Non-uniqueness with refraction inversion - a syncline model study

ABSTRACT Non‐uniqueness occurs with the 1D parametrization of refraction traveltime graphs in the vertical dimension and with the 2D lateral resolution of individual layers in the horizontal dimension. The most common source of non‐uniqueness is the inversion algorithm used to generate the starting...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical Prospecting Vol. 58; no. 2; pp. 203 - 218
Main Author: Palmer, Derecke
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01.03.2010
Blackwell
Subjects:
ISSN:0016-8025, 1365-2478
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT Non‐uniqueness occurs with the 1D parametrization of refraction traveltime graphs in the vertical dimension and with the 2D lateral resolution of individual layers in the horizontal dimension. The most common source of non‐uniqueness is the inversion algorithm used to generate the starting model. This study applies 1D, 1.5D and 2D inversion algorithms to traveltime data for a syncline (2D) model, in order to generate starting models for wave path eikonal traveltime tomography. The 1D tau‐p algorithm produced a tomogram with an anticline rather than a syncline and an artefact with a high seismic velocity. The 2D generalized reciprocal method generated tomograms that accurately reproduced the syncline, together with narrow regions at the thalweg with seismic velocities that are less than and greater than the true seismic velocities as well as the true values. It is concluded that 2D inversion algorithms, which explicitly identify forward and reverse traveltime data, are required to generate useful starting models in the near‐surface where irregular refractors are common. The most likely tomogram can be selected as either the simplest model or with a priori information, such as head wave amplitudes. The determination of vertical velocity functions within individual layers is also subject to non‐uniqueness. Depths computed with vertical velocity gradients, which are the default with many tomography programs, are generally 50% greater than those computed with constant velocities for the same traveltime data. The average vertical velocity provides a more accurate measure of depth estimates, where it can be derived. Non‐uniqueness is a fundamental reality with the inversion of all near‐surface seismic refraction data. Unless specific measures are taken to explicitly address non‐uniqueness, then the production of a single refraction tomogram, which fits the traveltime data to sufficient accuracy, does not necessarily demonstrate that the result is either ‘correct’ or the most probable.
AbstractList ABSTRACT Non‐uniqueness occurs with the 1D parametrization of refraction traveltime graphs in the vertical dimension and with the 2D lateral resolution of individual layers in the horizontal dimension. The most common source of non‐uniqueness is the inversion algorithm used to generate the starting model. This study applies 1D, 1.5D and 2D inversion algorithms to traveltime data for a syncline (2D) model, in order to generate starting models for wave path eikonal traveltime tomography. The 1D tau‐p algorithm produced a tomogram with an anticline rather than a syncline and an artefact with a high seismic velocity. The 2D generalized reciprocal method generated tomograms that accurately reproduced the syncline, together with narrow regions at the thalweg with seismic velocities that are less than and greater than the true seismic velocities as well as the true values. It is concluded that 2D inversion algorithms, which explicitly identify forward and reverse traveltime data, are required to generate useful starting models in the near‐surface where irregular refractors are common. The most likely tomogram can be selected as either the simplest model or with a priori information, such as head wave amplitudes. The determination of vertical velocity functions within individual layers is also subject to non‐uniqueness. Depths computed with vertical velocity gradients, which are the default with many tomography programs, are generally 50% greater than those computed with constant velocities for the same traveltime data. The average vertical velocity provides a more accurate measure of depth estimates, where it can be derived. Non‐uniqueness is a fundamental reality with the inversion of all near‐surface seismic refraction data. Unless specific measures are taken to explicitly address non‐uniqueness, then the production of a single refraction tomogram, which fits the traveltime data to sufficient accuracy, does not necessarily demonstrate that the result is either ‘correct’ or the most probable.
Non-uniqueness occurs with the 1D parametrization of refraction traveltime graphs in the vertical dimension and with the 2D lateral resolution of individual layers in the horizontal dimension. The most common source of non-uniqueness is the inversion algorithm used to generate the starting model. This study applies 1D, 1.5D and 2D inversion algorithms to traveltime data for a syncline (2D) model, in order to generate starting models for wave path eikonal traveltime tomography.The 1D tau-p algorithm produced a tomogram with an anticline rather than a syncline and an artefact with a high seismic velocity. The 2D generalized reciprocal method generated tomograms that accurately reproduced the syncline, together with narrow regions at the thalweg with seismic velocities that are less than and greater than the true seismic velocities as well as the true values.It is concluded that 2D inversion algorithms, which explicitly identify forward and reverse traveltime data, are required to generate useful starting models in the near-surface where irregular refractors are common. The most likely tomogram can be selected as either the simplest model or with a priori information, such as head wave amplitudes.The determination of vertical velocity functions within individual layers is also subject to non-uniqueness. Depths computed with vertical velocity gradients, which are the default with many tomography programs, are generally 50% greater than those computed with constant velocities for the same traveltime data. The average vertical velocity provides a more accurate measure of depth estimates, where it can be derived.Non-uniqueness is a fundamental reality with the inversion of all near-surface seismic refraction data. Unless specific measures are taken to explicitly address non-uniqueness, then the production of a single refraction tomogram, which fits the traveltime data to sufficient accuracy, does not necessarily demonstrate that the result is either 'correct' or the most probable.
Non‐uniqueness occurs with the 1D parametrization of refraction traveltime graphs in the vertical dimension and with the 2D lateral resolution of individual layers in the horizontal dimension. The most common source of non‐uniqueness is the inversion algorithm used to generate the starting model. This study applies 1D, 1.5D and 2D inversion algorithms to traveltime data for a syncline (2D) model, in order to generate starting models for wave path eikonal traveltime tomography. The 1D tau‐p algorithm produced a tomogram with an anticline rather than a syncline and an artefact with a high seismic velocity. The 2D generalized reciprocal method generated tomograms that accurately reproduced the syncline, together with narrow regions at the thalweg with seismic velocities that are less than and greater than the true seismic velocities as well as the true values. It is concluded that 2D inversion algorithms, which explicitly identify forward and reverse traveltime data, are required to generate useful starting models in the near‐surface where irregular refractors are common. The most likely tomogram can be selected as either the simplest model or with a priori information, such as head wave amplitudes. The determination of vertical velocity functions within individual layers is also subject to non‐uniqueness. Depths computed with vertical velocity gradients, which are the default with many tomography programs, are generally 50% greater than those computed with constant velocities for the same traveltime data. The average vertical velocity provides a more accurate measure of depth estimates, where it can be derived. Non‐uniqueness is a fundamental reality with the inversion of all near‐surface seismic refraction data. Unless specific measures are taken to explicitly address non‐uniqueness, then the production of a single refraction tomogram, which fits the traveltime data to sufficient accuracy, does not necessarily demonstrate that the result is either ‘correct’ or the most probable.
