1365-2478.2007.00617.x
10.1063/1.3060203
10.1190/1.3112572
10.1109/PROC.1986.13490
10.1111/j.1365-2478.2007.00619.x
10.1190/1.1441754
10.1029/157GM13
10.1190/1.2194523
10.1190/1.1442384
10.1190/1.1444758
10.1111/j.1365-246X.2008.03768.x
10.1111/j.1365-246X.2004.02372.x
10.1007/s12303-009-0037-x
10.1190/1.2953978
10.1190/1.1442188
10.1046/j.1365-246X.1998.00498.x
ContentType Journal Article
Copyright 2010 European Association of Geoscientists & Engineers
2015 INIST-CNRS
Copyright_xml – notice: 2010 European Association of Geoscientists & Engineers
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
8FD
FR3
KR7
DOI 10.1111/j.1365-2478.2010.00879.x
DatabaseName Istex
CrossRef
Pascal-Francis
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1365-2478
EndPage 1010
ExternalDocumentID 23328907
10_1111_j_1365_2478_2010_00879_x
GPR879
ark_67375_WNG_0XGK4HX8_S
Genre article
GroupedDBID -~X
1OB
1OC
ALMA_UNASSIGNED_HOLDINGS
BDRZF
BRZYM
BSCLL
DDYGU
FZ0
PALCI
AAYXX
CITATION
IQODW
8FD
FR3
KR7
ID FETCH-LOGICAL-a4359-3ee47e4ab1b550c97d9210f0ac349948fe0f9cd2eedf5b6154a4761b3dd591a33
IEDL.DBID DRFUL
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000282689700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-8025
IngestDate Fri Jul 11 07:56:46 EDT 2025
Mon Jul 21 09:15:06 EDT 2025
Sat Nov 29 02:58:39 EST 2025
Tue Nov 18 22:42:50 EST 2025
Sat Aug 24 00:55:31 EDT 2024
Tue Sep 09 05:29:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords wavelength
algorithms
models
inverse problem
interfaces
elastic media
exploration
density
S-waves
pressure
velocity
finite element analysis
low frequency
frequency
Earth
depth
propagation
noise
waveforms
direction
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4359-3ee47e4ab1b550c97d9210f0ac349948fe0f9cd2eedf5b6154a4761b3dd591a33
Notes ark:/67375/WNG-0XGK4HX8-S
ArticleID:GPR879
istex:F40FD9271E2F7007987B689893D69E0716A904DF
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 831150215
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_831150215
pascalfrancis_primary_23328907
crossref_primary_10_1111_j_1365_2478_2010_00879_x
crossref_citationtrail_10_1111_j_1365_2478_2010_00879_x
wiley_primary_10_1111_j_1365_2478_2010_00879_x_GPR879
istex_primary_ark_67375_WNG_0XGK4HX8_S
PublicationCentury 2000
PublicationDate November 2010
PublicationDateYYYYMMDD 2010-11-01
PublicationDate_xml – month: 11
  year: 2010
  text: November 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Geophysical Prospecting
PublicationYear 2010
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Lee H.-Y., Lim S.-C., Min D.-J., Kwon B.-D. and Park M. 2009. 2D time-domain acoustic-elastic coupled modelling: A cell-based finite-difference method. Geosciences Journal 13, 407-414.
Zienkiewicz O.C., Taylor R.L. and Zhu J.Z. 2005. The Finite Element Method: Its Basis and Fundamentals. Butterworth-Heinemann.
Komatitsch D., Barnes C. and Tromp J. 2000. Wave propagation near a fluid-solid interface: A spectral-element approach. Geophysics 65, 623-631.
Kolb P., Collino F. and Lailly P. 1986. Pre-stack inversion of a 1-D medium. Proceedings of the IEEE 74, 498-508.
Aminzadeh F., Brac J. and Kunz T. 1997. 3-D Salt and Overthrust Models. SEG.
Gauthier O., Virieux J. and Tarantola A. 1986. Two-dimensional nonlinear inversion of seismic waveforms: Numerical results. Geophysics 51, 1387-1403.
Pratt R.G., Shin C. and Hicks G.J. 1998. Gauss-Newton and full Newton method in frequency domain seismic waveform inversion. Geophysical Journal International 133, 341-362.
Shin C., Pyun S. and Bednar J.B. 2007. Comparison of waveform inversion, part 1: Conventional wavefield vs logarithmic wavefield. Geophysical Prospecting 55, 449-464.
