Non-uniqueness with refraction inversion - a syncline model study
ABSTRACT Non‐uniqueness occurs with the 1D parametrization of refraction traveltime graphs in the vertical dimension and with the 2D lateral resolution of individual layers in the horizontal dimension. The most common source of non‐uniqueness is the inversion algorithm used to generate the starting...
Uloženo v:
| Vydáno v: | Geophysical Prospecting Ročník 58; číslo 2; s. 203 - 218 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford, UK
Blackwell Publishing Ltd
01.03.2010
Blackwell |
| Témata: | |
| ISSN: | 0016-8025, 1365-2478 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | ABSTRACT
Non‐uniqueness occurs with the 1D parametrization of refraction traveltime graphs in the vertical dimension and with the 2D lateral resolution of individual layers in the horizontal dimension. The most common source of non‐uniqueness is the inversion algorithm used to generate the starting model. This study applies 1D, 1.5D and 2D inversion algorithms to traveltime data for a syncline (2D) model, in order to generate starting models for wave path eikonal traveltime tomography.
The 1D tau‐p algorithm produced a tomogram with an anticline rather than a syncline and an artefact with a high seismic velocity. The 2D generalized reciprocal method generated tomograms that accurately reproduced the syncline, together with narrow regions at the thalweg with seismic velocities that are less than and greater than the true seismic velocities as well as the true values.
It is concluded that 2D inversion algorithms, which explicitly identify forward and reverse traveltime data, are required to generate useful starting models in the near‐surface where irregular refractors are common. The most likely tomogram can be selected as either the simplest model or with a priori information, such as head wave amplitudes.
The determination of vertical velocity functions within individual layers is also subject to non‐uniqueness. Depths computed with vertical velocity gradients, which are the default with many tomography programs, are generally 50% greater than those computed with constant velocities for the same traveltime data. The average vertical velocity provides a more accurate measure of depth estimates, where it can be derived.
Non‐uniqueness is a fundamental reality with the inversion of all near‐surface seismic refraction data. Unless specific measures are taken to explicitly address non‐uniqueness, then the production of a single refraction tomogram, which fits the traveltime data to sufficient accuracy, does not necessarily demonstrate that the result is either ‘correct’ or the most probable. |
|---|---|
| AbstractList | ABSTRACT
Non‐uniqueness occurs with the 1D parametrization of refraction traveltime graphs in the vertical dimension and with the 2D lateral resolution of individual layers in the horizontal dimension. The most common source of non‐uniqueness is the inversion algorithm used to generate the starting model. This study applies 1D, 1.5D and 2D inversion algorithms to traveltime data for a syncline (2D) model, in order to generate starting models for wave path eikonal traveltime tomography.
The 1D tau‐p algorithm produced a tomogram with an anticline rather than a syncline and an artefact with a high seismic velocity. The 2D generalized reciprocal method generated tomograms that accurately reproduced the syncline, together with narrow regions at the thalweg with seismic velocities that are less than and greater than the true seismic velocities as well as the true values.
It is concluded that 2D inversion algorithms, which explicitly identify forward and reverse traveltime data, are required to generate useful starting models in the near‐surface where irregular refractors are common. The most likely tomogram can be selected as either the simplest model or with a priori information, such as head wave amplitudes.
The determination of vertical velocity functions within individual layers is also subject to non‐uniqueness. Depths computed with vertical velocity gradients, which are the default with many tomography programs, are generally 50% greater than those computed with constant velocities for the same traveltime data. The average vertical velocity provides a more accurate measure of depth estimates, where it can be derived.
Non‐uniqueness is a fundamental reality with the inversion of all near‐surface seismic refraction data. Unless specific measures are taken to explicitly address non‐uniqueness, then the production of a single refraction tomogram, which fits the traveltime data to sufficient accuracy, does not necessarily demonstrate that the result is either ‘correct’ or the most probable. Non-uniqueness occurs with the 1D parametrization of refraction traveltime graphs in the vertical dimension and with the 2D lateral resolution of individual layers in the horizontal dimension. The most common source of non-uniqueness is the inversion algorithm used to generate the starting model. This study applies 1D, 1.5D and 2D inversion algorithms to traveltime data for a syncline (2D) model, in order to generate starting models for wave path eikonal traveltime tomography.The 1D tau-p algorithm produced a tomogram with an anticline rather than a syncline and an artefact with a high seismic velocity. The 2D generalized reciprocal method generated tomograms that accurately reproduced the syncline, together with narrow regions at the thalweg with seismic velocities that are less than and greater than the true seismic velocities as well as the true values.It is concluded that 2D inversion algorithms, which explicitly identify forward and reverse traveltime data, are required to generate useful starting models in the near-surface where irregular refractors are common. The most likely tomogram can be selected as either the simplest model or with a priori information, such as head wave amplitudes.The determination of vertical velocity functions within individual layers is also subject to non-uniqueness. Depths computed with vertical velocity gradients, which are the default with many tomography programs, are generally 50% greater than those computed with constant velocities for the same traveltime data. The average vertical velocity provides a more accurate measure of depth estimates, where it can be derived.Non-uniqueness is a fundamental reality with the inversion of all near-surface seismic refraction data. Unless specific measures are taken to explicitly address non-uniqueness, then the production of a single refraction tomogram, which fits the traveltime data to sufficient accuracy, does not necessarily demonstrate that the result is either 'correct' or the