Author Palmer, Derecke
Author_xml – sequence: 1
  givenname: Derecke
  surname: Palmer
  fullname: Palmer, Derecke
  email: d.palmer@unsw.edu.au
  organization: School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney 2052, New South Wales, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22364017$$DView record in Pascal Francis
BookMark eNqNkEtP3DAUhS1EpQ60_yEbxCrpTfwcCVVCI5giIfqi6vLK8UP1NOOAnenM_PsmDGXRFd74Sj7fuT7nhBzHPjpCihqqejwfVlVNBS8bJlXVAMwrAFWrandEZi8Px2QGUItSQcPfkpOcVwAUOGczcnnXx3ITw-PGRZdzsQ3DryI5n7QZQh-LEP-4lKepLHSR99F0Ibpi3VvXFXnY2P078sbrLrv3z_cp-XF9db_4VN5-Xt4sLm9LzShXpbZz8LQV3Hs5B9YKQVljqFcGlPRKcqs1t8pobVvnmWmtkK33XEkrWmEbekrOD74PqR9_mwdch2xc1-no-k1GySilnKtJefas1NnobswSTcj4kMJapz02DRUMajnqPh50JvU5j6HRhEFPsYekQ4c14FQxrnBqEqcmcaoYnyrG3Wig_jP4t-MV6MUB3YbO7V_N4fLLt3EY8fKAhzy43Quu028UkkqOP--WeF-zBZ1_B_xK_wKe36Tn
CODEN GPPRAR
CitedBy_id crossref_primary_10_1071_EG11012
crossref_primary_10_1016_j_jappgeo_2011_05_005
crossref_primary_10_1016_j_rgg_2013_07_023
crossref_primary_10_1016_j_polar_2014_09_002
crossref_primary_10_1071_EG11029
crossref_primary_10_2136_vzj2010_0108
crossref_primary_10_1190_geo2013_0422_1
crossref_primary_10_1190_geo2013_0212_1
crossref_primary_10_3997_1873_0604_2014031
Cites_doi 10.1190/1.1620636
10.1190/1.1443923
10.1190/1.1444443
10.1071/EG08119
10.1029/JB076i002p00579
10.1130/GSAB-50-257
10.1190/1.1438217
10.1017/CBO9781139168359
10.1190/1.1441210
10.1190/1.1437718
10.1190/1.1438261
10.1029/JZ068i020p05777
10.1190/1.1439464
10.1007/s00024-004-2615-1
10.1190/1.1439663
10.1190/1.1437658
10.1111/j.1365-2478.1970.tb02098.x
10.1190/1.1442621
10.1016/0016-7142(79)90036-X
10.1190/1.1444468
10.1190/1.1438493
10.1190/1.1437869
10.1111/j.1365-2478.1970.tb02100.x
10.1190/1.1441196
10.1111/j.1365-2478.1978.tb01630.x
10.1111/j.1365-2478.1956.tb01401.x
10.3997/1365-2397.26.8.28507
10.1111/j.1365-2478.1991.tb00358.x
10.1111/j.1365-2478.2009.00818.x
10.1111/j.1365-2478.1955.tb01379.x
10.1029/JB076i026p06464
10.1190/1.1440960
10.1111/j.1365-2478.1979.tb00983.x
10.1190/1.9781560802426
10.1029/JZ065i004p01083
10.1029/JB075i023p04423
10.1071/EG08019
10.1190/1.1439292
10.1190/1.1487103
10.1190/1.1443514
10.1071/EG992261
10.1007/s00024-004-2616-0
10.1046/j.1365-2478.2003.00365.x
10.1190/1.1437212
10.1007/978-94-009-5546-2
10.1046/j.1365-2478.2000.00223.x
10.1190/1.1440501
10.1115/1.4011140
10.1111/j.1365-2478.2006.00567.x
10.1111/j.1365-2478.1959.tb01460.x
10.1063/1.1745133
10.1190/1.1437863
10.1190/1.1487104
10.1109/TGRS.1984.6499187
10.1190/1.1441157
10.1071/EG05007
10.3997/1365-2397.27.1297.28832
10.1190/1.1438961
10.1190/1.1444320
10.1111/j.1365-2478.1958.tb01655.x
10.1190/1.1436864
ContentType Journal Article
Copyright 2009 European Association of Geoscientists & Engineers
2015 INIST-CNRS
Copyright_xml – notice: 2009 European Association of Geoscientists & Engineers
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SM
8FD
FR3
KR7
DOI 10.1111/j.1365-2478.2009.00818.x
DatabaseName Istex
CrossRef
Pascal-Francis
Earthquake Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Earthquake Engineering Abstracts
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
DatabaseTitleList
Earthquake Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1365-2478
EndPage 218
ExternalDocumentID 22364017
10_1111_j_1365_2478_2009_00818_x
GPR818
ark_67375_WNG_T14C39S0_Q
Genre article
GeographicLocations Narrows
New York
United States
GroupedDBID -~X
1OB
1OC
ALMA_UNASSIGNED_HOLDINGS
BDRZF
BRZYM
BSCLL
DDYGU
FZ0
PALCI
AAYXX
CITATION
IQODW
7SM
8FD
FR3
KR7
ID FETCH-LOGICAL-a4358-ad90f3b65ff7904b66342c3f8c087f875daa5d8caadbef4cbd67bff587d6b6d23
IEDL.DBID DRFUL
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000274242100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-8025
IngestDate Thu Oct 02 10:29:58 EDT 2025
Mon Jul 21 09:11:59 EDT 2025
Tue Nov 18 20:58:45 EST 2025
Sat Nov 29 02:58:39 EST 2025
Sat Aug 24 00:48:59 EDT 2024
Sun Sep 21 06:20:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords waves
algorithms
inverse problem
seismic refraction
synclines
accuracy
velocity
North America
amplitude
parametrization
depth
tomography
two-dimensional models
thalwegs
anticlines
programs
travel time
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4358-ad90f3b65ff7904b66342c3f8c087f875daa5d8caadbef4cbd67bff587d6b6d23
Notes ArticleID:GPR818
ark:/67375/WNG-T14C39S0-Q
istex:D32ED1FAF5459EF75584F4322EEBC1F1FEFB5E60
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 743335582
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_743335582
pascalfrancis_primary_22364017
crossref_citationtrail_10_1111_j_1365_2478_2009_00818_x
crossref_primary_10_1111_j_1365_2478_2009_00818_x
wiley_primary_10_1111_j_1365_2478_2009_00818_x_GPR818
istex_primary_ark_67375_WNG_T14C39S0_Q
PublicationCentury 2000
PublicationDate March 2010
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: March 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Geophysical Prospecting
PublicationYear 2010
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Faust L.Y. 1953. A velocity function including lithologic variation. Geophysics 18, 271-288.
Hamilton E.L. 1971. Elastic properties of marine sediments. Journal of Geophysical Research 76, 579-604.
Palmer D. 1992. Is forward modeling as efficacious as minimum variance for refraction inversion? Exploration Geophysics 23, 261-266, 521.
Palmer D. 1986. Refraction Seismics: The Lateral Resolution of Structure and Seismic Velocity. Geophysical Press.
Zhu X., Sixta D.P. and Andstman B.G. 1992. Tomostatics: Turning-ray tomography + static corrections. The Leading Edge 11, 15-23.
Merrick N.P., Odins J.A. and Greenhalgh S.A. 1978. A blind zone solution to the problem of hidden layers within a sequence of horizontal or dipping refractors. Geophysical Prospecting 26, 703-721.
Palmer D. 1991. The resolution of narrow low-velocity zones with the generalized reciprocal method. Geophysical Prospecting 39, 1031-1060.
Berry M.J. 1971. Depth uncertainties from seismic first arrival studies. Journal of Geophysical Research 76, 6464-6468.
Birch F. 1960. The velocity of compressional waves in rocks at 10 kilobars. Journal of Geophysical Research 65, 1083-1102.
Lanz E., Maurer H. and Green A.G. 1998. Refraction tomography over a buried waste disposal site. Geophysics 63, 1414-1433.
Schuster G.T. and Quintus-Bosz A. 1993. Wavepath eikonal traveltime inversion: Theory. Geophysics 58, 1314-1323.