Komatitsch D., Tsuboi S. and Tromp J. 2005. The spectral-element method in seismology. Geophysical Monography Series 157, 205-227.
Mora P. 1987. Nonlinear two-dimensional elastic inversion of multioffset seismic data. Geophysics 52, 1211-1228.
Shin C. and Ha W. 2008. A comparison between the behavior of objective functions for waveform inversion in the frequency and Laplace domains. Geophysics 73, VE119-VE133.
Zhang J. 2004. Wave propagation across fluid-solid interfaces: A grid method approach: Geophysical Journal International 159, 240-252.
Shin C. and Min D.-J. 2006. Waveform inversion using a logarithmic wavefield. Geophysics 71, R31-R42.
Pyun S., Shin C. and Bednar J.B. 2007. Comparison of waveform inversion, part 2: Amplitude approach. Geophysical Prospecting 55, 477-485.
Ewing W.M., Jardetzky W.S. and Press F. 1957. Elastic Waves in Layered Media. McGraw-Hill.
Shin C., Yoon K., Marfurt K.J., Park K., Yang D., Lim H.Y. et al . 2001. Efficient calculation of a partial-derivative wavefield using reciprocity for seismic imaging and inversion. Geophysics 66, 1856-1863.
Tarantola A. 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics 49, 1259-1266.
Ha T., Chung W. and Shin C. 2009. Waveform inversion using a back-propagation algorithm and a Huber function norm. Geophysics 74, R15-R24.
Shin C. and Cha Y.H. 2008. Waveform inversion in the Laplace domain. Geophysical Journal International 173, 922-931.
Choi Y., Min D.-J. and Shin C. 2008. Two-dimensional waveform inversion of multi-component data in acoustic-elastic coupled media. Geophysics 56, 863-881.
2006; 71
2009; 13
2009; 74
2004; 159
1986; 51
1987; 52
1986; 74
2000
1984; 49
2005; 157
2000; 65
1997
2008; 56
1983
2005
1998; 133
2001; 66
2008; 73
2007; 55
1957
2008; 173
e_1_2_7_6_1
Zienkiewicz O.C. (e_1_2_7_23_1) 2005
e_1_2_7_5_1
e_1_2_7_4_1
Lailly P. (e_1_2_7_11_1) 1983
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
Choi Y. (e_1_2_7_3_1) 2008; 56
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_22_1
Aminzadeh F. (e_1_2_7_2_1) 1997
e_1_2_7_10_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – reference: Gauthier O., Virieux J. and Tarantola A. 1986. Two-dimensional nonlinear inversion of seismic waveforms: Numerical results. Geophysics 51, 1387-1403.
– reference: Komatitsch D., Barnes C. and Tromp J. 2000. Wave propagation near a fluid-solid interface: A spectral-element approach. Geophysics 65, 623-631.
– reference: Komatitsch D., Tsuboi S. and Tromp J. 2005. The spectral-element method in seismology. Geophysical Monography Series 157, 205-227.
– reference: Pyun S., Shin C. and Bednar J.B. 2007. Comparison of waveform inversion, part 2: Amplitude approach. Geophysical Prospecting 55, 477-485.
– reference: Shin C., Yoon K., Marfurt K.J., Park K., Yang D., Lim H.Y. et al . 2001. Efficient calculation of a partial-derivative wavefield using reciprocity for seismic imaging and inversion. Geophysics 66, 1856-1863.
– reference: Aminzadeh F., Brac J. and Kunz T. 1997. 3-D Salt and Overthrust Models. SEG.
– reference: Shin C. and Cha Y.H. 2008. Waveform inversion in the Laplace domain. Geophysical Journal International 173, 922-931.
– reference: Shin C. and Min D.-J. 2006. Waveform inversion using a logarithmic wavefield. Geophysics 71, R31-R42.
– reference: Mora P. 1987. Nonlinear two-dimensional elastic inversion of multioffset seismic data. Geophysics 52, 1211-1228.
– reference: Ewing W.M., Jardetzky W.S. and Press F. 1957. Elastic Waves in Layered Media. McGraw-Hill.
– reference: Ha T., Chung W. and Shin C. 2009. Waveform inversion using a back-propagation algorithm and a Huber function norm. Geophysics 74, R15-R24.
– reference: Tarantola A. 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics 49, 1259-1266.
– reference: Choi Y., Min D.-J. and Shin C. 2008. Two-dimensional waveform inversion of multi-component data in acoustic-elastic coupled media. Geophysics 56, 863-881.