most probable. Non‐uniqueness occurs with the 1D parametrization of refraction traveltime graphs in the vertical dimension and with the 2D lateral resolution of individual layers in the horizontal dimension. The most common source of non‐uniqueness is the inversion algorithm used to generate the starting model. This study applies 1D, 1.5D and 2D inversion algorithms to traveltime data for a syncline (2D) model, in order to generate starting models for wave path eikonal traveltime tomography. The 1D tau‐p algorithm produced a tomogram with an anticline rather than a syncline and an artefact with a high seismic velocity. The 2D generalized reciprocal method generated tomograms that accurately reproduced the syncline, together with narrow regions at the thalweg with seismic velocities that are less than and greater than the true seismic velocities as well as the true values. It is concluded that 2D inversion algorithms, which explicitly identify forward and reverse traveltime data, are required to generate useful starting models in the near‐surface where irregular refractors are common. The most likely tomogram can be selected as either the simplest model or with a priori information, such as head wave amplitudes. The determination of vertical velocity functions within individual layers is also subject to non‐uniqueness. Depths computed with vertical velocity gradients, which are the default with many tomography programs, are generally 50% greater than those computed with constant velocities for the same traveltime data. The average vertical velocity provides a more accurate measure of depth estimates, where it can be derived. Non‐uniqueness is a fundamental reality with the inversion of all near‐surface seismic refraction data. Unless specific measures are taken to explicitly address non‐uniqueness, then the production of a single refraction tomogram, which fits the traveltime data to sufficient accuracy, does not necessarily demonstrate that the result is either ‘correct’ or the most probable. |
| Author | Palmer, Derecke |
| Author_xml | – sequence: 1 givenname: Derecke surname: Palmer fullname: Palmer, Derecke email: d.palmer@unsw.edu.au organization: School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney 2052, New South Wales, Australia |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22364017$$DView record in Pascal Francis |
| BookMark | eNqNkEtP3DAUhS1EpQ60_yEbxCrpTfwcCVVCI5giIfqi6vLK8UP1NOOAnenM_PsmDGXRFd74Sj7fuT7nhBzHPjpCihqqejwfVlVNBS8bJlXVAMwrAFWrandEZi8Px2QGUItSQcPfkpOcVwAUOGczcnnXx3ITw-PGRZdzsQ3DryI5n7QZQh-LEP-4lKepLHSR99F0Ibpi3VvXFXnY2P078sbrLrv3z_cp-XF9db_4VN5-Xt4sLm9LzShXpbZz8LQV3Hs5B9YKQVljqFcGlPRKcqs1t8pobVvnmWmtkK33XEkrWmEbekrOD74PqR9_mwdch2xc1-no-k1GySilnKtJefas1NnobswSTcj4kMJapz02DRUMajnqPh50JvU5j6HRhEFPsYekQ4c14FQxrnBqEqcmcaoYnyrG3Wig_jP4t-MV6MUB3YbO7V_N4fLLt3EY8fKAhzy43Quu028UkkqOP--WeF-zBZ1_B_xK_wKe36Tn |
| CODEN | GPPRAR |
| CitedBy_id | crossref_primary_10_1071_EG11012 crossref_primary_10_1016_j_jappgeo_2011_05_005 crossref_primary_10_1016_j_rgg_2013_07_023 crossref_primary_10_1016_j_polar_2014_09_002 crossref_primary_10_1071_EG11029 crossref_primary_10_2136_vzj2010_0108 crossref_primary_10_1190_geo2013_0422_1 crossref_primary_10_1190_geo2013_0212_1 crossref_primary_10_3997_1873_0604_2014031 |
| Cites_doi | 10.1190/1.1620636 10.1190/1.1443923 10.1190/1.1444443 10.1071/EG08119 10.1029/JB076i002p00579 10.1130/GSAB-50-257 10.1190/1.1438217 10.1017/CBO9781139168359 10.1190/1.1441210 10.1190/1.1437718 10.1190/1.1438261 10.1029/JZ068i020p05777 10.1190/1.1439464 10.1007/s00024-004-2615-1 10.1190/1.1439663 10.1190/1.1437658 10.1111/j.1365-2478.1970.tb02098.x 10.1190/1.1442621 10.1016/0016-7142(79)90036-X 10.1190/1.1444468 10.1190/1.1438493 10.1190/1.1437869 10.1111/j.1365-2478.1970.tb02100.x 10.1190/1.1441196 10.1111/j.1365-2478.1978.tb01630.x 10.1111/j.1365-2478.1956.tb01401.x 10.3997/1365-2397.26.8.28507 10.1111/j.1365-2478.1991.tb00358.x 10.1111/j.1365-2478.2009.00818.x 10.1111/j.1365-2478.1955.tb01379.x 10.1029/JB076i026p06464 10.1190/1.1440960 10.1111/j.1365-2478.1979.tb00983.x 10.1190/1.9781560802426 10.1029/JZ065i004p01083 10.1029/JB075i023p04423 10.1071/EG08019 10.1190/1.1439292 10.1190/1.1487103 10.1190/1.1443514 10.1071/EG992261 10.1007/s00024-004-2616-0 10.1046/j.1365-2478.2003.00365.x 10.1190/1.1437212 10.1007/978-94-009-5546-2 10.1046/j.1365-2478.2000.00223.x 10.1190/1.1440501 10.1115/1.4011140 10.1111/j.1365-2478.2006.00567.x 10.1111/j.1365-2478.1959.tb01460.x 10.1063/1.1745133 10.1190/1.1437863 10.1190/1.1487104 10.1109/TGRS.1984.6499187 10.1190/1.1441157 10.1071/EG05007 10.3997/1365-2397.27.1297.28832 10.1190/1.1438961 10.1190/1.1444320 10.1111/j.1365-2478.1958.tb01655.x 10.1190/1.1436864 |
| ContentType | Journal Article |
| Copyright | 2009 European Association of Geoscientists & Engineers 2015 INIST-CNRS |
| Copyright_xml | – notice: 2009 European Association of Geoscientists & Engineers – notice: 2015 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW 7SM 8FD FR3 KR7 |
| DOI | 10.1111/j.1365-2478.2009.00818.x |
| DatabaseName | Istex CrossRef Pascal-Francis Earthquake Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Earthquake Engineering Abstracts Civil Engineering Abstracts Engineering Research Database Technology Research Database |
| DatabaseTitleList | Earthquake Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Engineering |
| EISSN | 1365-2478 |
| EndPage | 218 |
| ExternalDocumentID | 22364017 10_1111_j_1365_2478_2009_00818_x GPR818 ark_67375_WNG_T14C39S0_Q |
| Genre | article |
| GeographicLocations | Narrows New York United States |
| GroupedDBID | -~X 1OB 1OC ALMA_UNASSIGNED_HOLDINGS BDRZF BRZYM BSCLL DDYGU FZ0 PALCI AAYXX CITATION IQODW 7SM 8FD FR3 KR7 |
| ID | FETCH-LOGICAL-a4358-ad90f3b65ff7904b66342c3f8c087f875daa5d8caadbef4cbd67bff587d6b6d23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000274242100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0016-8025 |
| IngestDate | Thu Oct 02 10:29:58 EDT 2025 Mon Jul 21 09:11:59 EDT 2025 Tue Nov 18 20:58:45 EST 2025 Sat Nov 29 02:58:39 EST 2025 Sat Aug 24 00:48:59 EDT 2024 Sun Sep 21 06:20:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | waves algorithms inverse problem seismic refraction synclines accuracy velocity North America amplitude parametrization depth tomography two-dimensional models thalwegs anticlines programs travel time |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4358-ad90f3b65ff7904b66342c3f8c087f875daa5d8caadbef4cbd67bff587d6b6d23 |
| Notes | ArticleID:GPR818 ark:/67375/WNG-T14C39S0-Q istex:D32ED1FAF5459EF75584F4322EEBC1F1FEFB5E60 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 743335582 |