Acheson C.H. 1963. Time-depth and velocity-depth relations in Western Canada. Geophysics 28, 894-909.
Sheriff R.E. and Geldart L.P. 1995. Exploration Seismology, 2nd edn. Cambridge University Press.
Hagedoorn J.G. 1959. The plus-minus method of interpreting seismic refraction sections. Geophysical Prospecting 7, 158-182.
Hagiwara T. and Omote S. 1939. Land creep at Mt Tyausu-Yama (Determination of slip plane by seismic prospecting). Tokyo University Earthquake Research Institute Bulletin 17, 118-137.
Hagedoorn J.G. 1955. Templates for fitting smooth velocity functions to seismic refraction and reflection data. Geophysical Prospecting 3, 325-338.
Oldenburg D.W. 1984. An introduction to linear inverse theory. IEEE Transactions on Geoscience and Remote Sensing GE-22, 665-674.
Ivanov J., Miller R.D., Xia J., Steeples D. and Park C.B. 2005a. The inverse problem of refraction travel times, part I; types of geophysical nonuniqueness through minimization. Pure and Applied Geophysics 162, 447-459.
Palmer D. 2006. Refraction traveltime and amplitude corrections for very near-surface inhomogeneities. Geophysical Prospecting 54, 589-604.
Taner M.T., Wagner D.E., Baysal E. and Lee L. 1998. A unified method for 2-D and 3-D refraction statics. Geophysics 63 260-274.
Hall J. 1970. The correlation of seismic velocities with formations in the southwest of Scotland. Geophysical Prospecting 18, 134-156.
Wyllie W.R., Gregory A.R. and Gardner L.W. 1956. Elastic wave velocities in heterogeneous and porous media. Geophysics 21, 41-70.
Domzalski W. 1956. Some problems of shallow refraction investigations. Geophysical Prospecting 4, 140-166.
Gassman F. 1951. Elastic waves through a packing of spheres. Geophysics 16, 673-685.
Leung T.K. 2003. Controls of traveltime data and problems of the generalized reciprocal method. Geophysics 68, 1626-1632.
Palmer D. 2009. Maximising the lateral resolution of near-surface seismic refraction methods. Exploration Geophysics 40, 85-90; Butsuri-Tansa 62, 85-90; Mulli-Tamsa12, 85-90.
White J.E. and Sengbush R.L. 1953. Velocity measurements in near surface formations. Geophysics 18, 54-69.
Aki K. and Richards P.G. 2002. Quantitative Seismology. University Science Books.
Diebold J.B. and Stoffa P.L. 1981. The traveltime equation, tau-p mapping, and inversion of common midpoint data. Geophysics 46, 238-254.
Palmer D. 2001b. Imaging refractors with the convolution section. Geophysics, 66, 1582-1589.
Sjögren B. 1984. Shallow Refraction Seismics. Chapman and Hall.
Sjögren B. 1979. Refractor velocity determination -Cause and nature of some errors: Geophysical Prospecting 27, 507-538.
Slichter L.B. 1932. Theory of the interpretation of seismic travel-time curves in horizontal structures. Physics 3, 273-295.
Barton R. and Barker N. 2003. Velocity imaging by tau-p transformation of refracted traveltimes. Geophysical Prospecting 51, 195-203.
Acheson C.H. 1981. Time-depth and velocity-depth relations in sedimentary basins -A study based on current investigations in the Arctic Islands and an interpretation of experience elsewhere. Geophysics 46, 707-716.
Sjögren B. 2000. A brief study of the generalized reciprocal method and some limitations of the method. Geophysical Prospecting 487, 815-834.
Treitel S. 1989. Quo vadit inversion. The Leading Edge 8, 38-42.
Faust L.Y. 1951. Seismic velocity as a function of depth and geologic time. Geophysics 16, 192-206.
Healy J.H. 1963. Crustal structure along the coast of California from seismic-refraction measurements. Journal of Geophysical Research 68, 5777-5787.
Hamilton E.L. 1970. Sound velocity and related properties of marine sediments, North Pacific. Journal of Geophysical Research 75, 4423-4446.
Wyllie W.R., Gregory A.R. and Gardner L.W. 1958. An experimental investigation affecting elastic wave velocities in porous media. Geophysics 23, 459-593.
Ewing M., Woollard G.P. and Vine A.C. 1939. Geophysical investigations in the emerged and submerged Atlantic coastal plain, Part 3, Barnegat Bay, New Jersey section. GSA Bulletin 50, 257-296.
Jankowsky W. 1970. Empirical investigation of some factors affecting elastic velocities in carbonate rocks. Geophysical Prospecting 18, 103-118.
Zhang J. and Toksöz M.N. 1998. Nonlinear refraction traveltime tomography. Geophysics 63, 1726-1737.
Stefani J.P. 1995. Turning-ray tomography. Geophysics 60, 1917-1929.
Hales F. W. 1958. An accurate graphical method for interpreting seismic refraction lines. Geophysical Prospecting 6, 285-294.
Gibson B.S., Odegard M.E. and Sutton G.H. 1979. Nonlinear least-squares inversion of traveltime data for a linear velocity-depth relationship. Geophysics 44, 185-194.
Nettleton L.L. 1940. Geophysical Prospecting for Oil. McGraw-Hill.
Palmer D. and Shadlow J. 2008. Integrating long and short wavelength statics with the generalized reciprocal method and the refraction convolution section. Exploration Geophysics 39, 139-147.
Dobrin M.B. 1976. Introduction to Geophysical Prospecting, 3rd edn. McGraw-Hill.
Treitel S. and Lines L. 1988. Geophysical examples of inversion (with a grain of salt): The Leading Edge 7, 32-35.
Palmer D. 1980. The Generalized Reciprocal Method of Seismic Rrefraction Interpretation. SEG.
Gardner L.W. 1939. An areal plan for mapping subsurface structure by refraction shooting. Geophysics 4, 247-259.
Palmer D. 2008. Is it time to re-engineer geotechnical seismic refraction methods? First Break 26, 69-77.
Whiteley R.J. and Greenhalgh S.A. 1979. Velocity inversion and the shallow seismic refraction method. Geoexploration 17, 125-141.
Paterson N.R. 1956. Seismic wave propagation in porous granular media. Geophysics 21, 691-714.
Berry J.E. 1959. Acoustic velocity in porous media. Petroleum Transactions of the American Institute of Mining Engineers 216, 262-270.
Palmer D. 2001c. Resolving refractor ambiguities with amplitudes. Geophysics 66, 1590-1593.
Barthelmes A.J. 1946. Application of continuous profiling to refraction shooting. Geophysics 11, 24-42.
Palmer D. 1981. An introduction to the generalized reciprocal method of seismic refraction interpretation. Geophysics 46, 1508-1518.
Ivanov J., Miller R.D., Xia J. and Steeples D. 2005b. The inverse problem of refraction travel times, part II; quantifying refraction nonuniqueness using a three-layer model. Pure and Applied Geophysics 162, 461-477.
Glogovsky V., Landa E., Langman S. and Moser T.J. 2009. Validating the velocity model: The Hamburg score. First Break 27, 77-85.
Gassman F. 1953. Note on 'Elastic waves through a packing of spheres'. Geophysics 16, 269.
Lankston R.B. 1989. The seismic refraction method: A viable tool for mapping shallow targets into the 1990s. Geophysics 54, 1535-1542.
Menke W. 1989. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press.
Palmer D. 2009. Non-uniqueness in refraction inversion - The Mt Bulga shear zone. Geophysical Prospecting (submitted).