– reference: Kolb P., Collino F. and Lailly P. 1986. Pre-stack inversion of a 1-D medium. Proceedings of the IEEE 74, 498-508.
– reference: Shin C., Pyun S. and Bednar J.B. 2007. Comparison of waveform inversion, part 1: Conventional wavefield vs logarithmic wavefield. Geophysical Prospecting 55, 449-464.
– reference: Zienkiewicz O.C., Taylor R.L. and Zhu J.Z. 2005. The Finite Element Method: Its Basis and Fundamentals. Butterworth-Heinemann.
– reference: Pratt R.G., Shin C. and Hicks G.J. 1998. Gauss-Newton and full Newton method in frequency domain seismic waveform inversion. Geophysical Journal International 133, 341-362.
– reference: Shin C. and Ha W. 2008. A comparison between the behavior of objective functions for waveform inversion in the frequency and Laplace domains. Geophysics 73, VE119-VE133.
– reference: Zhang J. 2004. Wave propagation across fluid-solid interfaces: A grid method approach: Geophysical Journal International 159, 240-252.
– reference: Lee H.-Y., Lim S.-C., Min D.-J., Kwon B.-D. and Park M. 2009. 2D time-domain acoustic-elastic coupled modelling: A cell-based finite-difference method. Geosciences Journal 13, 407-414.
– start-page: 2201
  year: 2000
  end-page: 2204
– volume: 65
  start-page: 623
  year: 2000
  end-page: 631
  article-title: Wave propagation near a fluid‐solid interface: A spectral‐element approach
  publication-title: Geophysics
– volume: 66
  start-page: 1856
  year: 2001
  end-page: 1863
  article-title: Efficient calculation of a partial‐derivative wavefield using reciprocity for seismic imaging and inversion
  publication-title: Geophysics
– year: 1957
– volume: 74
  start-page: 498
  year: 1986
  end-page: 508
  article-title: Pre‐stack inversion of a 1‐D medium
  publication-title: Proceedings of the IEEE
– volume: 71
  start-page: R31
  year: 2006
  end-page: R42
  article-title: Waveform inversion using a logarithmic wavefield
  publication-title: Geophysics
– volume: 13
  start-page: 407
  year: 2009
  end-page: 414
  article-title: 2D time‐domain acoustic‐elastic coupled modelling: A cell‐based finite‐difference method
  publication-title: Geosciences Journal
– year: 2005
– volume: 56
  start-page: 863
  year: 2008
  end-page: 881
  article-title: Two‐dimensional waveform inversion of multi‐component data in acoustic‐elastic coupled media
  publication-title: Geophysics
– volume: 73
  start-page: VE119
  year: 2008
  end-page: VE133
  article-title: A comparison between the behavior of objective functions for waveform inversion in the frequency and Laplace domains
  publication-title: Geophysics
– year: 1997
– start-page: 206
  year: 1983
  end-page: 220
– volume: 173
  start-page: 922
  year: 2008
  end-page: 931
  article-title: Waveform inversion in the Laplace domain
  publication-title: Geophysical Journal International
– volume: 52
  start-page: 1211
  year: 1987
  end-page: 1228
  article-title: Nonlinear two‐dimensional elastic inversion of multioffset seismic data
  publication-title: Geophysics
– volume: 49
  start-page: 1259
  year: 1984
  end-page: 1266
  article-title: Inversion of seismic reflection data in the acoustic approximation
  publication-title: Geophysics
– volume: 133
  start-page: 341
  year: 1998
  end-page: 362
  article-title: Gauss‐Newton and full Newton method in frequency domain seismic waveform inversion
  publication-title: Geophysical Journal International
– volume: 55