| PQPubID | 23500 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_743335582 pascalfrancis_primary_22364017 crossref_citationtrail_10_1111_j_1365_2478_2009_00818_x crossref_primary_10_1111_j_1365_2478_2009_00818_x wiley_primary_10_1111_j_1365_2478_2009_00818_x_GPR818 istex_primary_ark_67375_WNG_T14C39S0_Q |
| PublicationCentury | 2000 |
| PublicationDate | March 2010 |
| PublicationDateYYYYMMDD | 2010-03-01 |
| PublicationDate_xml | – month: 03 year: 2010 text: March 2010 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
| PublicationTitle | Geophysical Prospecting |
| PublicationYear | 2010 |
| Publisher | Blackwell Publishing Ltd Blackwell |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
| References | Faust L.Y. 1953. A velocity function including lithologic variation. Geophysics 18, 271-288. Hamilton E.L. 1971. Elastic properties of marine sediments. Journal of Geophysical Research 76, 579-604. Palmer D. 1992. Is forward modeling as efficacious as minimum variance for refraction inversion? Exploration Geophysics 23, 261-266, 521. Palmer D. 1986. Refraction Seismics: The Lateral Resolution of Structure and Seismic Velocity. Geophysical Press. Zhu X., Sixta D.P. and Andstman B.G. 1992. Tomostatics: Turning-ray tomography + static corrections. The Leading Edge 11, 15-23. Merrick N.P., Odins J.A. and Greenhalgh S.A. 1978. A blind zone solution to the problem of hidden layers within a sequence of horizontal or dipping refractors. Geophysical Prospecting 26, 703-721. Palmer D. 1991. The resolution of narrow low-velocity zones with the generalized reciprocal method. Geophysical Prospecting 39, 1031-1060. Berry M.J. 1971. Depth uncertainties from seismic first arrival studies. Journal of Geophysical Research 76, 6464-6468. Birch F. 1960. The velocity of compressional waves in rocks at 10 kilobars. Journal of Geophysical Research 65, 1083-1102. Lanz E., Maurer H. and Green A.G. 1998. Refraction tomography over a buried waste disposal site. Geophysics 63, 1414-1433. Schuster G.T. and Quintus-Bosz A. 1993. Wavepath eikonal traveltime inversion: Theory. Geophysics 58, 1314-1323. Acheson C.H. 1963. Time-depth and velocity-depth relations in Western Canada. Geophysics 28, 894-909. Sheriff R.E. and Geldart L.P. 1995. Exploration Seismology, 2nd edn. Cambridge University Press. Hagedoorn J.G. 1959. The plus-minus method of interpreting seismic refraction sections. Geophysical Prospecting 7, 158-182. Hagiwara T. and Omote S. 1939. Land creep at Mt Tyausu-Yama (Determination of slip plane by seismic prospecting). Tokyo University Earthquake Research Institute Bulletin 17, 118-137. Hagedoorn J.G. 1955. Templates for fitting smooth velocity functions to seismic refraction and reflection data. Geophysical Prospecting 3, 325-338. Oldenburg D.W. 1984. An introduction to linear inverse theory. IEEE Transactions on Geoscience and Remote Sensing GE-22, 665-674. Ivanov J., Miller R.D., Xia J., Steeples D. and Park C.B. 2005a. The inverse problem of refraction travel times, part I; types of geophysical nonuniqueness through minimization. Pure and Applied Geophysics 162, 447-459. Palmer D. 2006. Refraction traveltime and amplitude corrections for very near-surface inhomogeneities. Geophysical Prospecting 54, 589-604. Taner M.T., Wagner D.E., Baysal E. and Lee L. 1998. A unified method for 2-D and 3-D refraction statics. Geophysics 63 260-274. Hall J. 1970. The correlation of seismic velocities with formations in the southwest of Scotland. Geophysical Prospecting 18, 134-156. Wyllie W.R., Gregory A.R. and Gardner L.W. 1956. Elastic wave velocities in heterogeneous and porous media. Geophysics 21, 41-70. Domzalski W. 1956. Some problems of shallow refraction investigations. Geophysical Prospecting 4, 140-166. Gassman F. 1951. Elastic waves through a packing of spheres. Geophysics 16, 673-685. Leung T.K. 2003. Controls of traveltime data and problems of the generalized reciprocal method. Geophysics 68, 1626-1632. Palmer D. 2009. Maximising the lateral resolution of near-surface seismic refraction methods. Exploration Geophysics 40, 85-90; Butsuri-Tansa 62, 85-90; Mulli-Tamsa12, 85-90. White J.E. and Sengbush R.L. 1953. Velocity measurements in near surface formations. Geophysics 18, 54-69. Aki K. and Richards P.G. 2002. Quantitative Seismology. University Science Books. Diebold J.B. and Stoffa P.L. 1981. The traveltime equation, tau-p mapping, and inversion of common midpoint data. Geophysics 46, 238-254. Palmer D. 2001b. Imaging refractors with the convolution section. Geophysics, 66, 1582-1589. Sjögren B. 1984. Shallow Refraction Seismics. Chapman and Hall. Sjögren B. 1979. Refractor velocity determination -Cause and nature of some errors: Geophysical Prospecting 27, 507-538. Slichter L.B. 1932. Theory of the interpretation of seismic travel-time curves in horizontal structures. Physics 3, 273-295. Barton R. and Barker N. 2003. Velocity imaging by tau-p transformation of refracted traveltimes. Geophysical Prospecting 51, 195-203. Acheson C.H. 1981. Time-depth and velocity-depth relations in sedimentary basins -A study based on current investigations in the Arctic Islands and an interpretation of experience elsewhere. Geophysics 46, 707-716. Sjögren B. 2000. A brief study of the generalized reciprocal method and some limitations of the method. Geophysical Prospecting 487, 815-834. Treitel S. 1989. Quo vadit inversion. The Leading Edge 8, 38-42. Faust L.Y. 1951. Seismic velocity as a function of depth and geologic time. Geophysics 16, 192-206. Healy J.H. 1963. Crustal structure along the coast of California from seismic-refraction measurements. Journal of Geophysical Research 68, 5777-5787. Hamilton E.L. 1970. Sound velocity and related properties of marine sediments, North Pacific. Journal of Geophysical Research 75, 4423-4446. Wyllie W.R., Gregory A.R. and Gardner L.W. 1958. An experimental investigation affecting elastic wave velocities in porous media. Geophysics 23, 459-593. Ewing M., Woollard G.P. and Vine A.C. 1939. Geophysical investigations in the emerged and submerged Atlantic coastal plain, Part 3, Barnegat Bay, New Jersey section. GSA Bulletin 50, 257-296. Jankowsky W. 1970. Empirical investigation of some factors affecting elastic velocities in carbonate rocks. Geophysical Prospecting 18, 103-118. Zhang J. and Toksöz M.N. 1998. Nonlinear refraction traveltime tomography. Geophysics 63, 1726-1737. Stefani J.P. 1995. Turning-ray tomography. Geophysics 60, 1917-1929. Hales F. W. 1958. An accurate graphical method for interpreting seismic refraction lines. Geophysical Prospecting 6, 285-294. Gibson B.S., Odegard M.E. and Sutton G.H. 1979. Nonlinear least-squares inversion of traveltime data for a linear velocity-depth relationship. Geophysics 44, 