Hawkins L.V. 1961. The reciprocal method of routine shallow seismic refraction investigations. Geophysics 26, 806-819.
Palmer D., Nikrouz R. and Spyrou A. 2005. Statics corrections for shallow seismic refraction data. Exploration Geophysics 36, 7-17.
Iida K. 1939. Velocity of elastic waves in granular substances. Tokyo University Earthquake Research Institute Bulletin 17, 783-897.
Brandt H. 1955. A study of the speed of sound in porous granular media. Journal of Applied Mechanics 22, 479-486.
2009; 40
1939; 50
2008; 39
1976
1981; 46
1970; 75
2001b; 66
2003; 51
1992; 11
1939; 17
1932; 3
1959; 7
1955; 3
1979; 27
2001c; 66
1995; 60
2000; 487
2005b; 162
1986
2008; 26
1940
1984
1978; 26
1980
1958; 6
1989
2005; 36
1963; 68
1979; 17
1953; 18
1991; 39
1953; 16
2006; 54
1989; 8
2009
1995
2001a
2002
1998; 63
1970; 18
1963; 28
2009; 27
1955; 22
1959; 216
1993; 58
1946; 11
1971; 76
1960; 65
1989; 54
1984; GE‐22
1956; 21
2005a; 162
1988; 7
1958; 23
2003; 68
1951; 16
1979; 44
1992; 23
1961; 26
1967
1939; 4
1956; 4
Nettleton L.L. (e_1_2_7_41_1) 1940
e_1_2_7_3_1
Dobrin M.B. (e_1_2_7_13_1) 1976
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_64_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Palmer D. (e_1_2_7_45_1) 1986
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
Iida K. (e_1_2_7_32_1) 1939; 17
Menke W. (e_1_2_7_39_1) 1989
Aki K. (e_1_2_7_4_1) 2002
Glogovsky V. (e_1_2_7_22_1) 2009; 27
e_1_2_7_6_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
Palmer D. (e_1_2_7_52_1) 2008; 26
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Gassman F. (e_1_2_7_20_1) 1953; 16
Hagiwara T. (e_1_2_7_25_1) 1939; 17
Barry K.M. (e_1_2_7_5_1) 1967
Palmer D. (e_1_2_7_48_1) 2001
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_55_1
Berry J.E. (e_1_2_7_8_1) 1959; 216
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – reference: Hall J. 1970. The correlation of seismic velocities with formations in the southwest of Scotland. Geophysical Prospecting 18, 134-156.
– reference: Sheriff R.E. and Geldart L.P. 1995. Exploration Seismology, 2nd edn. Cambridge University Press.
– reference: Palmer D. 1992. Is forward modeling as efficacious as minimum variance for refraction inversion? Exploration Geophysics 23, 261-266, 521.
– reference: Hamilton E.L. 1971. Elastic properties of marine sediments. Journal of Geophysical Research 76, 579-604.
– reference: Taner M.T., Wagner D.E., Baysal E. and Lee L. 1998. A unified method for 2-D and 3-D refraction statics. Geophysics 63 260-274.
– reference: Jankowsky W. 1970. Empirical investigation of some factors affecting elastic velocities in carbonate rocks. Geophysical Prospecting 18, 103-118.
– reference: Sjögren B. 1984. Shallow Refraction Seismics. Chapman and Hall.
– reference: Palmer D., Nikrouz R. and Spyrou A. 2005. Statics corrections for shallow seismic refraction data. Exploration Geophysics 36, 7-17.
– reference: Palmer D. 1981. An introduction to the generalized reciprocal method of seismic refraction interpretation. Geophysics 46, 1508-1518.
– reference: Oldenburg D.W. 1984. An introduction to linear inverse theory. IEEE Transactions on Geoscience and Remote Sensing GE-22, 665-674.
– reference: Wyllie W.R., Gregory A.R. and Gardner L.W. 1958. An experimental investigation affecting elastic wave velocities in porous media. Geophysics 23, 459-593.
– reference: Brandt H. 1955. A study of the speed of sound in porous granular media. Journal of Applied Mechanics 22, 479-486.
– reference: Ewing M., Woollard G.P. and Vine A.C. 1939. Geophysical investigations in the emerged and submerged Atlantic coastal plain, Part 3, Barnegat Bay, New Jersey section. GSA Bulletin 50, 257-296.
– reference: Aki K. and Richards P.G. 2002. Quantitative Seismology. University Science Books.
– reference: Hagedoorn J.G. 1955. Templates for fitting smooth velocity functions to seismic refraction and reflection data. Geophysical Prospecting 3, 325-338.
– reference: Lankston R.B. 1989. The seismic refraction method: A viable tool for mapping shallow targets into the 1990s. Geophysics 54, 1535-1542.
– reference: Palmer D. 1980. The Generalized Reciprocal Method of Seismic Rrefraction Interpretation. SEG.
– reference: Barthelmes A.J. 1946. Application of continuous profiling to refraction shooting. Geophysics 11, 24-42.
– reference: Sjögren B. 1979. Refractor velocity determination -Cause and nature of some errors: Geophysical Prospecting 27, 507-538.
– reference: Hales F. W. 1958. An accurate graphical method for interpreting seismic refraction lines. Geophysical Prospecting 6, 285-294.
– reference: Faust L.Y. 1953. A velocity function including lithologic variation. Geophysics 18, 271-288.
– reference: Ivanov J., Miller R.D., Xia J., Steeples D. and Park C.B. 2005a. The inverse problem of refraction travel times, part I; types of geophysical nonuniqueness through minimization. Pure and Applied Geophysics 162, 447-459.
– reference: Berry M.J. 1971. Depth uncertainties from seismic first arrival studies. Journal of Geophysical Research 76, 6464-6468.
– reference: Palmer D. 1991. The resolution of narrow low-velocity zones with the generalized reciprocal method. Geophysical Prospecting 39, 1031-1060.
– reference: Palmer D. 2001b. Imaging refractors with the convolution section. Geophysics, 66, 1582-1589.
– reference: Stefani J.P. 1995. Turning-ray tomography. Geophysics 60, 1917-1929.
– reference: Hagedoorn J.G. 1959. The plus-minus method of interpreting seismic refraction sections. Geophysical Prospecting 7, 158-182.
– reference: Nettleton L.L. 1940. Geophysical Prospecting for Oil. McGraw-Hill.
– reference: Hamilton E.L. 1970. Sound velocity and related properties of marine sediments, North Pacific. Journal of Geophysical Research 75, 4423-4446.
– reference: Slichter L.B. 1932. Theory of the interpretation of seismic travel-time curves in horizontal structures. Physics 3, 273-295.
– reference: Acheson C.H. 1963. Time-depth and velocity-depth relations in Western Canada. Geophysics 28, 894-909.
– reference: Iida K. 1939. Velocity of elastic waves in granular substances. Tokyo University Earthquake Research Institute Bulletin 17, 783-897.
– reference: Palmer D. 2009. Maximising the lateral resolution of near-surface seismic refraction methods. Exploration Geophysics 40, 85-90; Butsuri-Tansa 62, 85-90; Mulli-Tamsa12, 85-90.
– reference: Acheson C.H. 1981. Time-depth and velocity-depth relations in sedimentary basins -A study based on current investigations in the Arctic Islands and an interpretation of experience elsewhere. Geophysics 46, 707-716.
– reference: Glogovsky V., Landa E., Langman S. and Moser T.J. 2009. Validating the velocity model: The Hamburg score. First Break 27, 77-85.