  start-page: 449
  year: 2007
  end-page: 464
  article-title: Comparison of waveform inversion, part 1: Conventional wavefield vs logarithmic wavefield
  publication-title: Geophysical Prospecting
– volume: 51
  start-page: 1387
  year: 1986
  end-page: 1403
  article-title: Two‐dimensional nonlinear inversion of seismic waveforms: Numerical results
  publication-title: Geophysics
– volume: 157
  start-page: 205
  year: 2005
  end-page: 227
  article-title: The spectral‐element method in seismology
  publication-title: Geophysical Monography Series
– volume: 55
  start-page: 477
  year: 2007
  end-page: 485
  article-title: Comparison of waveform inversion, part 2: Amplitude approach
  publication-title: Geophysical Prospecting
– volume: 74
  start-page: R15
  year: 2009
  end-page: R24
  article-title: Waveform inversion using a back‐propagation algorithm and a Huber function norm
  publication-title: Geophysics
– volume: 159
  start-page: 240
  year: 2004
  end-page: 252
  article-title: Wave propagation across fluid‐solid interfaces: A grid method approach
  publication-title: Geophysical Journal International
– ident: e_1_2_7_20_1
  doi: 10.1190/1.1487129
– ident: e_1_2_7_7_1
  doi: 10.1190/1.1815890
– volume: 56
  start-page: 863
  year: 2008
  ident: e_1_2_7_3_1
  article-title: Two‐dimensional waveform inversion of multi‐component data in acoustic‐elastic coupled media
  publication-title: Geophysics
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1365-2478.2007.00617.x
– ident: e_1_2_7_4_1
  doi: 10.1063/1.3060203
– ident: e_1_2_7_6_1
  doi: 10.1190/1.3112572
– ident: e_1_2_7_8_1
  doi: 10.1109/PROC.1986.13490
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1365-2478.2007.00619.x
– ident: e_1_2_7_21_1
  doi: 10.1190/1.1441754
– ident: e_1_2_7_10_1
  doi: 10.1029/157GM13
– ident: e_1_2_7_18_1
  doi: 10.1190/1.2194523
– start-page: 206
  volume-title: Conference on Inverse Scattering: Theory and Application
  year: 1983
  ident: e_1_2_7_11_1
– ident: e_1_2_7_13_1
  doi: 10.1190/1.1442384
– ident: e_1_2_7_9_1
  doi: 10.1190/1.1444758
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1365-246X.2008.03768.x
– volume-title: The Finite Element Method: Its Basis and Fundamentals
  year: 2005
  ident: e_1_2_7_23_1
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1365-246X.2004.02372.x
– ident: e_1_2_7_12_1
  doi: 10.1007/s12303-009-0037-x
– ident: e_1_2_7_17_1
  doi: 10.1190/1.2953978
– volume-title: 3‐D Salt and Overthrust Models
  year: 1997
  ident: e_1_2_7_2_1
– ident: e_1_2_7_5_1
  doi: 10.1190/1.1442188
– ident: e_1_2_7_14_1
  doi: 10.1046/j.1365-246X.1998.00498.x
SSID ssj0030554
ssj0017384
Score 2.0799956
Snippet ABSTRACT Although waveform inversion has been intensively studied in an effort to properly delineate the Earth's structures since the early 1980s, most of the...
Although waveform inversion has been intensively studied in an effort to properly delineate the Earth's structures since the early 1980s, most of the time‐ and...
ABSTRACTAlthough waveform inversion has been intensively studied in an effort to properly delineate the Earth's structures since the early 1980s, most of the...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 997
SubjectTerms Acoustic-elastic coupled media
Acoustics
Algorithms
Applied geophysics
Earth
Earth sciences
Earth, ocean, space
Exact sciences and technology
Finite-element method
Geophysics