185-194. Nettleton L.L. 1940. Geophysical Prospecting for Oil. McGraw-Hill. Palmer D. and Shadlow J. 2008. Integrating long and short wavelength statics with the generalized reciprocal method and the refraction convolution section. Exploration Geophysics 39, 139-147. Dobrin M.B. 1976. Introduction to Geophysical Prospecting, 3rd edn. McGraw-Hill. Treitel S. and Lines L. 1988. Geophysical examples of inversion (with a grain of salt): The Leading Edge 7, 32-35. Palmer D. 1980. The Generalized Reciprocal Method of Seismic Rrefraction Interpretation. SEG. Gardner L.W. 1939. An areal plan for mapping subsurface structure by refraction shooting. Geophysics 4, 247-259. Palmer D. 2008. Is it time to re-engineer geotechnical seismic refraction methods? First Break 26, 69-77. Whiteley R.J. and Greenhalgh S.A. 1979. Velocity inversion and the shallow seismic refraction method. Geoexploration 17, 125-141. Paterson N.R. 1956. Seismic wave propagation in porous granular media. Geophysics 21, 691-714. Berry J.E. 1959. Acoustic velocity in porous media. Petroleum Transactions of the American Institute of Mining Engineers 216, 262-270. Palmer D. 2001c. Resolving refractor ambiguities with amplitudes. Geophysics 66, 1590-1593. Barthelmes A.J. 1946. Application of continuous profiling to refraction shooting. Geophysics 11, 24-42. Palmer D. 1981. An introduction to the generalized reciprocal method of seismic refraction interpretation. Geophysics 46, 1508-1518. Ivanov J., Miller R.D., Xia J. and Steeples D. 2005b. The inverse problem of refraction travel times, part II; quantifying refraction nonuniqueness using a three-layer model. Pure and Applied Geophysics 162, 461-477. Glogovsky V., Landa E., Langman S. and Moser T.J. 2009. Validating the velocity model: The Hamburg score. First Break 27, 77-85. Gassman F. 1953. Note on 'Elastic waves through a packing of spheres'. Geophysics 16, 269. Lankston R.B. 1989. The seismic refraction method: A viable tool for mapping shallow targets into the 1990s. Geophysics 54, 1535-1542. Menke W. 1989. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press. Palmer D. 2009. Non-uniqueness in refraction inversion - The Mt Bulga shear zone. Geophysical Prospecting (submitted). Hawkins L.V. 1961. The reciprocal method of routine shallow seismic refraction investigations. Geophysics 26, 806-819. Palmer D., Nikrouz R. and Spyrou A. 2005. Statics corrections for shallow seismic refraction data. Exploration Geophysics 36, 7-17. Iida K. 1939. Velocity of elastic waves in granular substances. Tokyo University Earthquake Research Institute Bulletin 17, 783-897. Brandt H. 1955. A study of the speed of sound in porous granular media. Journal of Applied Mechanics 22, 479-486. 2009; 40 1939; 50 2008; 39 1976 1981; 46 1970; 75 2001b; 66 2003; 51 1992; 11 1939; 17 1932; 3 1959; 7 1955; 3 1979; 27 2001c; 66 1995; 60 2000; 487 2005b; 162 1986 2008; 26 1940 1984 1978; 26 1980 1958; 6 1989 2005; 36 1963; 68 1979; 17 1953; 18 1991; 39 1953; 16 2006; 54 1989; 8 2009 1995 2001a 2002 1998; 63 1970; 18 1963; 28 2009; 27 1955; 22 1959; 216 1993; 58 1946; 11 1971; 76 1960; 65 1989; 54 1984; GE‐22 1956; 21 2005a; 162 1988; 7 1958; 23 2003; 68 1951; 16 1979; 44 1992; 23 1961; 26 1967 1939; 4 1956; 4 Nettleton L.L. (e_1_2_7_41_1) 1940 e_1_2_7_3_1 Dobrin M.B. (e_1_2_7_13_1) 1976 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_64_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Palmer D. (e_1_2_7_45_1) 1986 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 Iida K. (e_1_2_7_32_1) 1939; 17 Menke W. (e_1_2_7_39_1) 1989 Aki K. (e_1_2_7_4_1) 2002 Glogovsky V. (e_1_2_7_22_1) 2009; 27 e_1_2_7_6_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 Palmer D. (e_1_2_7_52_1) 2008; 26 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Gassman F. (e_1_2_7_20_1) 1953; 16 Hagiwara T. (e_1_2_7_25_1) 1939; 17 Barry K.M. (e_1_2_7_5_1) 1967 Palmer D. (e_1_2_7_48_1) 2001 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_55_1 Berry J.E. (e_1_2_7_8_1) 1959; 216 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – reference: Hall J. 1970. The correlation of seismic velocities with formations in the southwest of Scotland. Geophysical Prospecting 18, 134-156. – reference: Sheriff R.E. and Geldart L.P. 1995. Exploration Seismology, 2nd edn. Cambridge University Press. – reference: Palmer D. 1992. Is forward modeling as efficacious as minimum variance for refraction inversion? Exploration Geophysics 23, 261-266, 521. – reference: Hamilton E.L. 1971. Elastic properties of marine sediments. Journal of Geophysical Research 76, 579-604. – reference: Taner M.T., Wagner D.E., Baysal E. and Lee L. 1998. A unified method for 2-D and 3-D refraction statics. Geophysics 63 260-274. – reference: Jankowsky W. 1970. Empirical investigation of some factors affecting elastic velocities in carbonate rocks. Geophysical Prospecting 18, 103-118. – reference: Sjögren B. 1984. Shallow Refraction Seismics. Chapman and Hall. – reference: Palmer D., Nikrouz R. and Spyrou A. 2005. Statics corrections for shallow seismic refraction data. Exploration Geophysics 36, 7-17. – reference: Palmer D. 1981. An introduction to the generalized reciprocal method of seismic refraction interpretation. Geophysics 46, 1508-1518. – reference: Oldenburg D.W. 1984. An introduction to linear inverse theory. IEEE Transactions on Geoscience and Remote Sensing GE-22, 665-674. – reference: Wyllie W.R., Gregory A.R. and Gardner L.W. 1958. An experimental investigation affecting elastic wave velocities in porous media. Geophysics 23, 459-593. – reference: Brandt H. 1955. A study of the speed of sound in porous granular media. Journal of Applied Mechanics 22, 479-486. – reference: Ewing M., Woollard G.P. and Vine A.C. 1939. Geophysical investigations in the emerged and submerged Atlantic coastal plain, Part 3, Barnegat Bay, New Jersey section. GSA Bulletin 50, 257-296. – reference: Aki K. and Richards P.G. 2002. Quantitative Seismology. University Science Books. – reference: Hagedoorn J.G. 1955. Templates for fitting smooth velocity functions to seismic refraction and reflection data. Geophysical Prospecting 3, 325-338. – reference: Lankston R.B. 1989. The seismic refraction method: A viable tool for mapping shallow targets into the 1990s. Geophysics 54, 1535-1542. – reference: Palmer D. 1980. The Generalized Reciprocal Method of Seismic Rrefraction Interpretation. SEG. – reference: Barthelmes A.J. 1946. Application of continuous profiling to refraction shooting. Geophysics 11, 24-42. – reference: Sjögren B. 1979. Refractor velocity determination -Cause and nature of some errors: Geophysical Prospecting 27, 507-538. – reference: Hales F. W. 1958. An accurate graphical method for