– reference: Palmer D. 2009. Non-uniqueness in refraction inversion - The Mt Bulga shear zone. Geophysical Prospecting (submitted).
– reference: Wyllie W.R., Gregory A.R. and Gardner L.W. 1956. Elastic wave velocities in heterogeneous and porous media. Geophysics 21, 41-70.
– reference: Dobrin M.B. 1976. Introduction to Geophysical Prospecting, 3rd edn. McGraw-Hill.
– reference: Ivanov J., Miller R.D., Xia J. and Steeples D. 2005b. The inverse problem of refraction travel times, part II; quantifying refraction nonuniqueness using a three-layer model. Pure and Applied Geophysics 162, 461-477.
– reference: Hagiwara T. and Omote S. 1939. Land creep at Mt Tyausu-Yama (Determination of slip plane by seismic prospecting). Tokyo University Earthquake Research Institute Bulletin 17, 118-137.
– reference: Birch F. 1960. The velocity of compressional waves in rocks at 10 kilobars. Journal of Geophysical Research 65, 1083-1102.
– reference: Berry J.E. 1959. Acoustic velocity in porous media. Petroleum Transactions of the American Institute of Mining Engineers 216, 262-270.
– reference: Palmer D. 2001c. Resolving refractor ambiguities with amplitudes. Geophysics 66, 1590-1593.
– reference: Palmer D. and Shadlow J. 2008. Integrating long and short wavelength statics with the generalized reciprocal method and the refraction convolution section. Exploration Geophysics 39, 139-147.
– reference: Gibson B.S., Odegard M.E. and Sutton G.H. 1979. Nonlinear least-squares inversion of traveltime data for a linear velocity-depth relationship. Geophysics 44, 185-194.
– reference: Lanz E., Maurer H. and Green A.G. 1998. Refraction tomography over a buried waste disposal site. Geophysics 63, 1414-1433.
– reference: Sjögren B. 2000. A brief study of the generalized reciprocal method and some limitations of the method. Geophysical Prospecting 487, 815-834.
– reference: Schuster G.T. and Quintus-Bosz A. 1993. Wavepath eikonal traveltime inversion: Theory. Geophysics 58, 1314-1323.
– reference: Gardner L.W. 1939. An areal plan for mapping subsurface structure by refraction shooting. Geophysics 4, 247-259.
– reference: Palmer D. 1986. Refraction Seismics: The Lateral Resolution of Structure and Seismic Velocity. Geophysical Press.
– reference: Treitel S. 1989. Quo vadit inversion. The Leading Edge 8, 38-42.
– reference: White J.E. and Sengbush R.L. 1953. Velocity measurements in near surface formations. Geophysics 18, 54-69.
– reference: Palmer D. 2006. Refraction traveltime and amplitude corrections for very near-surface inhomogeneities. Geophysical Prospecting 54, 589-604.
– reference: Palmer D. 2008. Is it time to re-engineer geotechnical seismic refraction methods? First Break 26, 69-77.
– reference: Whiteley R.J. and Greenhalgh S.A. 1979. Velocity inversion and the shallow seismic refraction method. Geoexploration 17, 125-141.
– reference: Healy J.H. 1963. Crustal structure along the coast of California from seismic-refraction measurements. Journal of Geophysical Research 68, 5777-5787.
– reference: Leung T.K. 2003. Controls of traveltime data and problems of the generalized reciprocal method. Geophysics 68, 1626-1632.
– reference: Paterson N.R. 1956. Seismic wave propagation in porous granular media. Geophysics 21, 691-714.
– reference: Faust L.Y. 1951. Seismic velocity as a function of depth and geologic time. Geophysics 16, 192-206.
– reference: Diebold J.B. and Stoffa P.L. 1981. The traveltime equation, tau-p mapping, and inversion of common midpoint data. Geophysics 46, 238-254.
– reference: Domzalski W. 1956. Some problems of shallow refraction investigations. Geophysical Prospecting 4, 140-166.
– reference: Gassman F. 1951. Elastic waves through a packing of spheres. Geophysics 16, 673-685.
– reference: Menke W. 1989. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press.
– reference: Zhang J. and Toksöz M.N. 1998. Nonlinear refraction traveltime tomography. Geophysics 63, 1726-1737.
– reference: Gassman F. 1953. Note on 'Elastic waves through a packing of spheres'. Geophysics 16, 269.
– reference: Merrick N.P., Odins J.A. and Greenhalgh S.A. 1978. A blind zone solution to the problem of hidden layers within a sequence of horizontal or dipping refractors. Geophysical Prospecting 26, 703-721.
– reference: Barton R. and Barker N. 2003. Velocity imaging by tau-p transformation of refracted traveltimes. Geophysical Prospecting 51, 195-203.
– reference: Hawkins L.V. 1961. The reciprocal method of routine shallow seismic refraction investigations. Geophysics 26, 806-819.
– reference: Treitel S. and Lines L. 1988. Geophysical examples of inversion (with a grain of salt): The Leading Edge 7, 32-35.
– reference: Zhu X., Sixta D.P. and Andstman B.G. 1992. Tomostatics: Turning-ray tomography + static corrections. The Leading Edge 11, 15-23.
– volume: 18
  start-page: 134
  year: 1970
  end-page: 156
  article-title: The correlation of seismic velocities with formations in the southwest of Scotland
  publication-title: Geophysical Prospecting
– volume: 11
  start-page: 15
  year: 1992
  end-page: 23
  article-title: Tomostatics: Turning‐ray tomography + static corrections
  publication-title: The Leading Edge
– volume: 22
  start-page: 479
  year: 1955
  end-page: 486
  article-title: A study of the speed of sound in porous granular media
  publication-title: Journal of Applied Mechanics
– volume: 40
  start-page: 85
  year: 2009
  end-page: 90
  article-title: Maximising the lateral resolution of near‐surface seismic refraction methods
  publication-title: Exploration Geophysics
– volume: 27
  start-page: 77
  year: 2009
  end-page: 85
  article-title: Validating the velocity model: The Hamburg score
  publication-title: First Break
– year: 2001a
– start-page: 348
  year: 1967
  end-page: 361
– volume: 18
  start-page: 103
  year: 1970
  end-page: 118
  article-title: Empirical investigation of some factors affecting elastic velocities in carbonate rocks
  publication-title: Geophysical Prospecting
– year: 1989
– volume: 26
  start-page: 703
  year: 1978
  end-page: 721
  article-title: A blind zone solution to the problem of hidden layers within a sequence of horizontal or dipping refractors
  publication-title: Geophysical Prospecting
– volume: 17
  start-page: 125
  year: 1979
  end-page: 141
  article-title: Velocity inversion and the shallow seismic refraction method
  publication-title: Geoexploration
– volume: 26
  start-page: 806
  year: 1961
  end-page: 819
  article-title: The reciprocal method of routine shallow seismic refraction investigations
  publication-title: Geophysics
– volume: 58
  start-page: 1314
  year: 1993
  end-page: 1323
  article-title: Wavepath eikonal traveltime inversion: Theory
  publication-title: Geophysics
– volume: 26
  start-page: 69
  year: 2008
  end-page: 77
  article-title: Is it time to re‐engineer geotechnical seismic refraction methods?