Internal geophysics
Inversions
Laplace domain
Long-wavelength
Mathematical models
Prospecting
Two dimensional
Waveform inversion
Waveforms
Title 2D acoustic-elastic coupled waveform inversion in the Laplace domain
URI https://api.istex.fr/ark:/67375/WNG-0XGK4HX8-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2478.2010.00879.x
https://www.proquest.com/docview/831150215
Volume 58
WOSCitedRecordID wos000282689700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2478
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017384
  issn: 0016-8025
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXZDgwKOACI_KB8QtaBM7tX1ElN1KVKuqULE3a-KHtGpJq92ylBs_gd_IL2HspNFG4lAhbk6kiZJ5xN_Yn2cAXlel21NlXeY2BJcLq6q8RqtyJ4WymmunBaZmE3I-V4uFPur4T_EsTFsfol9wi5GR_tcxwLFeD4M8MbSE7BlaSuq3hCfHJblxNYLx_vH05LDfU5A8HslsL2Kdq7ZAcxHr8ZbVkOTz1wcPZq5xNMJVZFLimpQZ2i4YA5i6DXbTbDV98D-_8yHc7zAre9c62SO45ZsduLdVyXAH7sxSh-Afj2Fa7jP6y6YmYb9__vKEzmnE6M7FmXfsO258xMls2WzapToaMUKh7BATP4y586-4bJ7AyfTD5_cHedesIUdCXDrn3gvpBdZFTUmP1dJpyibDBC2npEqo4CdBW1fSnByqmnCUQCH3ipo7V-kCOX8Ko-a88c-AoVcFqqLg6CYi1BK5thH3eV_LgKXLQF4bwtiuknlsqHFmtjIa0pmJOjNRZybpzFxlUPSSF201jxvIvEm27gVwdRrZcLIyX-YzM1nMPoqDhTKfMtgdOEMvUHIet3NlBuzaOwwFcdyZwcaTQYyKNY8i-sqgSr5w47czs6NjGjz_R7kXcDfRIdLhypcwulx986_gtt1cLter3S6C_gCokBd2
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hLgg48FOKCNDiA-IWtImd2j4iyu6iLquqtGJvlmM70oqSVtuylBuPwDPyJMw4abSReqgQNyfSRMn8xN_Y428AXhe531V5maeuqnwqnCrS0jqVeimU01x7LWxsNiFnMzWf64O2HRCdhWn4IboFN4qM-L-mAKcF6X6UxxItIbsSLSX1WwSUA4Fehe4-2DscHU-7TQXJ6Uxmc0FEVw1Dc0aEvHnRr_K59sG9qWtAVrikUkp7jtqsmjYYPZy6jnbjdDV6-F8_9BE8aFEre9e42WO4FepNuL_GZbgJd8axR_DPJzDK9xj-Z2ObsD-_fgfE5zhieOfsJHj2w64CIWW2qFfNYh2OGOJQNrWxQoz50292UW_B8ejD0ftJ2rZrSC1iLp3yEIQMwpZZiWmP09JrzCeroXUc0yqhqjCstPM5zspVUSKSElbI3azk3hc6s5w_hY36tA7PgNmgMquyjFs_FFUpLdeOkF8Ipaxs7hOQV5YwruUyp5YaJ2Ytp0GdGdKZIZ2ZqDNzmUDWSZ41fB43kHkTjd0J2OVXqoeThfkyG5vhfLwvJnNlPiew0_OGTiDnnDZ0ZQLsyj0MhjHtzdg6oEGMItYjwl8JFNEZbvx2ZnxwiIPn_yj3Cu5Ojj5NzfTjbP8F3IvFEfGo5UvYuFh-D9tw260uFufLnTac_gJwjxtm
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXUBw4FFADY_iA-IWtImd2j4ilmxRV6tVoWJvluOHtGpJV9t2KTd-Ar-RX4LHSaONxKFC3JxIEyXziL-xx_MBvClyuy_yKk-N9zZlRhRppY1ILWfCSCqtZDqSTfDZTCwWct7SAeFZmKY_RLfghpER_9cY4G5lfT_KY4kW412JluDyXQCUQ4acMgMYjo_K42m3qcApnslsLrDRVdOhOcOGvHnRr_L564N7U9cQrXCFpZT6PGjTNzQYPZy6jXbjdFU-_K8f-ggetKiVvG_c7DHccvUO3N_qZbgDdyaRI_jHEyjzMQn_2UgT9vvnLxfweRiRcGd16iz5rjcOkTJZ1ptmsS6MSMChZKpjhRixZ9_0sn4Kx-XHLx8O0pauIdUBc8mUOse4Y7rKqpD2GMmtDPmkH2lDQ1rFhHcjL43Nw6zsiyogKaYZ388qam0hM03pMxjUZ7XbBaKdyLTIMqrtiPmKayoNIj_nKu51bhPg15ZQpu1ljpQap2orpwk6U6gzhTpTUWfqKoGsk1w1_TxuIPM2GrsT0OsTrIfjhfo6m6jRYnLIDhZCfU5gr-cNnUBOKW7o8gTItXuoEMa4N6NrFwyiBHY9QvyVQBGd4cZvpybzozB4_o9yr-HufFyq6afZ4Qu4F2sj4knLlzC4WF-6V3DbbC6W5-u9Npr-ANIpGuE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+acoustic%E2%80%90elastic+coupled+waveform+inversion+in+the+Laplace+domain&rft.jtitle=Geophysical+Prospecting&rft.au=Bae%2C+Ho+Seuk&rft.au=Shin%2C+Changsoo&rft.au=Cha%2C+Young+Ho&rft.au=Choi%2C+Yunseok&rft.date=2010-11-01&rft.issn=0016-8025&rft.eissn=1365-2478&rft.volume=58&rft.issue=6&rft.spage=997&rft.epage=1010&rft_id=info:doi/10.1111%2Fj.1365-2478.2010.00879.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2478_2010_00879_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-8025&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-8025&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-8025&client=summon