interpreting seismic refraction lines. Geophysical Prospecting 6, 285-294. – reference: Faust L.Y. 1953. A velocity function including lithologic variation. Geophysics 18, 271-288. – reference: Ivanov J., Miller R.D., Xia J., Steeples D. and Park C.B. 2005a. The inverse problem of refraction travel times, part I; types of geophysical nonuniqueness through minimization. Pure and Applied Geophysics 162, 447-459. – reference: Berry M.J. 1971. Depth uncertainties from seismic first arrival studies. Journal of Geophysical Research 76, 6464-6468. – reference: Palmer D. 1991. The resolution of narrow low-velocity zones with the generalized reciprocal method. Geophysical Prospecting 39, 1031-1060. – reference: Palmer D. 2001b. Imaging refractors with the convolution section. Geophysics, 66, 1582-1589. – reference: Stefani J.P. 1995. Turning-ray tomography. Geophysics 60, 1917-1929. – reference: Hagedoorn J.G. 1959. The plus-minus method of interpreting seismic refraction sections. Geophysical Prospecting 7, 158-182. – reference: Nettleton L.L. 1940. Geophysical Prospecting for Oil. McGraw-Hill. – reference: Hamilton E.L. 1970. Sound velocity and related properties of marine sediments, North Pacific. Journal of Geophysical Research 75, 4423-4446. – reference: Slichter L.B. 1932. Theory of the interpretation of seismic travel-time curves in horizontal structures. Physics 3, 273-295. – reference: Acheson C.H. 1963. Time-depth and velocity-depth relations in Western Canada. Geophysics 28, 894-909. – reference: Iida K. 1939. Velocity of elastic waves in granular substances. Tokyo University Earthquake Research Institute Bulletin 17, 783-897. – reference: Palmer D. 2009. Maximising the lateral resolution of near-surface seismic refraction methods. Exploration Geophysics 40, 85-90; Butsuri-Tansa 62, 85-90; Mulli-Tamsa12, 85-90. – reference: Acheson C.H. 1981. Time-depth and velocity-depth relations in sedimentary basins -A study based on current investigations in the Arctic Islands and an interpretation of experience elsewhere. Geophysics 46, 707-716. – reference: Glogovsky V., Landa E., Langman S. and Moser T.J. 2009. Validating the velocity model: The Hamburg score. First Break 27, 77-85. – reference: Palmer D. 2009. Non-uniqueness in refraction inversion - The Mt Bulga shear zone. Geophysical Prospecting (submitted). – reference: Wyllie W.R., Gregory A.R. and Gardner L.W. 1956. Elastic wave velocities in heterogeneous and porous media. Geophysics 21, 41-70. – reference: Dobrin M.B. 1976. Introduction to Geophysical Prospecting, 3rd edn. McGraw-Hill. – reference: Ivanov J., Miller R.D., Xia J. and Steeples D. 2005b. The inverse problem of refraction travel times, part II; quantifying refraction nonuniqueness using a three-layer model. Pure and Applied Geophysics 162, 461-477. – reference: Hagiwara T. and Omote S. 1939. Land creep at Mt Tyausu-Yama (Determination of slip plane by seismic prospecting). Tokyo University Earthquake Research Institute Bulletin 17, 118-137. – reference: Birch F. 1960. The velocity of compressional waves in rocks at 10 kilobars. Journal of Geophysical Research 65, 1083-1102. – reference: Berry J.E. 1959. Acoustic velocity in porous media. Petroleum Transactions of the American Institute of Mining Engineers 216, 262-270. – reference: Palmer D. 2001c. Resolving refractor ambiguities with amplitudes. Geophysics 66, 1590-1593. – reference: Palmer D. and Shadlow J. 2008. Integrating long and short wavelength statics with the generalized reciprocal method and the refraction convolution section. Exploration Geophysics 39, 139-147. – reference: Gibson B.S., Odegard M.E. and Sutton G.H. 1979. Nonlinear least-squares inversion of traveltime data for a linear velocity-depth relationship. Geophysics 44, 185-194. – reference: Lanz E., Maurer H. and Green A.G. 1998. Refraction tomography over a buried waste disposal site. Geophysics 63, 1414-1433. – reference: Sjögren B. 2000. A brief study of the generalized reciprocal method and some limitations of the method. Geophysical Prospecting 487, 815-834. – reference: Schuster G.T. and Quintus-Bosz A. 1993. Wavepath eikonal traveltime inversion: Theory. Geophysics 58, 1314-1323. – reference: Gardner L.W. 1939. An areal plan for mapping subsurface structure by refraction shooting. Geophysics 4, 247-259. – reference: Palmer D. 1986. Refraction Seismics: The Lateral Resolution of Structure and Seismic Velocity. Geophysical Press. – reference: Treitel S. 1989. Quo vadit inversion. The Leading Edge 8, 38-42. – reference: White J.E. and Sengbush R.L. 1953. Velocity measurements in near surface formations. Geophysics 18, 54-69. – reference: Palmer D. 2006. Refraction traveltime and amplitude corrections for very near-surface inhomogeneities. Geophysical Prospecting 54, 589-604. – reference: Palmer D. 2008. Is it time to re-engineer geotechnical seismic refraction methods? First Break 26, 69-77. – reference: Whiteley R.J. and Greenhalgh S.A. 1979. Velocity inversion and the shallow seismic refraction method. Geoexploration 17, 125-141. – reference: Healy J.H. 1963. Crustal structure along the coast of California from seismic-refraction measurements. Journal of Geophysical Research 68, 5777-5787. – reference: Leung T.K. 2003. Controls of traveltime data and problems of the generalized reciprocal method. Geophysics 68, 1626-1632. – reference: Paterson N.R. 1956. Seismic wave propagation in porous granular media. Geophysics 21, 691-714. – reference: Faust L.Y. 1951. Seismic velocity as a function of depth and geologic time. Geophysics 16, 192-206. – reference: Diebold J.B. and Stoffa P.L. 1981. The traveltime equation, tau-p mapping, and inversion of common midpoint data. Geophysics 46, 238-254. – reference: Domzalski W. 1956. Some problems of shallow refraction investigations. Geophysical Prospecting 4, 140-166. – reference: Gassman F. 1951. Elastic waves through a packing of spheres. Geophysics 16, 673-685. – reference: Menke W. 1989. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press. – reference: Zhang J. and Toksöz M.N. 1998. Nonlinear refraction traveltime tomography. Geophysics 63, 1726-1737. – reference: Gassman F. 1953. Note on 'Elastic waves through a packing of spheres'. Geophysics 16, 269. – reference: Merrick N.P., Odins J.A. and Greenhalgh S.A. 1978. A blind zone solution to the problem of hidden layers within a sequence of horizontal or dipping refractors. Geophysical Prospecting 26, 703-721. – reference: Barton R. and Barker N. 2003. Velocity imaging by tau-p transformation of refracted traveltimes. Geophysical Prospecting 51, 195-203. – reference: Hawkins L.V. 1961. The reciprocal method of routine shallow seismic refraction investigations. Geophysics 26, 806-819. – reference: Treitel S. and Lines L. 1988. Geophysical examples of inversion (with a grain of salt): The Leading Edge 7, 32-35. – reference: Zhu X., Sixta D.P. and Andstman B.G. 1992. Tomostatics: Turning-ray tomography + static corrections. The Leading Edge 11, 15-23. – volume: 18 start-page: 134 year: 1970 end-page: 156 article-title: The correlation of seismic velocities with formations in the southwest of Scotland publication-title: Geophysical Prospecting – volume: 11 start-page: 15 year: 1992 end-page: 23 article-title: Tomostatics: Turning‐ray tomography + static corrections publication-title: The Leading Edge – volume: 22 start-page: 479 year: 1955 end-page: 486 article-title: A study of the speed of sound in porous granular media publication-title: Journal of Applied Mechanics – volume: 40 start-page: 85 year: 2009 end-page: 90 article-title: Maximising the lateral resolution of near‐surface seismic refraction methods publication-title: Exploration Geophysics – volume: 27 start-page: 77 year: 2009 end-page: 85 article-title: Validating the velocity model: The Hamburg score publication-title: First Break – year: 2001a – start-page: 348 year: 1967 end-page: 361 – volume: 18 start-page: 103 year: 1970 end-page: 118 article-title: Empirical investigation of some factors affecting elastic velocities in carbonate rocks publication-title: Geophysical Prospecting – year: 1989 – volume: 26 start-page: 703 year: 1978 end-page: 721 article-title: A blind zone solution to the problem of hidden layers within a sequence of horizontal or dipping refractors publication-title: Geophysical Prospecting – volume: 17 start-page: 125 year: 1979 end-page: 141 article-title: Velocity inversion and the shallow seismic refraction method publication-title: Geoexploration – volume: 26 start-page: 806 year: 1961 end-page: 819 article-title: The reciprocal method of routine shallow seismic refraction investigations publication-title: Geophysics – volume: 58 start-page: 1314 year: 1993 end-page: 1323 article-title: Wavepath eikonal traveltime inversion: Theory publication-title: Geophysics – volume: 26 start-page: 69 year: 2008 end-page: 77 article-title: Is it time to re‐engineer geotechnical seismic refraction methods? publication-title: First Break – volume: 7 start-page: 32 year: 1988 end-page: 35 article-title: Geophysical examples of inversion (with a grain of salt) publication-title: The Leading Edge – volume: 17 start-page: 118 year: 1939 end-page: 137 article-title: Land creep at Mt Tyausu‐Yama (Determination of slip plane by seismic prospecting) publication-title: Tokyo University Earthquake Research Institute Bulletin – year: 1986 – volume: 66 start-page: 1590 year: 2001c end-page: 1593 article-title: Resolving refractor ambiguities with amplitudes publication-title: Geophysics – volume: 162 start-page: 447 year: 2005a end-page: 459 article-title: The inverse problem of refraction travel times, part I; types of geophysical nonuniqueness through minimization publication-title: Pure and Applied Geophysics – year: 1940 – volume: 28 start-page: 894 year: 1963 end-page: 909 article-title: Time‐depth and velocity‐depth relations in Western Canada publication-title: Geophysics – volume: 27 start-page: 507 year: 1979 end-page: 538 article-title: Refractor velocity determination –Cause and nature of some errors publication-title: Geophysical Prospecting – volume: 60 start-page: 1917 year: 1995 end-page: 1929 article-title: Turning‐ray tomography publication-title: Geophysics – volume: 36 start-page: 7 year: 2005 end-page: 17 article-title: Statics corrections for shallow seismic refraction data publication-title: Exploration Geophysics – volume: 6 start-page: 285 year: 1958 end-page: 294 article-title: An accurate graphical method for interpreting seismic refraction lines publication-title: Geophysical Prospecting – volume: 8 start-page: 38 year: 1989 end-page: 42 article-title: Quo vadit inversion publication-title: The Leading Edge – volume: 76 start-page: 6464 year: 1971 end-page: 6468 article-title: Depth uncertainties from seismic first arrival studies publication-title: Journal of Geophysical Research – volume: 16 start-page: 269 year: 1953 article-title: Note on ‘Elastic waves through a packing of spheres’ publication-title: Geophysics – volume: GE‐22 start-page: 665 year: 1984 end-page: 674 article-title: An introduction to linear inverse theory publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 50 start-page: 257 year: 1939 end-page: 296 article-title: Geophysical investigations in the emerged and submerged Atlantic coastal plain, Part 3, Barnegat Bay, New Jersey section publication-title: GSA Bulletin – volume: 76 start-page: 579 year: 1971 end-page: 604 article-title: Elastic properties of marine sediments publication-title: Journal of Geophysical Research – volume: 18 start-page: 271 year: 1953 end-page: 288 article-title: A velocity function including lithologic variation publication-title: Geophysics – volume: 63 start-page: 1414 year: 1998 end-page: 1433 article-title: Refraction tomography over a buried waste disposal site publication-title: Geophysics – year: 2009 article-title: Non‐uniqueness in refraction inversion – The Mt Bulga shear zone publication-title: Geophysical Prospecting – year: 1976 – volume: 16 start-page: 673 year: 1951 end-page: 685 article-title: Elastic waves through a packing of spheres publication-title: Geophysics – volume: 75 start-page: 4423 year: 1970 end-page: 4446 article-title: Sound velocity and related properties of marine sediments, North Pacific publication-title: Journal of Geophysical Research – volume: 63 start-page: 1726 year: 1998 end-page: 1737 article-title: Nonlinear refraction traveltime tomography publication-title: Geophysics – volume: 3 start-page: 325 year: 1955 end-page: 338 article-title: Templates for fitting smooth velocity functions to seismic refraction and reflection data publication-title: Geophysical Prospecting – volume: 7 start-page: 158 year: 1959 end-page: 182 article-title: The plus‐minus method of interpreting seismic refraction sections publication-title: Geophysical Prospecting – volume: 21 start-page: 41 year: 1956 end-page: 70 article-title: Elastic wave velocities in heterogeneous and porous media publication-title: Geophysics – volume: 65 start-page: 1083 year: 1960 end-page: 1102 article-title: The velocity of compressional waves in rocks at 10 kilobars publication-title: Journal of Geophysical Research – volume: 39 start-page: 139 year: 2008 end-page: 147 article-title: Integrating long and short wavelength statics with the generalized reciprocal method and the refraction convolution section publication-title: Exploration Geophysics – volume: 63 start-page: 260 year: 1998 end-page: 274 article-title: A unified method for 2‐D and 3‐D refraction statics publication-title: Geophysics – volume: 46 start-page: 707 year: 1981 end-page: 716 article-title: Time‐depth and velocity‐depth relations in sedimentary basins –A study based on current investigations in the Arctic Islands and an interpretation of experience elsewhere publication-title: Geophysics – volume: 4 start-page: 247 year: 1939 end-page: 259 article-title: An areal plan for mapping subsurface structure by refraction shooting publication-title: Geophysics – volume: 23 start-page: 459 year: 1958 end-page: 593 article-title: An experimental investigation affecting elastic wave velocities in porous media publication-title: Geophysics – volume: 68 start-page: 1626 year: 2003 end-page: 1632 article-title: Controls of traveltime data and problems of the generalized reciprocal method publication-title: Geophysics – volume: 39 start-page: 1031 year: 1991 end-page: 1060 article-title: The resolution of narrow low‐velocity zones with the generalized reciprocal method publication-title: Geophysical Prospecting – volume: 216 start-page: 262 year: 1959 end-page: 270 article-title: Acoustic velocity in porous media publication-title: Petroleum Transactions of the American Institute of Mining Engineers – volume: 46 start-page: 238 year: 1981 end-page: 254 article-title: The traveltime equation, tau‐p mapping, and inversion of common midpoint data publication-title: Geophysics – volume: 17 start-page: 783 year: 1939 end-page: 897 article-title: Velocity of elastic waves in granular substances publication-title: Tokyo University Earthquake Research Institute Bulletin – volume: 162 start-page: 461 year: 2005b end-page: 477 article-title: The inverse problem of refraction travel times, part II; quantifying refraction nonuniqueness using a three‐layer model publication-title: Pure and Applied Geophysics – year: 1984 – volume: 23 start-page: 261 year: 1992 end-page: 266, 521 article-title: Is forward modeling as efficacious as minimum variance for refraction inversion? publication-title: Exploration Geophysics – volume: 21 start-page: 691 year: 1956 end-page: 714 article-title: Seismic wave propagation in porous granular media publication-title: Geophysics – volume: 3 start-page: 273 year: 1932 end-page: 295 article-title: Theory of the interpretation of seismic travel‐time curves in horizontal structures publication-title: Physics – volume: 18 start-page: 54 year: 1953 end-page: 69 article-title: Velocity measurements in near surface formations publication-title: Geophysics – volume: 54 start-page: 1535 year: 1989 end-page: 1542 article-title: The seismic refraction method: A viable tool for mapping shallow targets into the 1990s publication-title: Geophysics – year: 1980 – volume: 4 start-page: 140 year: 1956 end-page: 166 article-title: Some problems of shallow refraction investigations publication-title: Geophysical Prospecting – year: 2002 – volume: 11 start-page: 24 year: 1946 end-page: 42 article-title: Application of continuous profiling to refraction shooting publication-title: Geophysics – volume: 51 start-page: 195 year: 2003 end-page: 203 article-title: Velocity imaging by tau‐p transformation of refracted traveltimes publication-title: Geophysical Prospecting – volume: 487 start-page: 815 year: 2000 end-page: 834 article-title: A brief study of the generalized reciprocal method and some limitations of the method publication-title: Geophysical Prospecting – year: 1995 – volume: 44 start-page: 185 year: 1979 end-page: 194 article-title: Nonlinear least‐squares inversion of traveltime data for a linear velocity‐depth relationship publication-title: Geophysics – volume: 46 start-page: 1508 year: 1981 end-page: 1518 article-title: An introduction to the generalized reciprocal method of seismic refraction interpretation publication-title: Geophysics – volume: 68 start-page: 5777 year: 1963 end-page: 5787 article-title: Crustal structure along the coast of California from seismic‐refraction measurements publication-title: Journal of Geophysical Research – volume: 54 start-page: 589 year: 2006 end-page: 604 article-title: Refraction traveltime and amplitude corrections for very near‐surface inhomogeneities publication-title: Geophysical Prospecting – volume: 66 start-page: 1582 year: 2001b end-page: 1589 article-title: Imaging refractors with the convolution section publication-title: Geophysics – volume: 16 start-page: 192 year: 1951 end-page: 206 article-title: Seismic velocity as a function of depth and geologic time publication-title: Geophysics – ident: e_1_2_7_38_1 doi: 10.1190/1.1620636 – ident: e_1_2_7_64_1 doi: 10.1190/1.1443923 – ident: e_1_2_7_37_1 doi: 10.1190/1.1444443 – ident: e_1_2_7_53_1 doi: 10.1071/EG08119 – ident: e_1_2_7_29_1 doi: 10.1029/JB076i002p00579 – ident: e_1_2_7_15_1 doi: 10.1130/GSAB-50-257 – ident: e_1_2_7_70_1 doi: 10.1190/1.1438217 – volume-title: Quantitative Seismology year: 2002 ident: e_1_2_7_4_1 – ident: e_1_2_7_59_1 doi: 10.1017/CBO9781139168359 – volume: 16 start-page: 269 year: 1953 ident: e_1_2_7_20_1 article-title: Note on ‘Elastic waves through a packing of spheres’ publication-title: Geophysics – ident: e_1_2_7_3_1 doi: 10.1190/1.1441210 – start-page: 348 volume-title: Seismic Refraction Prospecting year: 1967 ident: e_1_2_7_5_1 – ident: e_1_2_7_19_1 doi: 10.1190/1.1437718 – ident: e_1_2_7_57_1 doi: 10.1190/1.1438261 – ident: e_1_2_7_31_1 doi: 10.1029/JZ068i020p05777 – ident: e_1_2_7_67_1 doi: 10.1190/1.1439464 – ident: e_1_2_7_33_1 doi: 10.1007/s00024-004-2615-1 – ident: e_1_2_7_66_1 doi: 10.1190/1.1439663 – ident: e_1_2_7_16_1 doi: 10.1190/1.1437658 – ident: e_1_2_7_35_1 doi: 10.1111/j.1365-2478.1970.tb02098.x – ident: e_1_2_7_36_1 doi: 10.1190/1.1442621 – ident: e_1_2_7_69_1 doi: 10.1016/0016-7142(79)90036-X – volume-title: Digital processing of shallow seismic refraction data with the refraction convolution section year: 2001 ident: e_1_2_7_48_1 – ident: e_1_2_7_72_1 doi: 10.1190/1.1444468 – ident: e_1_2_7_71_1 doi: 10.1190/1.1438493 – ident: e_1_2_7_17_1 doi: 10.1190/1.1437869 – ident: e_1_2_7_27_1 doi: 10.1111/j.1365-2478.1970.tb02100.x – ident: e_1_2_7_12_1 doi: 10.1190/1.1441196 – ident: e_1_2_7_40_1 doi: 10.1111/j.1365-2478.1978.tb01630.x – ident: e_1_2_7_14_1 doi: 10.1111/j.1365-2478.1956.tb01401.x – volume: 26 start-page: 69 year: 2008 ident: e_1_2_7_52_1 article-title: Is it time to re‐engineer geotechnical seismic refraction methods? publication-title: First Break doi: 10.3997/1365-2397.26.8.28507 – ident: e_1_2_7_46_1 doi: 10.1111/j.1365-2478.1991.tb00358.x – ident: e_1_2_7_54_1 doi: 10.1111/j.1365-2478.2009.00818.x – ident: e_1_2_7_23_1 doi: 10.1111/j.1365-2478.1955.tb01379.x – volume-title: Refraction Seismics: The Lateral Resolution of Structure and Seismic Velocity year: 1986 ident: e_1_2_7_45_1 – ident: e_1_2_7_9_1 doi: 10.1029/JB076i026p06464 – volume: 216 start-page: 262 year: 1959 ident: e_1_2_7_8_1 article-title: Acoustic velocity in porous media publication-title: Petroleum Transactions of the American Institute of Mining Engineers – volume: 17 start-page: 783 year: 1939 ident: e_1_2_7_32_1 article-title: Velocity of elastic waves in granular substances publication-title: Tokyo University Earthquake Research Institute Bulletin – ident: e_1_2_7_21_1 doi: 10.1190/1.1440960 – ident: e_1_2_7_60_1 doi: 10.1111/j.1365-2478.1979.tb00983.x – ident: e_1_2_7_43_1 doi: 10.1190/1.9781560802426 – ident: e_1_2_7_10_1 doi: 10.1029/JZ065i004p01083 – ident: e_1_2_7_28_1 doi: 10.1029/JB075i023p04423 – ident: e_1_2_7_56_1 doi: 10.1071/EG08019 – ident: e_1_2_7_2_1 doi: 10.1190/1.1439292 – ident: e_1_2_7_49_1 doi: 10.1190/1.1487103 – ident: e_1_2_7_58_1 doi: 10.1190/1.1443514 – ident: e_1_2_7_47_1 doi: 10.1071/EG992261 – ident: e_1_2_7_34_1 doi: 10.1007/s00024-004-2616-0 – volume-title: Introduction to Geophysical Prospecting year: 1976 ident: e_1_2_7_13_1 – ident: e_1_2_7_7_1 doi: 10.1046/j.1365-2478.2003.00365.x – ident: e_1_2_7_6_1 doi: 10.1190/1.1437212 – ident: e_1_2_7_61_1 doi: 10.1007/978-94-009-5546-2 – ident: e_1_2_7_62_1 doi: 10.1046/j.1365-2478.2000.00223.x – ident: e_1_2_7_18_1 doi: 10.1190/1.1440501 – volume-title: Geophysical Data Analysis: Discrete Inverse Theory year: 1989 ident: e_1_2_7_39_1 – volume-title: Geophysical Prospecting for Oil year: 1940 ident: e_1_2_7_41_1 – ident: e_1_2_7_11_1 doi: 10.1115/1.4011140 – ident: e_1_2_7_51_1 doi: 10.1111/j.1365-2478.2006.00567.x – ident: e_1_2_7_24_1 doi: 10.1111/j.1365-2478.1959.tb01460.x – ident: e_1_2_7_63_1 doi: 10.1063/1.1745133 – ident: e_1_2_7_68_1 doi: 10.1190/1.1437863 – ident: e_1_2_7_50_1 doi: 10.1190/1.1487104 – ident: e_1_2_7_42_1 doi: 10.1109/TGRS.1984.6499187 – ident: e_1_2_7_44_1 doi: 10.1190/1.1441157 – ident: e_1_2_7_55_1 doi: 10.1071/EG05007 – volume: 17 start-page: 118 year: 1939 ident: e_1_2_7_25_1 article-title: Land creep at Mt Tyausu‐Yama (Determination of slip plane by seismic prospecting) publication-title: Tokyo University Earthquake Research Institute Bulletin – volume: 27 start-page: 77 year: 2009 ident: e_1_2_7_22_1 article-title: Validating the velocity model: The Hamburg score publication-title: First Break doi: 10.3997/1365-2397.27.1297.28832 – ident: e_1_2_7_30_1 doi: 10.1190/1.1438961 – ident: e_1_2_7_65_1 doi: 10.1190/1.1444320 – ident: e_1_2_7_26_1 doi: 10.1111/j.1365-2478.1958.tb01655.x – ident: e_1_2_7_73_1 doi: 10.1190/1.1436864 |
| SSID | ssj0030554 ssj0017384 |
| Score | 1.9795027 |
| Snippet | ABSTRACT
Non‐uniqueness occurs with the 1D parametrization of refraction traveltime graphs in the vertical dimension and with the 2D lateral resolution of... Non‐uniqueness occurs with the 1D parametrization of refraction traveltime graphs in the vertical dimension and with the 2D lateral resolution of individual... Non-uniqueness occurs with the 1D parametrization of refraction traveltime graphs in the vertical dimension and with the 2D lateral resolution of individual... |
| SourceID | proquest pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 203 |
| SubjectTerms | Applied geophysics Earth sciences Earth, ocean, space Exact sciences and technology Internal geophysics |
| Title | Non-uniqueness with refraction inversion - a syncline model study |
| URI | https://api.istex.fr/ark:/67375/WNG-T14C39S0-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2478.2009.00818.x https://www.proquest.com/docview/743335582 |
| Volume | 58 |
| WOSCitedRecordID | wos000274242100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-2478 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017384 issn: 0016-8025 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXZDgwKOACI_KB8QtKImd2Dmi0l0O1aqUFnqz7NiWKlAWbbpVe-tPQOIf9pfgsbPRRuJQIW7JYax4HvbE_uYbgLdW0dKVmUl9dq5TlnNcB51KbaF1LSqb61D1_vWALxbi9LQ-7PFPWAsT-SGGAzeMjLBeY4Ar3Y2DPCC0GBcb2km_-bz3-eS08G5cTmD68Wh2cjDcKXCKJZnxBXmuIkFzjny8RTkG-fx14NHONUUjXCKSUnVemS52wRilqdvJbtitZo_-5zwfw8M-ZyUfopM9gTu23YEHW0yGO3BvHjoEXz2F_cWyvbn-tQ7EsLiOEjzqJX46q1hDQc7ai3hIR26ufxNFuqsW6zMtCV15SCC8fQYns_3jvU9p36shVT7hEqkydeaorkrneJ0xb2HKioY60WSCO_9TZJQqjWiUMto61mhTce1cKbipdGUK-hwm7bK1L4BUma4zZWymNWPa5nVTKZ37kRomGqNpAnxjB9n0RObYT-OH3Pqh8SqTqDJss1nLoDJ5mUA-SP6MZB63kHkXTD0IqNV3BMPxUn5bzOVxzvZo_SWTnxPYHfnCIFAgR793vwTIxjmkj2G8mFGtXa476bM4ijT3RQJlcIVbf52cHx75h5f_KPcK7kc0BGLqXsPkfLW2b-Buc3F-1q12-wD6A_FBGUg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hLgg48CggwqP4gLgF5eHEzhGV7haxRKVsoTfLjm2pAmXRbrdqb_0JSPzD_hI8djbaSBwqxC05jGXPwx6PZ74BeG1kXtgi0bHzzlVMU4b7oJWxyZSqeGlS5avev05ZXfPj4-qgaweEtTABH6IPuKFl-P0aDRwD0kMr9ylalPE17qQ7fd46h3JEnVY5dR-9PxwfTftHBZZjTWb4QaCrgNCcIiBvVgyzfP468ODoGqEUzjGVUi4dN21ogzHwUze9XX9cje__14U-gHud10reBTV7CDdMuw13N7AMt-HWxPcIvngEe_W8vbr8tfLQsLiTEgz2EreeRaiiICftWQjTkavL30SS5UWLFZqG-L48xEPePoaj8d5sdz_uujXE0rlcPJa6SmyuysJaViXUyTinWZNb3iScWXct0lIWmjdSamUsbZQumbK24EyXqtRZ_gS22nlrngIpE1UlUptEKUqVSaumlCp1IzWUN1rlEbC1IETTQZljR40fYuNK41gmkGXYaLMSnmXiPIK0p_wZ4DyuQfPGy7onkIvvmA7HCvGtnohZSnfz6ksiPkewM1CGniBDlH6nfxGQtXYIZ8X4NCNbM18thfPjcgS6zyIovC5ce3ZicnDoPp79I90ruL0_-zQV0w_1x-dwJ-RGYIbdC9g6XazMS7jZnJ2eLBc7nTX9Ac0eHTg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXUDl0EIBNZQWHxC3oDycODmitrsgVtFSWujN8lOqQNlqt1u1t_4EJP5hfwkeJxttJA4V4pYcxornYU_sme8DeGtEmtks0qHLzmVIY4broBWhSaQsi9zE0ne9f5uwqirOzsppSweEvTANPkR34IaR4ddrDHBzoW0_yn2JFmXFCnfS7T7vXUI5pMgpM4Dh4fHodNJdKrAUezKbFwS6ahCaYwTkTbJ-lc9fB-5tXUO0wjWWUoqF06ZtaDB6eep6tuu3q9HWf53oU9hss1byoXGzZ_DA1NvwZA3LcBsejT1H8M1zOKpm9d3tr6WHhsWVlOBhL3HzmTddFOS8vmqO6cjd7W8iyOKmxg5NQzwvD_GQty_gdHR0cvAxbNkaQuFSriIUuoxsKvPMWlZG1Nk4pYlKbaGigln3W6SFyHShhNDSWKqkzpm0NiuYzmWuk_QlDOpZbXaA5JEsI6FNJCWl0sSlyoWM3UiKFkrLNAC2MgRXLZQ5Mmr85Gu_NE5lHFWGRJsl9yrj1wHEneRFA-dxD5l33tadgJj_wHI4lvHv1ZifxPQgLb9G_EsA-z1n6AQSROl3_hcAWXkHd1GMVzOiNrPlgrs8LkWg-ySAzPvCvb-Oj6fH7uHVP8q9gcfTwxGffKo-78JGUxqBBXavYXA5X5o9eKiuLs8X8_02mP4ALR8csw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-uniqueness+with+refraction+inversion+%E2%80%95+a+syncline+model+study&rft.jtitle=Geophysical+prospecting&rft.au=PALMER%2C+Derecke&rft.date=2010-03-01&rft.pub=Blackwell&rft.issn=0016-8025&rft.volume=58&rft.issue=2&rft.spage=203&rft.epage=218&rft_id=info:doi/10.1111%2Fj.1365-2478.2009.00818.x&rft.externalDBID=n%2Fa&rft.externalDocID=22364017 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-8025&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-8025&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-8025&client=summon |