  publication-title: First Break
– volume: 7
  start-page: 32
  year: 1988
  end-page: 35
  article-title: Geophysical examples of inversion (with a grain of salt)
  publication-title: The Leading Edge
– volume: 17
  start-page: 118
  year: 1939
  end-page: 137
  article-title: Land creep at Mt Tyausu‐Yama (Determination of slip plane by seismic prospecting)
  publication-title: Tokyo University Earthquake Research Institute Bulletin
– year: 1986
– volume: 66
  start-page: 1590
  year: 2001c
  end-page: 1593
  article-title: Resolving refractor ambiguities with amplitudes
  publication-title: Geophysics
– volume: 162
  start-page: 447
  year: 2005a
  end-page: 459
  article-title: The inverse problem of refraction travel times, part I; types of geophysical nonuniqueness through minimization
  publication-title: Pure and Applied Geophysics
– year: 1940
– volume: 28
  start-page: 894
  year: 1963
  end-page: 909
  article-title: Time‐depth and velocity‐depth relations in Western Canada
  publication-title: Geophysics
– volume: 27
  start-page: 507
  year: 1979
  end-page: 538
  article-title: Refractor velocity determination –Cause and nature of some errors
  publication-title: Geophysical Prospecting
– volume: 60
  start-page: 1917
  year: 1995
  end-page: 1929
  article-title: Turning‐ray tomography
  publication-title: Geophysics
– volume: 36
  start-page: 7
  year: 2005
  end-page: 17
  article-title: Statics corrections for shallow seismic refraction data
  publication-title: Exploration Geophysics
– volume: 6
  start-page: 285
  year: 1958
  end-page: 294
  article-title: An accurate graphical method for interpreting seismic refraction lines
  publication-title: Geophysical Prospecting
– volume: 8
  start-page: 38
  year: 1989
  end-page: 42
  article-title: Quo vadit inversion
  publication-title: The Leading Edge
– volume: 76
  start-page: 6464
  year: 1971
  end-page: 6468
  article-title: Depth uncertainties from seismic first arrival studies
  publication-title: Journal of Geophysical Research
– volume: 16
  start-page: 269
  year: 1953
  article-title: Note on ‘Elastic waves through a packing of spheres’
  publication-title: Geophysics
– volume: GE‐22
  start-page: 665
  year: 1984
  end-page: 674
  article-title: An introduction to linear inverse theory
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 50
  start-page: 257
  year: 1939
  end-page: 296
  article-title: Geophysical investigations in the emerged and submerged Atlantic coastal plain, Part 3, Barnegat Bay, New Jersey section
  publication-title: GSA Bulletin
– volume: 76
  start-page: 579
  year: 1971
  end-page: 604
  article-title: Elastic properties of marine sediments
  publication-title: Journal of Geophysical Research
– volume: 18
  start-page: 271
  year: 1953
  end-page: 288
  article-title: A velocity function including lithologic variation
  publication-title: Geophysics
– volume: 63
  start-page: 1414
  year: 1998
  end-page: 1433
  article-title: Refraction tomography over a buried waste disposal site
  publication-title: Geophysics
– year: 2009
  article-title: Non‐uniqueness in refraction inversion – The Mt Bulga shear zone
  publication-title: Geophysical Prospecting
– year: 1976
– volume: 16
  start-page: 673
  year: 1951
  end-page: 685
  article-title: Elastic waves through a packing of spheres
  publication-title: Geophysics
– volume: 75
  start-page: 4423
  year: 1970
  end-page: 4446
  article-title: Sound velocity and related properties of marine sediments, North Pacific
  publication-title: Journal of Geophysical Research
– volume: 63
  start-page: 1726
  year: 1998
  end-page: 1737
  article-title: Nonlinear refraction traveltime tomography
  publication-title: Geophysics
– volume: 3
  start-page: 325
  year: 1955
  end-page: 338
  article-title: Templates for fitting smooth velocity functions to seismic refraction and reflection data
  publication-title: Geophysical Prospecting
– volume: 7
  start-page: 158
  year: 1959
  end-page: 182
  article-title: The plus‐minus method of interpreting seismic refraction sections
  publication-title: Geophysical Prospecting
– volume: 21
  start-page: 41
  year: 1956
  end-page: 70
  article-title: Elastic wave velocities in heterogeneous and porous media
  publication-title: Geophysics
– volume: 65
  start-page: 1083
  year: 1960
  end-page: 1102
  article-title: The velocity of compressional waves in rocks at 10 kilobars
  publication-title: Journal of Geophysical Research
– volume: 39
  start-page: 139
  year: 2008
  end-page: 147
  article-title: Integrating long and short wavelength statics with the generalized reciprocal method and the refraction convolution section
  publication-title: Exploration Geophysics
– volume: 63
  start-page: 260
  year: 1998
  end-page: 274
  article-title: A unified method for 2‐D and 3‐D refraction statics
  publication-title: Geophysics
– volume: 46
  start-page: 707
  year: 1981
  end-page: 716
  article-title: Time‐depth and velocity‐depth relations in sedimentary basins –A study based on current investigations in the Arctic Islands and an interpretation of experience elsewhere
  publication-title: Geophysics
– volume: 4
  start-page: 247
  year: 1939
  end-page: 259
  article-title: An areal plan for mapping subsurface structure by refraction shooting
  publication-title: Geophysics
– volume: 23
  start-page: 459
  year: 1958
  end-page: 593
  article-title: An experimental investigation affecting elastic wave velocities in porous media
  publication-title: Geophysics
– volume: 68
  start-page: 1626
  year: 2003
  end-page: 1632
  article-title: Controls of traveltime data and problems of the generalized reciprocal method
  publication-title: Geophysics
– volume: 39
  start-page: 1031
  year: 1991
  end-page: 1060
  article-title: The resolution of narrow low‐velocity zones with the generalized reciprocal method
  publication-title: Geophysical Prospecting
– volume: 216
  start-page: 262
  year: 1959
  end-page: 270
  article-title: Acoustic velocity in porous media
  publication-title: Petroleum Transactions of the American Institute of Mining Engineers
– volume: 46
  start-page: 238
  year: 1981
  end-page: 254
  article-title: The traveltime equation, tau‐p mapping, and inversion of common midpoint data
  publication-title: Geophysics
– volume: 17
  start-page: 783
  year: 1939
  end-page: 897
  article-title: Velocity of elastic waves in granular substances
  publication-title: Tokyo University Earthquake Research Institute Bulletin
– volume: 162
  start-page: 461
  year: 2005b
  end-page: 477
  article-title: The inverse problem of refraction travel times, part II; quantifying refraction nonuniqueness using a three‐layer model
  publication-title: Pure and Applied Geophysics
– year: 1984
– volume: 23
  start-page: 261
  year: 1992
  end-page: 266, 521
  article-title: Is forward modeling as efficacious as minimum variance for refraction inversion?
  publication-title: Exploration Geophysics
– volume: 21
  start-page: 691
  year: 1956
  end-page: 714
  article-title: Seismic wave propagation in porous granular media
  publication-title: Geophysics
– volume: 3
  start-page: 273
  year: 1932
  end-page: 295
  article-title: Theory of the interpretation of seismic travel‐time curves in horizontal structures
  publication-title: Physics
– volume: 18
  start-page: 54
  year: 1953
  end-page: 69
  article-title: Velocity measurements in near surface formations
  publication-title: Geophysics
– volume: 54
  start-page: 1535
  year: 1989
  end-page: 1542
  article-title: The seismic refraction method: A viable tool for mapping shallow targets into the 1990s
  publication-title: Geophysics
– year: 1980
– volume: 4
  start-page: 140
  year: 1956
  end-page: 166
  article-title: Some problems of shallow refraction investigations
  publication-title: Geophysical Prospecting
– year: 2002
– volume: 11
  start-page: 24
  year: 1946
  end-page: 42
  article-title: Application of continuous profiling to refraction shooting
  publication-title: Geophysics
– volume: 51
  start-page: 195
  year: 2003
  end-page: 203
  article-title: Velocity imaging by tau‐p transformation of refracted traveltimes
  publication-title: Geophysical Prospecting
– volume: 487
  start-page: 815
  year: 2000
  end-page: 834
  article-title: A brief study of the generalized reciprocal method and some limitations of the method
  publication-title: Geophysical Prospecting
– year: 1995
– volume: 44
  start-page: 185
  year: 1979
  end-page: 194
  article-title: Nonlinear least‐squares inversion of traveltime data for a linear velocity‐depth relationship
  publication-title: Geophysics
– volume: 46
  start-page: 1508
  year: 1981
  end-page: 1518
  article-title: An introduction to the generalized reciprocal method of seismic refraction interpretation
  publication-title: Geophysics
– volume: 68
  start-page: 5777
  year: 1963
  end-page: 5787
  article-title: Crustal structure along the coast of California from seismic‐refraction measurements
  publication-title: Journal of Geophysical Research
– volume: 54
  start-page: 589
  year: 2006
  end-page: 604
  article-title: Refraction traveltime and amplitude corrections for very near‐surface inhomogeneities
  publication-title: Geophysical Prospecting
– volume: 66
  start-page: 1582
  year: 2001b
  end-page: 1589
  article-title: Imaging refractors with the convolution section
  publication-title: Geophysics
– volume: 16
  start-page: 192
  year: 1951
  end-page: 206
  article-title: Seismic velocity as a function of depth and geologic time
  publication-title: Geophysics
– ident: e_1_2_7_38_1
  doi: 10.1190/1.1620636
– ident: e_1_2_7_64_1
  doi: 10.1190/1.1443923
– ident: e_1_2_7_37_1
  doi: 10.1190/1.1444443
– ident: e_1_2_7_53_1
  doi: 10.1071/EG08119
– ident: e_1_2_7_29_1
  doi: 10.1029/JB076i002p00579
– ident: e_1_2_7_15_1
  doi: 10.1130/GSAB-50-257
– ident: e_1_2_7_70_1
  doi: 10.1190/1.1438217
– volume-title: Quantitative Seismology
  year: 2002
  ident: e_1_2_7_4_1
– ident: e_1_2_7_59_1
  doi: 10.1017/CBO9781139168359
– volume: 16
  start-page: 269
  year: 1953
  ident: e_1_2_7_20_1
  article-title: Note on ‘Elastic waves through a packing of spheres’
  publication-title: Geophysics
– ident: e_1_2_7_3_1
  doi: 10.1190/1.1441210
– start-page: 348
  volume-title: Seismic Refraction Prospecting
  year: 1967
  ident: e_1_2_7_5_1
– ident: e_1_2_7_19_1
  doi: 10.1190/1.1437718
– ident: e_1_2_7_57_1
  doi: 10.1190/1.1438261
– ident: e_1_2_7_31_1
  doi: 10.1029/JZ068i020p05777
– ident: e_1_2_7_67_1
  doi: 10.1190/1.1439464
– ident: e_1_2_7_33_1
  doi: 10.1007/s00024-004-2615-1
– ident: e_1_2_7_66_1
  doi: 10.1190/1.1439663
– ident: e_1_2_7_16_1
  doi: 10.1190/1.1437658
– ident: e_1_2_7_35_1
  doi: 10.1111/j.1365-2478.1970.tb02098.x
– ident: e_1_2_7_36_1
  doi: 10.1190/1.1442621
– ident: e_1_2_7_69_1
  doi: 10.1016/0016-7142(79)90036-X
– volume-title: Digital processing of shallow seismic refraction data with the refraction convolution section
  year: 2001
  ident: e_1_2_7_48_1
– ident: e_1_2_7_72_1
  doi: 10.1190/1.1444468
– ident: e_1_2_7_71_1
  doi: 10.1190/1.1438493
– ident: e_1_2_7_17_1
  doi: 10.1190/1.1437869
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1365-2478.1970.tb02100.x
– ident: e_1_2_7_12_1
  doi: 10.1190/1.1441196
– ident: e_1_2_7_40_1
  doi: 10.1111/j.1365-2478.1978.tb01630.x
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1365-2478.1956.tb01401.x
– volume: 26
  start-page: 69
  year: 2008
  ident: e_1_2_7_52_1
  article-title: Is it time to re‐engineer geotechnical seismic refraction methods?
  publication-title: First Break
  doi: 10.3997/1365-2397.26.8.28507
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1365-2478.1991.tb00358.x
– ident: e_1_2_7_54_1
  doi: 10.1111/j.1365-2478.2009.00818.x
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1365-2478.1955.tb01379.x
– volume-title: Refraction Seismics: The Lateral Resolution of Structure and Seismic Velocity
  year: 1986
  ident: e_1_2_7_45_1
– ident: e_1_2_7_9_1
  doi: 10.1029/JB076i026p06464
– volume: 216
  start-page: 262
  year: 1959
  ident: e_1_2_7_8_1
  article-title: Acoustic velocity in porous media
  publication-title: Petroleum Transactions of the American Institute of Mining Engineers
– volume: 17
  start-page: 783
  year: 1939
  ident: e_1_2_7_32_1
  article-title: Velocity of elastic waves in granular substances
  publication-title: Tokyo University Earthquake Research Institute Bulletin
– ident: e_1_2_7_21_1
  doi: 10.1190/1.1440960
– ident: e_1_2_7_60_1
  doi: 10.1111/j.1365-2478.1979.tb00983.x
– ident: e_1_2_7_43_1
  doi: 10.1190/1.9781560802426
– ident: e_1_2_7_10_1
  doi: 10.1029/JZ065i004p01083
– ident: e_1_2_7_28_1
  doi: 10.1029/JB075i023p04423
– ident: e_1_2_7_56_1
  doi: 10.1071/EG08019
– ident: e_1_2_7_2_1
  doi: 10.1190/1.1439292
– ident: e_1_2_7_49_1
  doi: 10.1190/1.1487103
– ident: e_1_2_7_58_1
  doi: 10.1190/1.1443514
– ident: e_1_2_7_47_1
  doi: 10.1071/EG992261
– ident: e_1_2_7_34_1
  doi: 10.1007/s00024-004-2616-0
– volume-title: Introduction to Geophysical Prospecting
  year: 1976
  ident: e_1_2_7_13_1
– ident: e_1_2_7_7_1
  doi: 10.1046/j.1365-2478.2003.00365.x
– ident: e_1_2_7_6_1
  doi: 10.1190/1.1437212
– ident: e_1_2_7_61_1
  doi: 10.1007/978-94-009-5546-2
– ident: e_1_2_7_62_1
  doi: 10.1046/j.1365-2478.2000.00223.x
– ident: e_1_2_7_18_1
  doi: 10.1190/1.1440501
– volume-title: Geophysical Data Analysis: Discrete Inverse Theory
  year: 1989
  ident: e_1_2_7_39_1
– volume-title: Geophysical Prospecting for Oil
  year: 1940
  ident: e_1_2_7_41_1
– ident: e_1_2_7_11_1
  doi: 10.1115/1.4011140
– ident: e_1_2_7_51_1
  doi: 10.1111/j.1365-2478.2006.00567.x
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1365-2478.1959.tb01460.x
– ident: e_1_2_7_63_1
  doi: 10.1063/1.1745133
– ident: e_1_2_7_68_1
  doi: 10.1190/1.1437863
– ident: e_1_2_7_50_1
  doi: 10.1190/1.1487104
– ident: e_1_2_7_42_1
  doi: 10.1109/TGRS.1984.6499187
– ident: e_1_2_7_44_1
  doi: 10.1190/1.1441157
– ident: e_1_2_7_55_1
  doi: 10.1071/EG05007
– volume: 17
  start-page: 118
  year: 1939
  ident: e_1_2_7_25_1
  article-title: Land creep at Mt Tyausu‐Yama (Determination of slip plane by seismic prospecting)
  publication-title: Tokyo University Earthquake Research Institute Bulletin
– volume: 27
  start-page: 77
  year: 2009
  ident: e_1_2_7_22_1
  article-title: Validating the velocity model: The Hamburg score
  publication-title: First Break
  doi: 10.3997/1365-2397.27.1297.28832
– ident: e_1_2_7_30_1
  doi: 10.1190/1.1438961
– ident: e_1_2_7_65_1
  doi: 10.1190/1.1444320
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1365-2478.1958.tb01655.x
– ident: e_1_2_7_73_1
  doi: 10.1190/1.1436864
SSID ssj0030554
ssj0017384
Score 1.9795027
Snippet ABSTRACT Non‐uniqueness occurs with the 1D parametrization of refraction traveltime graphs in the vertical dimension and with the 2D lateral resolution of...
Non‐uniqueness occurs with the 1D parametrization of refraction traveltime graphs in the vertical dimension and with the 2D lateral resolution of individual...
Non-uniqueness occurs with the 1D parametrization of refraction traveltime graphs in the vertical dimension and with the 2D lateral resolution of individual...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 203
SubjectTerms Applied geophysics
Earth sciences
Earth, ocean, space
Exact sciences and technology
Internal geophysics
Title Non-uniqueness with refraction inversion - a syncline model study
URI https://api.istex.fr/ark:/67375/WNG-T14C39S0-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2478.2009.00818.x
https://www.proquest.com/docview/743335582
Volume 58
WOSCitedRecordID wos000274242100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2478
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017384
  issn: 0016-8025
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXZDgwKOACI_KB8QtKHHsODmi0l0OaFVKK3qz_IilCpRFm27V3voTKvUf9pfgsbPRRuJQIW7JYaLYnrE_2zPfB_Be05pyrWhqTKNSplmeKqd5qpD7yjiGm5IgNiEWi-rkpD7o85-wFibyQwwHbhgZYb7GAFe6Gwd5yNBiotrQTvrF56PHk1Pq3ZhPYPr5cHb8dbhTEAWWZMYX5LmKBM058vFSPk7y-euHRyvXFAfhAjMpVec700UVjBFM3Qa7YbWaPfmf7XwKj3vMSj5FJ3sG95p2Bx5tMRnuwIN5UAi-fA77i2V7e3W9DsSwOI8SPOolvjmrWENBTtvzeEhHbq9uiCLdZYv1mQ0JqjwkEN6-gOPZ_tHel7TXakiVB1xVqmyduUKX3DlRZ0x7IMOoKVxlsko4vymySnFbGaWsbhwz2pZCO8crYUtdWlq8hEm7bJtXQDJrbOFxZOOxI2pje6dhTPhpuCi1zhlPQGzGQZqeyBz1NH7JrQ2N7zKJXYYym7UMXSYvEsgHy9-RzOMONh_CUA8GavUTk-EElz8Wc3mUs72i_p7JbwnsjnxhMKDI0e_dLwGycQ7pYxgvZlTbLNed9CiuQJp7mgAPrnDnv5Pzg0P_8Pof7d7Aw5gNgTl1b2Fytlo37-C-OT877Va7fQD9AdxCGBU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hLgg48ChFhEfxAXELysOOkyMq3S1iiUrZit4sP2KpAmXRbrdqb_0JSPzD_hI8djbaSBwqxC05TBTbM_Zne-b7AN6orMqYklmsdSNjqmgaS6tYLJH7SluKmxIvNsHrujw5qQ47OSCshQn8EP2BG0aGn68xwPFAehjlPkWL8nLNO-lWn3cOUI6o8yrn7qMPR-PjaX-pwHOsyQwvSHQVGJpTJOTN2DDL568fHixdIxyFC0yllEvXmzbIYAxw6iba9cvV-OF_begjeNChVvI-uNljuNW023B_g8twG-5MvEbw5RPYr-ft9dWvlaeGxZmU4GEvce1ZhCoKctqeh2M6cn31m0iyvGyxQrMhXpeHeMrbHTge78_2DuJOrSGWDnKVsTRVYnNVMGt5lVDloAzNdG5LnZTcum2RkZKZUktpVGOpVqbgylpWclOowmT5U9hq523zDEhitMkdkmwcekR1bOc2lHI3EeeFUillEfD1QAjdUZmjosYPsbGlcV0msMtQaLMSvsvERQRpb_kz0HncwOatH-veQC6-YzocZ-JbPRGzlO7l1ddEfIlgd-AMvUGGLP3O_yIga-8QLorxaka2zXy1FA7H5Uh0n0XAvC_c-O_E5PDIPTz_R7vXcPdg9nkqph_rTy_gXsiNwAy7l7B1tlg1r-C2Pj87XS52u2j6A6pXHAU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXUBw4FGKCI_iA-IWlIcdJ0fUdhdEFS2lFb1ZfkoVKFvtdqv21p-AxD_sL8HjZKONxKFC3JLDRLE9Y3-2Z74P4J3KqowpmcVaWxlTRdNYOsViidxX2lHclASxCV7X5clJNevkgLAWpuWH6A_cMDLCfI0Bbs-MG0Z5SNGivFzzTvrV54MHlGOKmjIjGO8dTo4P-ksFnmNNZvuCRFctQ3OKhLwZG2b5_PXDg6VrjKNwiamUcul707UyGAOcuol2w3I1efxfG_oEHnWolXxs3ewp3LHNFjzc4DLcgnvToBF89Qz263lzc_1rFahhcSYleNhLfHsWbRUFOW0u2mM6cnP9m0iyvGqwQtOSoMtDAuXtNhxP9o92P8WdWkMsPeQqY2mqxOWqYM7xKqHKQxma6dyVOim589siIyUzpZbSKOuoVqbgyjlWclOowmT5cxg188a-AJIYbXKPJK1Hj6iO7d2GUu4n4rxQKqUsAr4eCKE7KnNU1PgpNrY0vssEdhkKbVYidJm4jCDtLc9aOo9b2LwPY90byMUPTIfjTHyvp-Iopbt59S0RXyPYGThDb5AhS7_3vwjI2juEj2K8mpGNna-WwuO4HInuswhY8IVb_52Yzg79w8t_tHsL92d7E3Hwuf7yCh60qRGYYPcaRueLlX0Dd_XF-elysdMF0x8LixuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non%E2%80%93uniqueness+with+refraction+inversion+%E2%80%93+a+syncline+model+study&rft.jtitle=Geophysical+Prospecting&rft.au=Palmer%2C+Derecke&rft.date=2010-03-01&rft.issn=0016-8025&rft.eissn=1365-2478&rft.volume=58&rft.issue=2&rft.spage=203&rft.epage=218&rft_id=info:doi/10.1111%2Fj.1365-2478.2009.00818.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2478_2009_00818_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-8025&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-8025&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-8025&client=summon